CN105370270B - 由偶极声波纵、横波时差确定页岩气储层含气饱和度的方法 - Google Patents

由偶极声波纵、横波时差确定页岩气储层含气饱和度的方法 Download PDF

Info

Publication number
CN105370270B
CN105370270B CN201510752586.1A CN201510752586A CN105370270B CN 105370270 B CN105370270 B CN 105370270B CN 201510752586 A CN201510752586 A CN 201510752586A CN 105370270 B CN105370270 B CN 105370270B
Authority
CN
China
Prior art keywords
well
gas
time difference
shale gas
logging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510752586.1A
Other languages
English (en)
Other versions
CN105370270A (zh
Inventor
冯爱国
***
彭超
石文睿
赵红燕
张占松
任元
张超谟
石元会
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petrochemical Corp
Sinopec Oilfield Service Corp
Sinopec Jianghan Petroleum Engineering Co Ltd
Original Assignee
Sinopec Oilfield Service Corp
Logging Co of Sinopec Jianghan Petroleum Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Oilfield Service Corp, Logging Co of Sinopec Jianghan Petroleum Engineering Co Ltd filed Critical Sinopec Oilfield Service Corp
Priority to CN201510752586.1A priority Critical patent/CN105370270B/zh
Publication of CN105370270A publication Critical patent/CN105370270A/zh
Application granted granted Critical
Publication of CN105370270B publication Critical patent/CN105370270B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种由偶极声波纵、横波时差确定页岩气储层含气饱和度的方法,通过岩心测试分析获取页岩含气饱和度Sg,通过同井偶极测井资料获取对应深度的偶极声波纵横波时差,计算横纵时差比;用对应深度的测井自然伽马、横纵时差比与页岩气储层岩心测试含气饱和度进行拟合,建立模型,确定模型系数;通过测井资料获取待解释井的自然伽马、岩性密度,通过气测录井资料获取待解释井气测录井的全烃、甲烷含量,通过地质录井资料获取待解释井的岩屑、岩心岩性;划分页岩气储层,计算划分的页岩气储层的含气饱和度;输出计算结果。本发明简便,适用范围广。本发明已在某页岩气田应用80口井,计算确定的平均误差不超过10%,能满足需要。

