CN105388638B - 一种硅波导热光调节结构 - Google Patents

一种硅波导热光调节结构 Download PDF

Info

Publication number
CN105388638B
CN105388638B CN201510982481.5A CN201510982481A CN105388638B CN 105388638 B CN105388638 B CN 105388638B CN 201510982481 A CN201510982481 A CN 201510982481A CN 105388638 B CN105388638 B CN 105388638B
Authority
CN
China
Prior art keywords
waveguide
silicon
layer
ridge
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510982481.5A
Other languages
English (en)
Other versions
CN105388638A (zh
Inventor
王心怡
周林杰
陆梁军
陈建平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201510982481.5A priority Critical patent/CN105388638B/zh
Publication of CN105388638A publication Critical patent/CN105388638A/zh
Application granted granted Critical
Publication of CN105388638B publication Critical patent/CN105388638B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/0151Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the refractive index

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明涉及一种硅波导热光调节结构,从下至上依次包括衬底、下包层、波导层、上包层和电极层,所述的下包层的材料为二氧化硅,波导层的材料为高折射率材料硅,上包层的材料为低折射率材料,所述的电极层由分立于两侧的金属电极和中间的金属栅极构成,所述的波导层为脊型波导,由中间的凸形内脊的轻掺杂区和两侧平板形外脊的重掺杂区构成波导热电阻结构,所述的重掺杂区通过所述的上包层的金属通孔与所述的金属电极相通。当控制电极上加载电压,波导内形成电场,使载流子浓度发生改变,调节硅波导层的电阻率。在恒定驱动电压下,电阻上的热功率发生变化,基于热光效应可以调节硅波导的有效折射率。

