CN105376049A - 一种构建超混沌***的抗扰控制设计方法 - Google Patents

一种构建超混沌***的抗扰控制设计方法 Download PDF

Info

Publication number
CN105376049A
CN105376049A CN201510829084.4A CN201510829084A CN105376049A CN 105376049 A CN105376049 A CN 105376049A CN 201510829084 A CN201510829084 A CN 201510829084A CN 105376049 A CN105376049 A CN 105376049A
Authority
CN
China
Prior art keywords
operational amplifier
resistance
output
inverting input
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510829084.4A
Other languages
English (en)
Other versions
CN105376049B (zh
Inventor
魏伟
左敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing security control Yazhi Information Technology Co.,Ltd.
Original Assignee
Beijing Technology and Business University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Technology and Business University filed Critical Beijing Technology and Business University
Priority to CN201510829084.4A priority Critical patent/CN105376049B/zh
Publication of CN105376049A publication Critical patent/CN105376049A/zh
Application granted granted Critical
Publication of CN105376049B publication Critical patent/CN105376049B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/001Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using chaotic signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Networks Using Active Elements (AREA)

Abstract

本发明公开了一种构建超混沌***的抗扰控制设计方法及超混沌电路。其中该超混沌电路包括四个通道电路。第一通道电路的输出信号x作为第二、三、四通道电路的一路输入信号,同时它经反相器反相后又作为第一通道电路及第二通道电路的一路输入信号。第二通道电路的输出信号y作为第一、三、四通道电路的一路输入信号。第三通道电路的输出z作为第二通道电路和第四通道电路的一路输入信号。第四通道电路的输出u作为第一通道电路的一路输入。该电路能够在较大的参数范围内获得超混沌动力学特性。

Description

一种构建超混沌***的抗扰控制设计方法
技术领域
本发明涉及在混沌***基础上构建超混沌***的方法,具体来讲是利用混沌***构建超混沌***的***化设计方法。
背景技术
混沌是确定性***中产生的一种类似随机的动力学行为。因其具有丰富的动态行为而被广泛应用于保密通信领域。与普通混沌***相比,超混沌***具有一个以上正的Lyapunov指数,其动力学行为比普通混沌***更为复杂、更难预测。因此,在保密通信中,超混沌***具有更大的优势。此外,超混沌***在信息加密、图像处理、复杂网络、非线性电路等方面有极具优势的应用前景。
正因为超混沌***具有广阔的应用前景、在非线性科学研究中具有重要地位,越来越多的人开始研究超混沌***的产生及其物理实现。通常,超混沌***可通过在混沌***中引入状态反馈,或者在混沌***上加入正弦干扰信号,亦或通过引入***自身的信号获得。
虽然已有诸多获得新的超混沌***的报道,但是所得***仅在有限的参数范围内具有超混沌特性。因此,一种***化的、可在较大参数范围内获得超混沌特性的设计方法显得十分必要。
发明内容
本发明的目的在于克服现有获取超混沌***技术的不足,提供一种在三维混沌***基础上获得超混沌***的***化设计方法。特别地,该方法能够使***在较大的参数范围内获得超混沌动力学特性。
本发明通过如下技术方案实现发明目的。
以Lorenz***为基础,其动力学方程为:
x · = a ( y - x ) y · = c x - y - x z z · = x y - b z - - - ( 1 )
其中,x,y,z为***的状态变量,a,b,c为常数。当a=10,b=8/3,c=28时,***呈现混沌动力学特性。
在上述***(1)的三维变量基础上引入一维变量,构成具有四维变量的动力学***。本发明采用抗扰控制设计方法,抗扰控制输入为u。在三维混沌***(1)的第一个状态方程右端加入u,且u的变化率为可得如下四维动力学***:
x · = a ( y - x ) + u y · = c x - y - x z z · = x y - b z u · = c d x - d x z - e y - - - ( 2 )
其中,x,y,z,u为***的状态变量,a,b,c,d,e为常数。a,b,c与Lorenz混沌***的取值相同;c1,c2为***的可调增益且d=c1,e=c1+c2
通常,若一个四维动力学***为超混沌***,那么它需要同时满足如下三个条件:
(i)***是耗散的;
(ii)***的最小维数是四;
(iii)方程中导致不稳定的项数至少为二,且其中至少有一项是非线性函数项。
分析上述四维动力学***(2)可知:条件(ii),(iii)已满足,考察该***的散度,有:
&dtri; V = &part; x &CenterDot; &part; x + &part; y &CenterDot; &part; y + &part; z &CenterDot; &part; z + &part; u &CenterDot; &part; u = - a - 1 - b + 0 = - ( a + b + 1 ) < 0 - - - ( 3 )
故四维动力学***(2)是耗散的,且以指数形式收敛,满足条件(i)。
于是,上述四维动力学***(2)满足超混沌***所需满足的三个必要条件,选取合适的可调参数d,e,亦即c1,c2,可获得期望的超混沌动力学特性。
本发明通过四个通道电路实现式(2)所示的超混沌***。每个通道电路分别实现相应的状态方程。第一通道电路输出为x,第二通道电路输出为y,第三通道电路输出为z,第四通道电路输出为u。
第一通道电路的输出信号x作为第二、三、四通道电路的一路输入信号,同时它经反相器反相后又作为第一通道电路及第二通道电路的一路输入信号。第二通道电路的输出信号y作为第一、三、四通道电路的一路输入信号。第三通道电路的输出z作为第二通道电路和第四通道电路的一路输入信号。第四通道电路的输出u作为第一通道电路的一路输入。
式(2)所示超混沌***的实现电路由两个模拟乘法器、十六个运算放大器、三十七个电阻和四个电容组成。
第一通道电路的输入信号为-x,y和u,该通道电路由第一运算放大器、第二运算放大器、第三运算放大器,第一、二、三、四、五、六及二十四电阻,第一积分电容组成。第一、二、二十四电阻的一端分别接收三路输入信号,另一端与第一运算放大器的反相输入端相连,第一运算放大器的同相输入端接地,第一、二、三、二十四电阻及第一运算放大器构成反相加法器;第一运算放大器的输出端与第四电阻的一端相连;第四电阻的另一端与第二运算放大器的反相输入端相连,第二运算放大器的反相输入端与其输出端之间并接第一积分电容,第二运算放大器的同相输入端接地,第二运算放大器的输出端输出信号给第二、三、四通道电路,第四电阻、第二运算放大器、第一积分电容构成反相积分器;第二运算放大器的输出与第五电阻的一端相连;第五电阻的另一端与第三运算放大器的反相输入端相连,第三运算放大器反相输入端与输出端之间并接第六电阻,第三运算放大器的同相输入端接地,第三运算放大器的输出端的输出信号给第一及第二通道电路。
第二通道电路的输入信号为x,-x,y和z,该通道电路由第四、五、六运算放大器,第七、八、九、十、十一、十二、十四、十五电阻,第一模拟乘法器以及第二积分电容组成。第七、八电阻分别接收两路输入信号,分别来自第三运算放大器和第六运算放大器的输出。第七、八电阻的另一端均与第四运算放大器的反相输入端相连,第四运算放大器的同相输入端接地,第四运算放大器的反相输入端与输出端之间并接第九电阻,第四运算放大器的输出与第十一电阻的一端相连,第十一电阻的另一端与第五运算放大器的反相输入端相连,第十电阻一端与第五运算放大器的反相输入端相连,另一端接收第二运算放大器的输出信号,第十二电阻一端与第五运算放大器的反相输入端相连,另一端与第一模拟乘法器的输出端相连,第一模拟乘法器的两个输入端则分别接收第三运算放大器和第八运算放大器的输出信号,第一模拟乘法器的输出端与第十二、三十二电阻相连,第五运算放大器的同相输入端接地,第五运算放大器的反相输入端与输出端之间并接第十四电阻,第十五电阻的一端与第五运算放大器的输出端相连,另一端与第六运算放大器的反相输入端相连,第六运算放大器的同相输入端接地,第六运算放大器的反相输入端和输出端之间并接第二积分电容,第六运算放大器的输出端提供输出信号给第一至四通道电路。
第三通道电路的输入信号为x,y和-z,该通道电路由第七、八、九运算放大器,第十三、十六、十七、二十七、二十八、二十九电阻,第二模拟乘法器以及第三积分电容组成。第二模拟乘法器分别接收来自第二运算放大器、第六运算放大器的输出信号,第二模拟乘法器的输出与第十六电阻的一端相连,第十六电阻的另一端与第七运算放大器的反相输入端相连,第十三电阻的一端接受第九运算放大器的输出,另一端与第七运算放大器的反相输入端相连,第七运算放大器的反相输入端与其输出端之间并接第十七电阻,第七运算放大器的同相输入端接地,第二十七电阻的一端与第七运算放大器的输出端相连,另一端与第八运算放大器的反相输入端相连,第八运算放大器的反相输入端与其输出端之间并接第三积分电容,第八运算放大器的同相输入端接地,其输出端给出信号到第一模拟乘法器以及第二十八电阻,第二十八电阻的另一端与第九运算放大器的反相输入端相连,在第九运算放大器的反相输入端与其输出端之间并接第二十九电阻,第九运算放大器的同相输入端接地,第九运算放大器的输出端给出信号到第十三电阻。
第四通道电路的输入信号为x,y和z,该通道电路由第十至十六运算放大器,第十八、至二十三、二十五、二十六、三十至三十七电阻,第四积分电容组成。第十八电阻的一端接收第二运算放大器的输出,另一端与第十运算放大器的反相输入端相连,第十运算放大器的反相输入端与其输出端之间并接第三十七电阻,第十运算放大器的输出与第二十一、二十二电阻相连,第十运算放大器的同相输入端接地,第二十五电阻的一端接收第六运算放大器的输出,另一端与第十五运算放大器的反相输入端相连,第十五运算放大器的输出与反相输入端之间并接第二十电阻,第十五运算放大器的同相输入端接地,第十五运算放大器的输出与第二十六电阻的一端相连,第二十六电阻的另一端与第十六运算放大器的反相输入端相连,在第十六运算放大器的反相输入端与输出端之间并接第三十四电阻,第十六运算放大器的输出端与第三十五电阻的一端相连,第十六运算放大器的同相输入端接地,第二十二、三十五电阻的另一端均与第十二运算放大器的反相输入端相连,第十二运算放大器的反相输入端与输出端之间并接第三十六电阻,第十二运算放大器的输出端与第三十电阻相连,第十二运算放大器的同相输入端接地,第二十一电阻的另一端与第十一运算放大器的反相输入端相连,第十一运算放大器的反相输入端与输出端之间并接第十九电阻,第十一运算放大器的输出端与第二十三电阻相连,第二十三、三十电阻的另一端均与第十三运算放大器的反相输入端相连,第三十二电阻的一端接收第一模拟乘法器的输出,另一端与第十三运算放大器的反相输入端相连,第十三运算放大器的反相输入端与输出端之间并接第三十一电阻,第十三运算放大器的输出端与第三十三电阻相连,第三十三电阻的另一端与第十四运算放大器的反相输入端相连,第十四运算放大器的反相输入端与输出端之间并接第四积分电容,第十四运算放大器的输出信号给第一通道电路的第二十四电阻。
本发明可用于在三维混沌***的基础上获得四维超混沌***。相比于现有技术,本发明具有如下突出优势:
(1)采用抗扰控制设计超混沌***,可保证所得***的超混沌特性受外界干扰小;
(2)可调参数在较大范围内变化时,***仍然具有超混沌动力学特性;
(3)可用***化的设计方式构建超混沌***且整体控制结构简单,应用方便,便于***设计者掌握。
附图说明
附图1为本发明的设计流程示意图图;
附图2为本发明的Lyapunov指数谱;
附图3为本发明的电路结构示意图;
附图4为本发明的电路图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
以下结合附图,通过实施例对本发明作进一步详细说明:
图1所示为本发明的设计流程图。在三维Lorenz混沌***的基础上施以抗扰控制,构造一个四维动力学***。验证该四维动力学***是否满足超混沌***必须满足的三个必要条件(在抗扰控制作用下的三维Lorenz混沌***必定满足超混沌***的三个必要条件)。选取可调参数的数值,并利用Lyapunov指数谱、分岔图以及相轨迹等常用的超混沌***特征来判断***是否为超混沌***。
通常,Lyapunov指数λi,i=1,2,3,4,满足λ1≥λ2≥λ3≥λ4。根据四维***(2)的Lyapunov指数值,若λ1>0,λ2>0,λ3=0,λ4<0且λ124<0时,***(2)呈现超混沌状态。可据此判断***(2)是否具有超混沌特性。
图2是本发明设计所对应的Lyapunov指数谱,图2(a)固定c2=2,c1在(0,25]的数值范围内变动;图2(b)固定c1=8,c2在(0,25]的数值范围内变化。从图中可见:参数c1,c2在较大范围内变动,四维动力学***(4)均具有两个正的Lyapunov指数,也就是在较大的参数取值范围内,本发明均能获得超混沌动力学特性。
图3是本发明的电路结构示意图。本发明的电路共四个通道,第一通道的输出作为第二、三、四通道的输入,同时,第一通道的输出反相后也作为自身的一路输入;第二通道的输出作为第一、三、四通道以及自身的一路输入;第三通道的输出作为第二、三、四通道的输入;第四路通道的输出仅作为第一路通道的输入。
图4是本发明的电路图。因变量过大,超出元器件的动态变化范围,需进行比例压缩变换,将所有变量缩小10倍。于是,令则压缩变换后的四维***(2)可写为:
根据式(4)对变量进行微积分及时间尺度变换,可完成超混沌***的电路设计与硬件实现。由式(4)可得其电路实现的状态方程为:
如图4所示,第一通道电路中第一、二、二十四电阻R1、R2、R24的一端分别接收第三、六、十四运算放大器U3,U6,U14的输出信号,另一端与第一运算放大器U1的反相输入端相连,第一运算放大器U1的同相输入端接地,第一运算放大器U1的输出端与第四电阻R4的一端相连;第四电阻R4的另一端与第二运算放大器U2的反相输入端相连,第二运算放大器U2的反相输入端与其输出端之间并接第一积分电容C1,第二运算放大器U2的同相输入端接地,第二运算放大器U2的输出信号给第二、三、四通道电路,第二运算放大器U2的输出与第五电阻R5的一端相连;第五电阻R5的另一端与第三运算放大器U3的反相输入端相连,第三运算放大器U3的反相输入端与输出端之间并接第六电阻R6,第三运算放大器U3的同相输入端接地,第三运算放大器U3的输出端的输出信号给第一及第二通道电路。
第二通道电路中第七、八电阻R7,R8分别接收两路输入信号,它们分别来自第三运算放大器U3和第六运算放大器U6。第七、八电阻R7,R8的另一端均与第四运算放大器U4的反相输入端相连,第四运算放大器U4的同相输入端接地,第四运算放大器U4的反相输入端与输出端之间并接第九电阻R9,第四运算放大器U4的输出与第十一电阻R11相连,第十一电阻R11的另一端与第五运算放大器U5的反相输入端相连,第十电阻R10一端与第五运算放大器U5的反相输入端相连,另一端接收第二运算放大器U2的输出,第十二电阻R12一端与第五运算放大器U5的反相输入端相连,另一端与第一模拟乘法器A1的输出端相连,第一模拟乘法器A1的两个输入端则分别接收第三运算放大器和第八运算放大器U3,U8的输出,第一模拟乘法器A1的输出端与第十二、三十二电阻R12,R32相连,第五运算放大器U5的同相输入端接地,第五运算放大器U5的反相输入端与输出端之间并接第十四电阻R14,第十五电阻R15的一端与第五运算放大器U5的输出端相连,另一端与第六运算放大器U6的反相输入端相连,第六运算放大器U6的同相输入端接地,第六运算放大器U6的反相输入端和输出端之间并接第二积分电容C2,第六运算放大器U6输出信号给第一至四通道电路。
第三通道电路中第二模拟乘法器A2分别接收第二运算放大器U2、第六运算放大器U6的输出,第二模拟乘法器A2的输出与第十六电阻R16的一端相连,第十六电阻R16的另一端与第七运算放大器U7的反相输入端相连,第十三电阻R13的一端接收第九运算放大器U9的输出,另一端与第七运算放大器U7的反相输入端相连,第七运算放大器U7的反相输入端与其输出端之间并接第十七电阻R17,第七运算放大器U7的同相输入端接地,第二十七电阻R27的一端与第七运算放大器U7的输出端相连,另一端与第八运算放大器U8的反相输入端相连,第八运算放大器的反相输入端与其输出端之间并接第三积分电容C3,第八运算放大器U8的同相输入端接地,其输出端给出信号到第一模拟乘法器A1以及第二十八电阻R28,第二十八电阻R28的另一端与第九运算放大器U9的反相输入端相连,在第九运算放大器U9的反相输入端与其输出端之间并接第二十九电阻R29,第九运算放大器U9的同相输入端接地,第九运算放大器U9输出到第十三电阻R13
第四通道电路中第十八电阻R18的一端接收第二运算放大器U2的输出,另一端与第十运算放大器U10的反相输入端相连,第十运算放大器U10的反相输入端与其输出端之间并接第三十七电阻R37,第十运算放大器U10的输出与第二十一、二十二电阻R21,R22相连,第十运算放大器U10的同相输入端接地,第二十五电阻R25的一端接收第六运算放大器U6的输出,另一端与第十五运算放大器U15的反相输入端相连,第十五运算放大器U15的输出与反相输入端之间并接第二十电阻R20,第十五运算放大器U15的同相输入端接地,第十五运算放大器U15的输出与第二十六电阻R26的一端相连,第二十六电阻R26的另一端与第十六运算放大器U16的反相输入端相连,在第十六运算放大器U16的反相输入端与输出端之间并接第三十四电阻R34,第十六运算放大器U16的输出端与第三十五电阻R35的一端相连,第十六运算放大器U16的同相输入端接地,第二十二、三十五电阻R22,R35的另一端均与第十二运算放大器U12的反相输入端相连,第十二运算放大器U12的反相输入端与输出端之间并接第三十六电阻R36,第十二运算放大器U12的输出端与第三十电阻R30相连,第十二运算放大器U12的同相输入端接地,第二十一电阻R21的另一端与第十一运算放大器U11的反相输入端相连,第十一运算放大器U11的反相输入端与输出端之间并接第十九电阻R19,第十一运算放大器U11的输出端与第二十三电阻R23相连,第二十三、三十电阻R23,R30的另一端均与第十三运算放大器U13的反相输入端相连,第三十二电阻R32的一端接收第一模拟乘法器A1的输出,另一端与第十三运算放大器U13的反相输入端相连,第十三运算放大器U13的反相输入端与输出端之间并接第三十一电阻R31,第十三运算放大器U13的输出端与第三十三电阻R33相连,第三十三电阻R33的另一端与第十四运算放大器U14的反相输入端相连,第十四运算放大器U14的反相输入端与输出端之间并接第四积分电容C4,第十四运算放大器U14的输出信号给第一通道电路的第二十四电阻R24。具体实现时,集成运放采用TL084,模拟乘法器采用AD633。电阻采用精度为1%的金属膜电阻,电容采用瓷片电容。
根据***状态方程(4)及电路状态方程(5),可得电路中各元器件的数值为:
Ri=10kΩ(i=1,2,5,6,10,19,21,23,25,26,28,29,34),
Rj=100kΩ(j=3,4,15,20,24,27,33),
R7=R18=R22=30kΩ,R8=R35=120kΩ,R9=R36=1kΩ,
R11=R30=2kΩ,R14=R17=R31=R37=240kΩ,R12=R16=24kΩ,
R13=90kΩ,R32=3kΩ,Ci=0.01μF(i=1,2,3,4)。
根据本发明,设计的超混沌***,能够保证***的超混沌特性受外界干扰小;在可调参数在较大范围内变化时,***仍然具有超混沌动力学特性。

Claims (2)

1.一种超混沌电路,其特征在于包括第一通道电路、第二通道电路,第三通道电路和第四通道电路,其中:
第一通道电路中第一、二、二十四电阻R1、R2、R24的一端分别接收第三、六、十四运算放大器U3,U6,U14的输出信号,另一端与第一运算放大器U1的反相输入端相连,第一运算放大器U1的同相输入端接地,第一运算放大器U1的输出端与第四电阻R4的一端相连;第四电阻R4的另一端与第二运算放大器U2的反相输入端相连,第二运算放大器U2的反相输入端与其输出端之间并接第一积分电容C1,第二运算放大器U2的同相输入端接地,第二运算放大器U2的输出信号给第二、三、四通道电路,第二运算放大器U2的输出与第五电阻R5的一端相连;第五电阻R5的另一端与第三运算放大器U3的反相输入端相连,第三运算放大器U3的反相输入端与输出端之间并接第六电阻R6,第三运算放大器U3的同相输入端接地,第三运算放大器U3的输出端的输出信号给第一及第二通道电路;
第二通道电路中第七、八电阻R7,R8分别接收两路输入信号,它们分别来自第三运算放大器U3和第六运算放大器U6;第七、八电阻R7,R8的另一端均与第四运算放大器U4的反相输入端相连,第四运算放大器U4的同相输入端接地,第四运算放大器U4的反相输入端与输出端之间并接第九电阻R9,第四运算放大器U4的输出与第十一电阻R11相连,第十一电阻R11的另一端与第五运算放大器U5的反相输入端相连,第十电阻R10一端与第五运算放大器U5的反相输入端相连,另一端接收第二运算放大器U2的输出,第十二电阻R12一端与第五运算放大器U5的反相输入端相连,另一端与第一模拟乘法器A1的输出端相连,第一模拟乘法器A1的两个输入端则分别接收第三运算放大器和第八运算放大器U3,U8的输出,第一模拟乘法器A1的输出端与第十二、三十二电阻R12,R32相连,第五运算放大器U5的同相输入端接地,第五运算放大器U5的反相输入端与输出端之间并接第十四电阻R14,第十五电阻R15的一端与第五运算放大器U5的输出端相连,另一端与第六运算放大器U6的反相输入端相连,第六运算放大器U6的同相输入端接地,第六运算放大器U6的反相输入端和输出端之间并接第二积分电容C2,第六运算放大器U6输出信号给第一至四通道电路;
第三通道电路中第二模拟乘法器A2分别接收第二运算放大器U2、第六运算放大器U6的输出,第二模拟乘法器A2的输出与第十六电阻R16的一端相连,第十六电阻R16的另一端与第七运算放大器U7的反相输入端相连,第十三电阻R13的一端接收第九运算放大器U9的输出,另一端与第七运算放大器U7的反相输入端相连,第七运算放大器U7的反相输入端与其输出端之间并接第十七电阻R17,第七运算放大器U7的同相输入端接地,第二十七电阻R27的一端与第七运算放大器U7的输出端相连,另一端与第八运算放大器U8的反相输入端相连,第八运算放大器U8的反相输入端与其输出端之间并接第三积分电容C3,第八运算放大器U8的同相输入端接地,其输出端给出信号到第一模拟乘法器A1以及第二十八电阻R28,第二十八电阻R28的另一端与第九运算放大器U9的反相输入端相连,在第九运算放大器U9的反相输入端与其输出端之间并接第二十九电阻R29,第九运算放大器U9的同相输入端接地,第九运算放大器U9输出到第十三电阻R13
第四通道电路中第十八电阻R18的一端接收第二运算放大器U2的输出,另一端与第十运算放大器U10的反相输入端相连,第十运算放大器U10的反相输入端与其输出端之间并接第三十七电阻R37,第十运算放大器U10的输出与第二十一、二十二电阻R21,R22相连,第十运算放大器U10的同相输入端接地,第二十五电阻R25的一端接收第六运算放大器U6的输出,另一端与第十五运算放大器U15的反相输入端相连,第十五运算放大器U15的输出与反相输入端之间并接第二十电阻R20,第十五运算放大器U15的同相输入端接地,第十五运算放大器U15的输出与第二十六电阻R26的一端相连,第二十六电阻R26的另一端与第十六运算放大器U16的反相输入端相连,在第十六运算放大器U16的反相输入端与输出端之间并接第三十四电阻R34,第十六运算放大器U16的输出端与第三十五电阻R35的一端相连,第十六运算放大器U16的同相输入端接地,第二十二、三十五电阻R22,R35的另一端均与第十二运算放大器U12的反相输入端相连,第十二运算放大器U12的反相输入端与输出端之间并接第三十六电阻R36,第十二运算放大器U12的输出端与第三十电阻R30相连,第十二运算放大器U12的同相输入端接地,第二十一电阻R21的另一端与第十一运算放大器U11的反相输入端相连,第十一运算放大器U11的反相输入端与输出端之间并接第十九电阻R19,第十一运算放大器U11的输出端与第二十三电阻R23相连,第二十三、三十电阻R23,R30的另一端均与第十三运算放大器U13的反相输入端相连,第三十二电阻R32的一端接收第一模拟乘法器A1的输出,另一端与第十三运算放大器U13的反相输入端相连,第十三运算放大器U13的反相输入端与输出端之间并接第三十一电阻R31,第十三运算放大器U13的输出端与第三十三电阻R33相连,第三十三电阻R33的另一端与第十四运算放大器U14的反相输入端相连,第十四运算放大器U14的反相输入端与输出端之间并接第四积分电容C4,第十四运算放大器U14的输出信号给第一通道电路的第二十四电阻R24
2.一种构建超混沌电路***的设计方法,其特征在于包括:
(1)构建超混沌电路四维动力学***公式:
x &CenterDot; = a ( y - x ) + u y &CenterDot; = c x - y - x z z &CenterDot; = x y - b z u &CenterDot; = c d x - d x z - e y
其中,x,y,z,u为***的状态变量,a,b,c,d,e为常数;c1,c2为***的可调增益且d=c1,e=c1+c2
(2)根据上述超混沌电路四维动力学***公式设计电路,所述电路为根据权利要求1所述的超混沌电路。
CN201510829084.4A 2015-11-25 2015-11-25 一种构建超混沌***的抗扰控制设计方法 Active CN105376049B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510829084.4A CN105376049B (zh) 2015-11-25 2015-11-25 一种构建超混沌***的抗扰控制设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510829084.4A CN105376049B (zh) 2015-11-25 2015-11-25 一种构建超混沌***的抗扰控制设计方法

Publications (2)

Publication Number Publication Date
CN105376049A true CN105376049A (zh) 2016-03-02
CN105376049B CN105376049B (zh) 2016-11-02

Family

ID=55377881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510829084.4A Active CN105376049B (zh) 2015-11-25 2015-11-25 一种构建超混沌***的抗扰控制设计方法

Country Status (1)

Country Link
CN (1) CN105376049B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106788966A (zh) * 2017-02-25 2017-05-31 兰州大学 一种宽参数区域的五阶超混沌***
CN107437989A (zh) * 2016-05-22 2017-12-05 杨景美 线性化Sprott B混沌***为一次和三次项的电路
CN112953701A (zh) * 2021-02-04 2021-06-11 沈阳建筑大学 一种四维混沌电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860432A (zh) * 2010-04-09 2010-10-13 李锐 高阶复合混沌信号发生装置
CN102843230A (zh) * 2012-09-17 2012-12-26 郑州轻工业学院 四维自治超混沌***数学模型及其实现电路
CN104749957A (zh) * 2015-03-25 2015-07-01 山东科技大学 精确配置定常离散***所有Lyapunov指数的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860432A (zh) * 2010-04-09 2010-10-13 李锐 高阶复合混沌信号发生装置
CN102843230A (zh) * 2012-09-17 2012-12-26 郑州轻工业学院 四维自治超混沌***数学模型及其实现电路
CN104749957A (zh) * 2015-03-25 2015-07-01 山东科技大学 精确配置定常离散***所有Lyapunov指数的方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107437989A (zh) * 2016-05-22 2017-12-05 杨景美 线性化Sprott B混沌***为一次和三次项的电路
CN107453859A (zh) * 2016-05-22 2017-12-08 杨景美 线性化Sprott B混沌***为二次和三次项的电路
CN107453860A (zh) * 2016-05-22 2017-12-08 杨景美 线性化Sprott B混沌***为二次和二次项的电路
CN107453859B (zh) * 2016-05-22 2020-06-02 台州市牛诺电子商务有限公司 线性化Sprott B混沌***为二次和三次项的电路
CN107453860B (zh) * 2016-05-22 2020-06-05 台州市牛诺电子商务有限公司 线性化Sprott B混沌***为二次和二次项的电路
CN107437989B (zh) * 2016-05-22 2020-07-17 浙江中超新材料股份有限公司 线性化Sprott B混沌***为一次和三次项的电路
CN106788966A (zh) * 2017-02-25 2017-05-31 兰州大学 一种宽参数区域的五阶超混沌***
CN106788966B (zh) * 2017-02-25 2023-10-27 兰州大学 一种宽参数区域的五阶超混沌***
CN112953701A (zh) * 2021-02-04 2021-06-11 沈阳建筑大学 一种四维混沌电路
CN112953701B (zh) * 2021-02-04 2023-10-31 沈阳建筑大学 一种四维混沌电路装置

Also Published As

Publication number Publication date
CN105376049B (zh) 2016-11-02

Similar Documents

Publication Publication Date Title
Candito et al. Three solutions for a discrete nonlinear Neumann problem involving the-Laplacian
CN105068420A (zh) 一种区间约束的非仿射不确定***自适应控制方法
Akram et al. Traveling wave and exact solutions for the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity
CN102843230B (zh) 四维自治超混沌***数学模型及其实现电路
CN105376049A (zh) 一种构建超混沌***的抗扰控制设计方法
CN107526896A (zh) 一种磁控忆感器模型的等效模拟电路
Guan et al. Improved H∞ filter design for discrete-time Markovian jump systems with time-varying delay
Baghsorkhi et al. Embedding AC power flow in the complex plane part I: modelling and mathematical foundation
CN103810646A (zh) 一种基于改进投影积分算法的有源配电***动态仿真方法
Glyzin et al. Periodic traveling-wave-type solutions in circular chains of unidirectionally coupled equations
CN110896347B (zh) 一种具有离散分岔图的多稳定性混沌***
CN103188072A (zh) 一个改进的四维混沌***及装置
CN204721366U (zh) 一种基于忆阻器的混沌信号产生电路
CN103199982A (zh) 一种具有平方项的三维混沌***
CN103236819A (zh) 一种记忆***混沌信号产生器
CN114498921A (zh) 一种基于混合量测的配电网分层分区状态估计***
CN104242834A (zh) 基于高阶多项式拟合的接收机前置放大器非线性响应建模方法
CN104301090A (zh) 含有时滞项的四维混沌***电路
CN103199987A (zh) 一个含四个参数的三维混沌***
CN106452389A (zh) 基于指数再生窗时域调制滤波器设计方法及滤波器
Karawita et al. Control block diagram representation of an HVDC system for sub-synchronous frequency interaction studies
Martinez-Piazuelo et al. Distributed Nash equilibrium seeking in strongly contractive aggregative population games
CN103117848A (zh) 一个七维超混沌***
Sun et al. Multiplicity of solutions for a fourth-order impulsive differential equation via variational methods
Su et al. An asymmetric Lyapunov–Krasovskii functional and its application to stochastic admissibility analysis of time-delay singular Markovian jump systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211223

Address after: 102200 unit 1, building 1, yard 1, Longyu middle street, Huilongguan town, Changping District, Beijing 711

Patentee after: Beijing security control Yazhi Information Technology Co.,Ltd.

Address before: 100001 No. 33, Fucheng Road, Haidian District, Beijing

Patentee before: BEIJING TECHNOLOGY AND BUSINESS University

TR01 Transfer of patent right