Description

由偶极声波纵、横波时差确定页岩气储层含气饱和度的方法
技术领域
本发明涉及一种由偶极声波纵、横波时差确定页岩气储层含气饱和度的方法。
背景技术
页岩气含气饱和度是页岩气储层测录井评价的一项不可缺少的重要参数。传统的偶极声波页岩气储层含气饱和度确定方法是基于弹性模量法求取,仅适用于砂岩和碳酸盐储层,计算所需区域地层参数多、方法复杂、适用范围窄,在页岩气储层中局限性较大,基本不适用。
发明内容
本发明的目的是针对上述技术现状,旨在提供一种简便,适用范围广,所确定的页岩气储层含气饱和度与岩心测试获得的页岩气层含气饱和度接近,能满足现场测录井储层评价和计算游离气含量需要的由偶极声波纵、横波时差确定页岩气储层含气饱和度的方法。
本发明目的的实现方式为,由偶极声波纵、横波时差确定页岩气储层含气饱和度的方法,具体步骤为:
1)通过工区已知井岩心样品测试分析获取页岩含气饱和度Sg,通过偶极测井资料获取对应深度的偶极声波横波时差DTS和偶极声波纵波时差DTC,并且计算横纵时差比RMSC=DTS/DTC;
式中:偶极声波横波时差DTS量纲为μs/ft,
偶极声波纵波时差DTC量纲为μs/ft,
横纵时差比RMSC无量纲;
2)通过常规测井资料获取岩心测试分析的页岩含气饱和度Sg对应深度的测井自然伽马GR;
3)用页岩气储层含气饱和度模型Sg=a·RMSC+b·GR+c,进行岩心测试获得的页岩气层含气饱和度Sg与测井横纵时差比RMSC、自然伽马GR拟合,并确定模型系数,式中自然伽马GR量纲为API;
4)通过测井资料获取待解释井的自然伽马、岩性密度,通过气测录井资料获取待解释井气测录井的全烃、甲烷含量,通过地质录井资料获取待解释井的岩屑、岩心岩性;
5)通过步骤4)获取的测井和录井资料划分页岩气储层;
6)根据步骤3)的含气饱和度模型,步骤5)划分的页岩气储层计算页岩气储层含气饱和度(Sg);
7)输出计算结果。
本发明解决了传统偶极声波方法在计算页岩气储层含气饱和度所需区域地层参数多,适用范围窄,局限性大的问题,较基于弹性模量的偶极声波确定页岩储层含气饱和度方法更简便,适用范围更广;进一步拓展了偶极声波测井资料应用。
本发明已在某页岩气田应用80口井,计算确定的页岩气储层含气饱和度与岩心测试获得的页岩气层含气饱和度接近,平均误差不超过10%,能满足现场测录井储层评价和计算游离气含量的需要。
附图说明
图1为本发明工作流程框图,
图2为本发明R工区A4井应用实例图,
图3为本发明R工区A1-3HF井应用实例图。
具体实施方式
本申请人通过页岩气储层岩心实验研究发现,在页岩岩相组合单一情况下,页岩气储层含气饱和度(Sg)与偶极声波测井横纵波时差比(RMSC)的定量关系为Sg=A·RMSCB,A、B为系数。如某页岩气田R工区的页岩气储层岩相组合为硅质页岩单一岩相井段的A=1950.3、B=-6.606;页岩气储层岩相组合为碳质页岩单一岩相井段的A=162.9、B=-1.398。页岩储层岩性为两种及两种以上岩相组合时,按页岩气储层含气饱和度模型Sg=A·RMSCB拟合页岩气储层含气饱和度Sg和偶极声波横纵波时差比RMSC,相关系数较低,并且实际现场的页岩气储层含气饱和度的评价是基于层段整段的评价,不存在只有单一岩相的情况,因此不能满足工程需要,仅适合科研需要。页岩气储层含气饱和度(Sg)与偶极声波测井横纵波时差比(RMSC)、自然伽马(GR)按模型Sg=a·RMSC+b·GR+c拟合,相关系数较高,计算得到的Sg能满足现场测录井页岩气储层评价需要。
下面参照附图详述本发明。
参照图1,本发明的具体步骤为:
1)通过工区已知井岩心样品测试分析获取页岩含气饱和度Sg,通过偶极测井资料获取对应深度的偶极声波横波时差DTS和偶极声波纵波时差DTC,并且计算横纵时差比RMSC=DTS/DTC;
式中:偶极声波横波时差DTS量纲为μs/ft,
偶极声波纵波时差DTC量纲为μs/ft,
横纵时差比RMSC无量纲;
2)通过常规测井资料获取岩心测试分析的页岩含气饱和度Sg对应深度的测井自然伽马GR;