Description

一种硅波导热光调节结构
技术领域
本发明涉及集成光学,特别是一种硅波导热光调节结构。
背景技术
近几年光电芯片集成度越来越高,器件尺寸也越来越小。硅材料相比较其它材料,由于其与空气和二氧化硅之间的高折射率差,具有很强的光场限制能力,可以制作亚微米级光波导器件。硅光子器件与成熟的CMOS工艺兼容,具有低制备成本、易大规模集成的特点,是未来光器件发展的重要趋势。而基于硅材料的无源及有源光器件被广泛研究并加以实现,如滤波器、分路器、调制器等。
硅材料主要利用等离子色散效应和热光效应来实现波导层折射率调节。QianfanXu等人提出p-i-n电调节结构,利用了载流子色散效应,通过正向偏压注入载流子来实现波导层折射率变化,在OPTICS EXPRESS(Vol.12,No.2)中“12.5Gbit/s carrier-injection-based silicon micro-ring silicon modulators”进行了详细介绍。AnshengLiu等人提出p-n电调节结构,利用载流子色散效应,通过反向偏压抽取载流子来改变波导层折射率,在OPTICS EXPRESS(Vol.15,No.2)中“High-speed optical modulation basedon carrier depletion on silicon waveguide”进行了详细介绍。Jaime Cardensa等人在波导上方制作金属热电阻,利用热光效应,通过加电发热传导热量来改变波导温度,进而调节硅波导折射率,在OPTICS EXPRESS(Vol.18,No.25)中“High-speed optical modulationbased on carrier deption on silicon waveguide”进行了详细介绍。近期陆梁军等人在Optical Fiber Communication Conference上发表的“Enhanced nonlinear thermo-optic effect in silicon microring resonators with p-i-p microheaters for non-reciprocal transmission”上提出波导热电阻加热硅基微环结构,利用波导层自身作为电阻,外部通电后,热量直接作用于波导层,通过热光效应调节波导折射率。
发明内容
本发明提供一种硅波导热光调节结构,在上述波导热电阻结构基础上增加金属控制栅极,对波导热电阻施加固定的驱动电压,对金属栅极施加控制电压。通过改变控制电压,实现对硅波导折射率的调节,最终实现对通过本结构输出光的调节。采用这种热调结构的优点在于驱动电压和控制电压分离,驱动电极提供电阻发热功率,而控制电极上无静态功耗,易于和控制电路集成。
本发明的技术解决方案如下:
一种硅波导热光调节结构,其特电在于,从下至上依次包括衬底、下包层、波导层、上包层和电极层,所述的下包层的材料为二氧化硅,波导层的材料为高折射率材料硅,上包层的材料为低折射率材料,所述的电极层由分立于两侧的金属电极和中间的金属栅极构成,所述的波导层为脊型波导,由中间的凸形内脊的轻掺杂区和两侧平板形外脊的重掺杂区构成波导热电阻结构,所述的重掺杂区通过所述的上包层的金属通孔与所述的金属电极相通。
所述的脊型波导的凸形内脊的轻掺杂区的宽度、高度和外脊的重掺杂区的高度满足光单模传输条件,所述的凸形内脊的轻掺杂区的掺杂浓度小于1017cm-3,所述的外脊的重掺杂区的掺杂浓度大于1018cm-3,掺杂类型为p型或n型,形成p+-p--p+或n+-n--n+电阻结构。
所述的电极层的材料为铝、铜或金。
上述硅波导热光调节结构的使用方法,在所述的两金属电极之间施加固定的驱动电压,在所述的金属栅极施加控制电压,通过改变该控制电压,实现对硅波导折射率的调节,最终实现对通过本发明结构输出光的调节。
本发明的有益效果是:
对波导热电阻加载一定的驱动电压,对金属栅极加载控制电压,用于在波导层上产生电场。通过改变控制电压,使作用在波导层的电场发生改变,调节波导热电阻的电阻率,从而改变电阻加热功率,实现对硅波导折射率的调节,最终实现对通过本发明结构输出光的调节。
本发明热光调节结构可以将大功率驱动电极和小信号控制电极分离,使热光调控更容易通过集成电路实现,在集成光学中拥有广泛前景。
附图说明
图1为本发明硅波导热光调节结构的示意图。
图2为本发明应用于硅基微环结构的示意图。
图3为不同控制电压下,硅波导电阻上电流与驱动电压关系图。
图4为在15V驱动电压下,硅波导电阻值及加热功率与控制电压关系图。
图5为在15V驱动电压下,硅基微环谐振器的谐振波长偏移量与控制电压的关系图。
图6为集成了波导热光调节结构的微环谐振器实验测试装置示意图。
图7为在15V驱动电压下,微环波导热光调节结构上加载5V 10KHz的方波交流控制电压时,输出光信号的时间响应图。
具体实施方式
下面结合附图及实施例对本发明作进一步的详细描述,应当理解,此处所描述的实施示例仅用于说明和解释本发明,并不用于限定本发明。
图1为本发明硅波导热光调节结构的示意图,如图1所示,本发明硅波导热光调节结构,,从下至上依次包括衬底1、下包层2、波导层3、上包层4和电极层5,所述的下包层2的材料为二氧化硅,波导层3的材料为高折射率材料硅,上包层4的材料为低折射率材料,所述的电极层5由分立于两侧的金属电极7和中间的金属栅极6构成,所述的波导层3为脊型波导,由中间的凸形内脊的轻掺杂区9和两侧平板形外脊的重掺杂区8构成波导热电阻结构,所述的重掺杂区8通过所述的上包层4的金属通孔10与所述的金属电极7相通。
所述的脊型波导的内脊宽度、内脊高度和外脊高度满足光单模传输条件,所述的内脊的掺杂浓度小于1017cm-3,所述的外脊的掺杂浓度大于1018cm-3,掺杂类型为p型或n型,形成p+-p--p+或n+-n--n+电阻结构。
所述的电极层与外部电源相连接,该电极层的材料为铝、铜、金。
本实施例的衬底1为硅,下包层2制作在衬底1上;下包层的厚度为2μm;该下包层为二氧化硅,对波导的光起限制作用;波导层3制作在下包层2上;波导层3的厚度为0.22μm;该波导层的材料为硅;波导层为凸脊型结构,脊的宽度为0.5μm,内脊高度0.22μm,外脊高度0.06μm;脊型区即波导芯层为p型轻掺杂区9,掺杂浓度1015cm-3;两侧平板为p型重掺杂区8,宽度为4μm,掺杂浓度1020cm-3;重掺杂区边缘与波导内脊边缘相隔距离0.3μm;上包层4制作在波导层3上;上包层4的厚度为2.57μm;该上包层的材料为二氧化硅,对波导层3中的光起限制作用,同时对波导起保护作用,并使之易于制作电极;轻掺杂区9上方制作有金属栅极6,作为调节电阻的栅极;两侧的通孔10连接波导重掺杂区8和金属电极7;通孔10的宽度为2μm,材料为铝。
电极层5制作在上包层4上;电极层5的厚度为2μm,与通孔10内的金属连接并与外部电源相连接;电极层5的材料为铝。
使用时,外部电源驱动电压信号加载于与通孔相连的两侧金属电极7,电流通过波导层产生热量。
在恒定的驱动电压下,对金属栅极6加载控制电压,用于在波导层上产生电场。通过改变控制电压,使作用在波导层上的电场发生改变,影响硅波导的电阻率,使电阻上的热功率发生变化,从而实现对硅波导折射率的调节,最终实现对通过本结构输出光的调节。
实施例
图2为电压可控热电阻应用于硅基微环的实施例。11区和12区为p重掺杂区,13区为金属控制栅区。微环半径为10μm,定向耦合区长度为3.8μm。
图3所示为不同控制电压下,硅波导电阻的电流与驱动电压的关系图。由图可以看出,加载在金属栅极上的控制电压对波导层的电阻值能起到有效的控制。
图4为在15V驱动电压下,硅波导电阻值及发热功率与控制电压关系图。
图5为在15V驱动电压下,硅基微环谐振器的谐振波长的偏移量与控制电压的关系图。当控制电压为0V时,微环谐振处于1549.6nm处,当金属上加11V电压时,谐振点偏移到1548.6nm处,谐振点偏移量为-0.9nm。
图6为波导热光调节结构的微环谐振器的实验测试装置示意图。虚线代表光路连接,实线代表电路连接。
第一步:由数字电流表测试波导热电阻的电流-电压曲线。
第二步:直流电压源用于提供热电阻的驱动电压,本例中为15V恒定电压;任意波形发生器用于对金属栅极加载控制电压,本例中,金属栅极加载的控制电压:峰峰值5V,频率10KHz的方波。可调谐激光器输出光耦合到测试芯片,输出光信号经过光电探测器后,再接入示波器。当激光器输出光在微环谐振中心波长附近时,可观察其时间响应图。
图7为驱动电压15V,在微环波导热光调节结构上加载5V10KHz的方波交流控制电压时,输出光信号的时间响应图。上图为光信号时间响应图,中间为控制电压的时域波形;左下图为上升沿,显示上升延时间0.729μs;右下图为下降沿,显示下降延时间7.887μs。

Claims (3)

1.一种硅波导热光调节结构,其特征在于,从下至上依次包括衬底(1)、下包层(2)、波导层(3)、上包层(4)和电极层(5),所述的下包层(2)的材料为二氧化硅,波导层(3)的材料为高折射率材料硅,上包层(4)的材料为低折射率材料,所述的电极层(5)由分立于两侧的金属电极(7)和中间的金属栅极(6)构成,所述的波导层(3)为脊型波导,由中间的凸形内脊的轻掺杂区(9)和两侧平板形外脊的重掺杂区(8)构成波导热电阻结构,所述的重掺杂区(8)通过所述的上包层(4)的金属通孔(10)与所述的金属电极(7)相通,所述的金属电极(7)之间施加固定的驱动电压,在所述的金属栅极(6)施加控制电压,通过改变该控制电压,实现对硅波导折射率的调节,最终实现对输出光的调节。
2.根据权利要求1所述的硅波导热光调节结构,其特征在于,所述的脊型波导的凸形内脊的轻掺杂区(9)的宽度、高度和外脊的重掺杂区(8)的高度满足光单模传输条件,所述的凸形内脊的轻掺杂区(9)的掺杂浓度小于1017cm-3,所述的外脊的重掺杂区(8)的掺杂浓度大于1018cm-3,掺杂类型为p型或n型,形成p+-p--p+或n+-n--n+电阻结构。
3.根据权利要求1所述的硅波导热光调节结构,其特征在于,所述的电极层的材料为铝、铜或金。
CN201510982481.5A 2015-12-24 2015-12-24 一种硅波导热光调节结构 Active CN105388638B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510982481.5A CN105388638B (zh) 2015-12-24 2015-12-24 一种硅波导热光调节结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510982481.5A CN105388638B (zh) 2015-12-24 2015-12-24 一种硅波导热光调节结构

Publications (2)

Publication Number Publication Date
CN105388638A CN105388638A (zh) 2016-03-09
CN105388638B true CN105388638B (zh) 2018-01-12

Family

ID=55421080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510982481.5A Active CN105388638B (zh) 2015-12-24 2015-12-24 一种硅波导热光调节结构

Country Status (1)