3)用页岩气储层含气饱和度模型Sg=a·RMSC+b·GR+c,进行岩心测试获得的页岩气层含气饱和度Sg与测井横纵时差比RMSC、自然伽马GR最小二乘法拟合,确定模型系数a、b、c,式中自然伽马GR量纲为API;
4)通过测井资料获取待解释井的自然伽马、岩性密度,通过气测录井资料获取待解释井气测录井的全烃、甲烷含量,通过地质录井资料获取待解释井的岩屑、岩心岩性;
待解释井的自然伽马、岩性密度数据深度间隔为0.1m~1.0m,保存为wis或txt格式;气测录井全烃和甲烷含量深度间隔为1m或0.5m,保存为wis或txt格式;地质岩屑、岩心的岩性数据保存为excel或txt格式。
5)通过步骤4)获取的测井和录井资料划分页岩气储层。
储层划分依据:岩性为泥质岩类或页岩;全烃、甲烷存在明显异常,不含重烃成分;高自然伽马、低密度。
6)根据步骤3)的含气饱和度模型,步骤5)划分的页岩气储层计算页岩气储层含气饱和度(Sg);
7)输出计算结果,通常,页岩气层的含气饱和度Sg不低于0.5。
下面用具体实施例详述本发明。
实例一:某页岩气田R工区A4井
1)通过某页岩气田R工区岩心测试分析获取4口页岩气井共93块页岩岩心的含气饱和度(Sg)以及通过偶极测井资料获取对应深度的横波时差(DTS)和纵波时差(DTC),并且计算横纵时差比RMSC=DTS/DTC;
式中:偶极声波横波时差DTS量纲为μs/ft,
偶极声波纵波时差DTC量纲为μs/ft,
横纵时差比RMSC无量纲;
2)通过常规测井资料获取93块页岩岩心对应深度的自然伽马(GR);
3)将93块岩心的含气饱和度(Sg)和测井横纵时差比RMSC和自然伽马GR按模型Sg=a·RMSC+b·GR+c最小二乘法计算,确定模型系数为a=-159.123、b=-0.037、c=335.716;
4)通过测井资料获取A4井的自然伽马、岩性密度数据,通过气测录井资料获取A4井的全烃、甲烷含量,通过地质录井资料获取A4井的岩屑、岩心岩性;
待解释井的自然伽马、岩性密度数据深度间隔为0.1m~1.0m,保存为wis或txt格式;气测录井全烃和甲烷含量深度间隔为1m或0.5m,保存为wis或txt格式;地质岩屑、岩心的岩性数据保存为excel或txt格式。
5)通过获取A4井的自然伽马、岩性密度、全烃、甲烷和岩屑岩心的岩性划分A4井页岩气储层,A4井页岩气主要显示层段在2337.0~2398.0m;
6)根据步骤3)的含气饱和度模型Sg=-159.123·RMSC-0.037·GR+335.716,步骤5)划分的页岩气储层计算A4井页岩气储层含气饱和度(Sg);
7)输出计算结果,A4井2337.0~2398.0m井段计算含气饱和度主要范围为50.0%~80.0%(见图2),与该井岩心饱和度测试结果对比,误差小于10%,能够满足页岩气储层和页岩气气藏评价需要。
实例二:某页岩气田R工区水平井A1-3HF井
1)A1-3HF井与实例一的A4井都是R工区的井,因此模型系数是相同的,可以沿用实例一的模型系数,模型系数为a=-159.123、b=-0.037、c=335.716;
2)通过测井资料获取待解释A1-3HF井的自然伽马、岩性密度,通过气测录井资料获取待解释A1-3HF井的全烃、甲烷含量,通过地质录井资料获取待解释A1-3HF井的岩屑、岩心岩性;
待解释井的自然伽马、岩性密度数据深度间隔为0.1m~1.0m,保存为wis或txt格式;气测录井全烃和甲烷含量深度间隔为1m或0.5m,保存为wis或txt格式;地质岩屑、岩心的岩性数据保存为excel或txt格式。
3)通过步骤2)获取的测井和录井资料划分A1-3HF井页岩气储层,A1-3HF井页岩气主要显示层段在2710.0~2775.0m;
4)根据步骤1)的含气饱和度模型Sg=-159.123·RMSC-0.037·GR+335.716,步骤3)划分的页岩气储层计算A1-3HF井页岩气储层含气饱和度(Sg);
5)输出计算结果,A1-3HF井2710.0~2775.0m井段计算含气饱和度为55.0%~70.0%(见图3)。能够满足页岩气储层和页岩气气藏评价需要。

Claims (4)

1.由偶极声波纵、横波时差确定页岩气储层含气饱和度的方法,其特征在于:具体步骤为:
1)通过工区已知井岩心样品测试分析获取页岩气储层含气饱和度Sg,通过偶极测井资料获取对应深度的偶极声波横波时差DTS和偶极声波纵波时差DTC,并且计算横纵时差比RMSC=DTS/DTC;
式中:偶极声波横波时差DTS量纲为μs/ft,
偶极声波纵波时差DTC量纲为μs/ft,
横纵时差比RMSC无量纲;
2)通过常规测井资料获取岩心测试分析的页岩气储层含气饱和度Sg对应深度的测井自然伽马GR;
3)用页岩气储层含气饱和度模型Sg=a·RMSC+b·GR+c,进行岩心测试获得的页岩气储层含气饱和度Sg与测井横纵时差比RMSC、自然伽马GR拟合,并确定模型系数,式中自然伽马GR量纲为API;
4)通过测井资料获取待解释井的自然伽马、岩性密度,通过气测录井资料获取待解释井气测录井的全烃、甲烷含量,通过地质录井资料获取待解释井的岩屑、岩心岩性;
5)通过步骤4)获取的测井和录井资料划分页岩气储层;
6)根据步骤3)的含气饱和度模型,步骤5)划分的页岩气储层计算页岩气储层含气饱和度Sg;
7)输出计算结果。
2.根据权利要求1所述的由偶极声波纵、横波时差确定页岩气储层含气饱和度的方法,其特征在于:步骤3)用模型Sg=a·RMSC+b·GR+c进行最小二乘法拟合,确定模型系数a、b、c。
3.根据权利要求1所述的由偶极声波纵、横波时差确定页岩气储层含气饱和度的方法,其特征在于:步骤4)待解释井的自然伽马、岩性密度数据深度间隔为0.1m~1.0m;气测录井全烃和甲烷含量深度间隔为1m或0.5m。
4.根据权利要求1所述的由偶极声波纵、横波时差确定页岩气储层含气饱和度的方法,其特征在于:步骤5)储层划分依据:岩性为泥质岩类或页岩;全烃、甲烷存在明显异常,不含重烃成分;高自然伽马、低密度。
CN201510752586.1A 2015-11-06 2015-11-06 由偶极声波纵、横波时差确定页岩气储层含气饱和度的方法 Active CN105370270B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510752586.1A CN105370270B (zh) 2015-11-06 2015-11-06 由偶极声波纵、横波时差确定页岩气储层含气饱和度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510752586.1A CN105370270B (zh) 2015-11-06 2015-11-06 由偶极声波纵、横波时差确定页岩气储层含气饱和度的方法

Publications (2)

Publication Number Publication Date
CN105370270A CN105370270A (zh) 2016-03-02
CN105370270B true CN105370270B (zh) 2018-04-10

Family

ID=55372828

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510752586.1A Active CN105370270B (zh) 2015-11-06 2015-11-06 由偶极声波纵、横波时差确定页岩气储层含气饱和度的方法

Country Status (1)

Country Link
CN (1) CN105370270B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106842303B (zh) * 2016-12-30 2019-07-05 中国石油天然气股份有限公司 含气饱和度确定方法及装置
CN107422384B (zh) * 2017-03-20 2019-03-01 中石化石油工程技术服务有限公司 一种利用测井资料仿垂直地震剖面资料的方法
CN108733856B (zh) * 2017-04-21 2022-06-21 中国石油化工股份有限公司 页岩气储层游离气饱和度确定方法及计算机可读存储介质
CN114060015B (zh) * 2020-07-31 2024-05-03 中国石油化工股份有限公司 一种致密砂岩含气性的评价方法及装置
CN112065361B (zh) * 2020-09-16 2021-03-12 成都理工大学 一种基于声波衰减的致密储层含气饱和度确定方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2385413C1 (ru) * 2008-09-30 2010-03-27 Шлюмберже Текнолоджи Б.В. Способ определения текущей газонасыщенности в призабойной зоне скважины в залежи летучей нефти
CN101487390B (zh) * 2009-02-23 2012-08-29 大庆油田有限责任公司 一种确定油层原始含油饱和度的阿尔奇模式方法
CN102454401B (zh) * 2010-10-29 2015-05-20 中国石油化工股份有限公司 一种获取低孔渗储层测井饱和度的方法
CN102748004B (zh) * 2012-06-06 2015-08-05 中国石油化工股份有限公司 气测井含油气饱和度的确定方法
CN102913238A (zh) * 2012-10-29 2013-02-06 陕西联盟物流有限公司 油水同层原始含油饱和度的求取方法
CN103912268B (zh) * 2014-03-28 2016-09-28 中石化江汉石油工程有限公司测录井公司 基于toc的页岩储层含气饱和度确定方法

Also Published As

Publication number Publication date
CN105370270A (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
CN105370270B (zh) 由偶极声波纵、横波时差确定页岩气储层含气饱和度的方法
Perez et al. Calibration of brittleness to elastic rock properties via mineralogy logs in unconventional reservoirs
Bodziak et al. The role of seismic attributes in understanding the hydraulically fracturable limits and reservoir performance in shale reservoirs: An example from the Eagle Ford Shale, south Texas
US9229910B2 (en) Predicting three dimensional distribution of reservoir production capacity
Aderibigbe et al. Integrated rock classification in the Wolfcamp Shale based on reservoir quality and anisotropic stress profile estimated from well logs
Hamza et al. Characterization of anisotropic elastic moduli and stress for unconventional reservoirs using laboratory static and dynamic geomechanical data
Yasin et al. Study on brittleness templates for shale gas reservoirs-A case study of Longmaxi shale in Sichuan Basin, southern China
Manriquez et al. A novel approach to quantify reservoir pressure along the horizontal section and to optimize multistage treatments and spacing between hydraulic fractures
Wojtowicz et al. Reconstructing the mechanical parameters of a transversely-isotropic rock based on log and incomplete core data integration
Gallardo-Giozza et al. Effects of elastic anisotropic models on the prediction of horizontal stresses and hydraulic fracture geometry
Zorn et al. Geomechanics of the Microseismic Response in Devonian Organic Shales at the Marcellus Shale Energy and Environment Laboratory (MSEEL) Site, West Virginia
He et al. Rock skeleton models and seismic porosity inversion
Bratton Stress induced changes in elastic wave attributes in the Wattenberg Field, Colorado, USA
Rasouli Geomechanics of gas shales
Davies Permeability Modelling of a Sandstone Reservoir in Parts of the Niger Delta
RU2585296C1 (ru) Способ определения дренируемой ширины трещины гидроразрыва и степени оседания проппанта в ней
Yu et al. Rock physics diagnostics and modeling for shale gas formation characterization in China
Altowairqi et al. Measuring ultrasonic characterisation to determine the impact of TOC and the stress field on shale gas anisotropy
Tiancheng et al. Source mechanism studies of acoustic emission in large-scale hydraulic fracturing experiment
Tao et al. Application of multipole array sonic logging to acid hydralic fracturing
Sharma et al. Replacing conventional brittleness indices determination with new attributes using true hydrofracturing mechanism
Medina et al. 3D Geomechanical Modeling for Field Development of a Colombian Shale Play
Soltanzadeh et al. Application of an integrated approach for the characterization of mechanical rock properties in the Duvernay formation
Porter et al. A statistical method for determination of water saturation from logs
Masri Amplitude Versus Offset analysis–A possible useful tool for geothermal exploration

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200812

Address after: 100728 Beijing, Chaoyangmen, North Street, No. 22, No.

Co-patentee after: SINOPEC OILFIELD SERVICE Corp.

Patentee after: SINOPEC Group

Co-patentee after: SINOPEC JIANGHAN OILFIELD SERVICE Corp.

Address before: 100029, Beijing, Chaoyang District Xin Tung Street, a No. 6, Twelfth layers

Co-patentee before: Logging company of Sinopec Jianghan Petroleum Engineering Co.,Ltd.

Patentee before: SINOPEC OILFIELD SERVICE Corp.