Country Link
CN (1) CN105388638B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10088697B2 (en) * 2015-03-12 2018-10-02 International Business Machines Corporation Dual-use electro-optic and thermo-optic modulator
CN109314678B (zh) * 2016-06-28 2020-10-27 华为技术有限公司 信号发生器及发射器
CN110109267A (zh) * 2018-02-01 2019-08-09 上海硅通半导体技术有限公司 一种热光型相位调制结构
US11209673B2 (en) * 2019-10-30 2021-12-28 Taiwan Semiconductor Manufacturing Company, Ltd. Heater structure configured to improve thermal efficiency in a modulator device
CN111628036B (zh) * 2020-07-30 2020-11-06 武汉光谷信息光电子创新中心有限公司 一种具有谐振波导结构的光电探测器
CN115166898B (zh) * 2022-07-21 2024-02-06 西安电子科技大学 一种电光调制集成波导结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018929A (zh) * 2012-12-05 2013-04-03 上海交通大学 一种硅波导折射率热光调节结构
CN104280899A (zh) * 2014-10-27 2015-01-14 山东大学 基于微环谐振腔的硅基热光调制器
CN104991399A (zh) * 2015-07-13 2015-10-21 上海交通大学 一种利用光敏电阻反馈降低微腔热光双稳态光功率阈值的结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3247450B2 (ja) * 1992-09-14 2002-01-15 アンリツ株式会社 半導体発光素子および外部共振器型半導体光装置
US8150223B2 (en) * 2009-03-31 2012-04-03 Oracle America, Inc. Thermal tuning of an optical device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018929A (zh) * 2012-12-05 2013-04-03 上海交通大学 一种硅波导折射率热光调节结构
CN104280899A (zh) * 2014-10-27 2015-01-14 山东大学 基于微环谐振腔的硅基热光调制器
CN104991399A (zh) * 2015-07-13 2015-10-21 上海交通大学 一种利用光敏电阻反馈降低微腔热光双稳态光功率阈值的结构

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Photoconductive effect on p-i-p micro-heaters integrated in silicon microring resonators;Linjie Zhou等;《OPTICS EXPRESS》;20140124;全文 *
Tunable Vernier Microring Optical Filters With p-i-p-Type Microheaters;Linjie Zhou等;《IEEE Photonics Journal》;20130703;全文 *

Also Published As

Publication number Publication date
CN105388638A (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
CN105388638B (zh) 一种硅波导热光调节结构
Xu et al. High speed silicon Mach-Zehnder modulator based on interleaved PN junctions
CN105044931B (zh) 硅基集成化的差分电光调制器及其制备方法
Liu et al. High-speed optical modulation based on carrier depletion in a silicon waveguide
CN103226252B (zh) 一种提高耗尽型硅基电光调制器调制效率的掺杂结构
US9134553B2 (en) Optical modulator and method for manufacturing the same
CN103293715B (zh) 一种基于微环-马赫曾德尔干涉仪结构的电光调制器
JP5300807B2 (ja) 光変調素子
US9678370B2 (en) Carrier-depletion based silicon waveguide resonant cavity modulator with integrated optical power monitor
Spector et al. Operation and optimization of silicon-diode-based optical modulators
Gupta et al. 50GHz Ge waveguide electro-absorption modulator integrated in a 220nm SOI photonics platform
CN103018929A (zh) 一种硅波导折射率热光调节结构
Hu et al. High-speed and high-power germanium photodetector with a lateral silicon nitride waveguide
Sun et al. The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure
Nozaki et al. Ultralow-energy electro-absorption modulator consisting of InGaAsP-embedded photonic-crystal waveguide
CN103955147A (zh) 一种微环光开关的控制装置
US20100142878A1 (en) Absorption modulator and manufacturing method thereof
Basak et al. Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms
CN104991399A (zh) 一种利用光敏电阻反馈降低微腔热光双稳态光功率阈值的结构
CN112526771A (zh) 一种二硫化钼薄膜辅助的热光调制器
Jain et al. Efficient optical modulation with high data-rate in silicon based laterally split vertical pn junction
CN101813834B (zh) 一种双mos结构硅基电光调制器
CN105431766B (zh) 具有基于等离子体激元的耦合装置的光调制器
CN106970475A (zh) 硅基石墨烯栅层电光空间超快调制器
CN108153001B (zh) 一种大带宽硅基光调制器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant