CN105363452A - 一种用于甲烷部分氧化反应的双介孔结构Ni/SiO2-ZrO2催化剂制备方法 - Google Patents

一种用于甲烷部分氧化反应的双介孔结构Ni/SiO2-ZrO2催化剂制备方法 Download PDF

Info

Publication number
CN105363452A
CN105363452A CN201510678496.2A CN201510678496A CN105363452A CN 105363452 A CN105363452 A CN 105363452A CN 201510678496 A CN201510678496 A CN 201510678496A CN 105363452 A CN105363452 A CN 105363452A
Authority
CN
China
Prior art keywords
sio
zro
methane
catalyst
meso
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510678496.2A
Other languages
English (en)
Other versions
CN105363452B (zh
Inventor
王俊文
艾刚刚
丁传敏
张侃
刘平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingchuang Man and Ecological Engineering Technology Co., Ltd.
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201510678496.2A priority Critical patent/CN105363452B/zh
Publication of CN105363452A publication Critical patent/CN105363452A/zh
Application granted granted Critical
Publication of CN105363452B publication Critical patent/CN105363452B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

一种用于甲烷部分氧化反应的双介孔结构Ni/SiO2-ZrO2催化剂制备方法,属于天然气化工和煤化工技术领域。本发明以浸渍法制备出负载活性组分镍的双介孔结构Ni/SiO2-ZrO2催化剂,该催化剂具有较大比表面积和孔体积,且孔径分布均匀。该催化剂制备方法简单,对于甲烷部分氧化反应具有较高催化活性,并且可以有效抑制由烧结和积碳引起的催化剂失活。本发明涉及的Ni/SiO2-ZrO2双介孔材料具有两种尺寸的介孔孔径,较大的孔径可以满足反应物和产物的扩散需求,较小的孔径可以给反应物提供吸附和反应的场所,同时该材料孔径分布较窄,在一定范围内可以调节,使得其可以满足不同反应的需求,为新型工业使用催化剂的开发开辟了新的道路。本发明制备方法简单,反应条件温和,易工业化生产。

Description

一种用于甲烷部分氧化反应的双介孔结构Ni/SiO2-ZrO2催化剂制备方法
技术领域
本发明一种用于甲烷部分氧化反应的双介孔Ni/SiO2-ZrO2催化剂制备方法,属于天然气化工和煤化工技术领域。具体涉及一种以浸渍法制备双介孔结构Ni/SiO2-ZrO2催化剂的方案。
背景技术
介孔SiO2是一种孔径介于2~50nm之间的一种多孔固体材料。由于其比表面积大、孔道结构规整、孔径大小可调、水热稳定性好、吸附孔容大等优点,使其在催化、医药等方面得到了广泛的应用。双介孔材料可以兼具每种孔径的优点,可以在很大程度上改善催化剂的性能。比如对于双介孔材料里的大介孔,由于其孔径较大、扩散阻力小,可以为反应物和产物提供流畅的运输通道;而小介孔,由于其比表面积大、活性位多,可以为反应物提供吸附和反应场所。目前双介孔材料制备方法主要有溶胶-凝胶法、微乳法、水热合成法、微波法,这些方法制备步骤较复杂,而且成本较高。因此,采用简单、廉价的方法制备双介孔材料是当下研究难点。
应用于甲烷部分氧化的催化剂主要有贵金属催化剂和非贵金属催化剂,贵金属催剂化Pt、Au等具有高活性、高选择性、抗积碳性能等优点。由于使用贵金属催化剂成本太高,难以实现工业化应用。因而国内外都很关注非贵金属催化剂的研究,在非贵金属催化剂里Ni基催化剂的活性最高,仅次于贵金属Rh,但是Ni基催化剂容易烧结和积碳导致催化剂的失活。因此,如何防止Ni基催化剂的失活是目前催化剂开发的关键问题。针对这一问题,本发明综合利用双介孔材料的优点,制备了以双介孔SiO2-ZrO2为载体Ni为活性组分的催化剂,并应用于甲烷部分氧化反应。NagaokaK.等人证实了ZrO2不仅可以提高催化剂的活性和选择性,还可以有效的减少催化剂的积碳[J.Catal.2001;197:34-42]。由于反应是在孔道内进行,可以减少由烧结和积碳引起的催化剂失活。另外因为反应是在较小的空间里完成形成,“限域效应”可以提高催化剂的活性和选择性。CN103663473A公开了一种有序双介孔二氧化硅材料及其制备方法。以正硅酸乙酯或硅酸钠为硅源,三嵌段共聚物P123为模板剂,采用先水浴处理再水热合成的方法,制备出一种孔径为1.5~4.2nm,另一种孔径为4.2~15nm的双介孔二氧化硅材料。CN102020298A公开了一种具有双介孔结构的Al2O3及其制备方法。以异丙醇铝为吕源,十六烷基三甲基溴化铵(CTAB)和非离子表面活性剂为模板剂,利用溶胶-凝胶法制备出小介孔分布在3.4~3.8nm,大介孔分布在9.8~24.5nm的双介孔Al2O3。CN101733085A公开了一种锆-铝双介孔材料及其制备方法。以仲丁醇铝或异丙醇铝为铝源,氧氯化锆或硝酸锆为锆源,脂肪酸为模板剂,制备出初级介孔孔径为3~5nm,次级介孔孔径为10~20nm的锆-铝双介孔材料。以上三种方法都使用了模板剂,提高了催化剂的制备成本。
发明内容
本发明一种用于甲烷部分氧化反应的双介孔结构Ni/SiO2-ZrO2催化剂制备方法,目的在于公开一种利用简单的浸渍法,在无模板剂的情况下合成规整的双介孔结构Ni/SiO2-ZrO2催化剂的方法,小介孔孔径为4.5~5.5nm,大介孔孔径约为50nm。
本发明一种用于甲烷部分氧化反应的双介孔结构Ni/SiO2-ZrO2催化剂制备方法,其特征在于是一种采用简单的浸渍法,在无模板剂的情况下制备具有规整有序的,小介孔孔径为4.5~5.5nm,大孔孔径为50nm的,且将镍纳米颗粒限定在双介孔孔道的双介孔结构的Ni/SiO2-ZrO2催化剂的方法,具体操作步骤如下:
1)将3.0~5.0g硅胶浸渍于含有0.22~1.01gZrO2的锆源溶液中,超声分散
1~3h,得负载锆源溶液的硅胶;
2)将步骤1)得到的负载锆源溶液的硅胶在400~700℃下焙烧2~6h,得到双介孔结构的SiO2-ZrO2;
3)将步骤2)得到的双介孔结构的SiO2-ZrO2浸渍于含有0.16~0.67g镍
的镍盐溶液中,超声分散1~3h,得负载镍盐溶液的SiO2-ZrO2;
4)将步骤3)得到的负载镍盐溶液的SiO2-ZrO2转入干燥箱中,在120℃下干燥6~12h,在400~700℃下焙烧2~4h得双介孔NiO/SiO2-ZrO2;
5)将步骤4)得到的双介孔NiO/SiO2-ZrO2在400~700℃下通氢气还原1~5h,氮气保护下降至常温,得双介孔Ni/SiO2-ZrO2催化剂。
上述一种用于甲烷部分氧化反应的双介孔结构Ni/SiO2-ZrO2催化剂制备方法,其特征在于,所选用的硅胶孔分布均匀,孔径为50nm。
上述一种用于甲烷部分氧化反应的双介孔结构Ni/SiO2-ZrO2
催化剂制备方法,其特征在于,所选用的锆源为硝酸锆、氢氧化锆、氧化
锆溶胶或氯化锆。
上述一种用于甲烷部分氧化反应的双介孔结构Ni/SiO2-ZrO2催化剂制备方法,其特征在于,所述的镍盐溶液的溶剂是水、乙醇、乙二醇或丙三醇。
上述一种用于甲烷部分氧化反应的双介孔结构Ni/SiO2-ZrO2催化剂制备方法,其特征在于,所述的镍盐为硝酸镍、氯化镍或硫酸镍。
本发明一种用于甲烷部分氧化反应的双介孔结构Ni/SiO2-ZrO2催化剂制备方法的优点在于:克服了现有技术制备双介孔结构过程复杂、成本高的问题,制备方法简单、孔容相对较大。本发明提供了一种将镍纳米颗粒限定在双介孔孔道的Ni/SiO2-ZrO2催化剂制备方法,解决了现有的甲烷部分氧化镍基催化剂容易失活的问题。制备的催化剂具有比表面积较大、孔径分布均匀、双介孔结构明显等优点,在甲烷部分氧化反应中显示出较高的催化活性。
附图说明
图1为本发明600℃焙烧后SiO2、SiO2-ZrO2、Ni/SiO2-ZrO2材料的N2-吸附脱附曲线图,相对压力大于0.6MPa时出现滞后环,说明被测材料为介孔结构。
图2为本发明600℃焙烧后SiO2、SiO2-ZrO2、Ni/SiO2-ZrO2材料的BJH孔径分布图,结果显示形成的小介孔大小4.5~5.5nm,大介孔大小50nm左右。
图3为不同焙烧温度下制备的Ni/SiO2-ZrO2催化剂性能测试结果,从图中可以看出,600℃为此催化剂的最佳制备温度。
具体实施方式
下面是本发明的实施案例,但本发明不局限于这些实施案例
实施方式1
1)将0.71g的Zr(NO3)2.5H2O溶解于7.4mL的去离子水搅拌0.5h;
2)用等体积浸渍法将步骤1)得到溶液浸渍于5.0g的较大孔径的SiO2,在600℃下焙烧2h;
3)将0.78g的Ni(NO3)2.6H2O溶解于4.2mL的去离子水搅拌0.5h;
4)同样使用等体积浸渍法将3)得到的溶液浸渍于3.0g步骤2)得到的双介孔SiO2-ZrO2,在110℃下干燥12h,在400℃,500℃,600℃,700℃下焙烧4h;
5)制备出催化剂粉碎至40~60目,在常压,反应温度600℃,空速5×104mL·g-1·h-1条件下,甲烷转化率为80-90%。
实施方式2
1)将0.71g的Zr(NO3)2.5H2O和0.78g的Ni(NO3)2.6H2O同时溶解于7.4mL的去离子水搅拌0.5h;
2)用等体积浸渍法将步骤1)得到溶液浸渍于5.0g的较大孔径的SiO2,在110℃下干燥12h,在600℃下焙烧4h;
3)制备出催化剂粉碎至40~60目,在常压,反应温度600℃,空速5×104
mL·g-1·h-1条件下,甲烷转化率为83%。
实施方式3
1)用去离子水将含有0.44gZrO2的溶胶稀释至7.5mL搅拌0.5h;
2)用等体积浸渍法将步骤1)得到溶液浸渍于5.0g的较大孔径的SiO2,在700℃下焙烧4h;
3)将0.78g的Ni(NO3)2.6H2O溶解于4.2mL的乙醇搅拌0.5h;
4)同样使用等体积浸渍法将3)得到的溶液浸渍于3g步骤2)得到的双介孔SiO2-ZrO2,在80℃下真空干燥12h,在600℃下焙烧4h;
5)制备出催化剂粉碎至40~60目,在常压,反应温度600℃,空速5×104mL·g-1·h-1条件下,甲烷转化率为85%。
实施方式4
1)用乙醇将含有0.88gZrO2的溶胶稀释至7.5mL搅拌1h;
2)用等体积浸渍法将步骤1)得到溶液浸渍于5.0g的较大孔径的SiO2,在600℃下焙烧4h;
3)将1.65g的Ni(NO3)2.6H2O溶解于3.9mL的乙二醇搅拌1h;
4)同样使用等体积浸渍法将3)得到的溶液浸渍于3.0g步骤(2)得到的双介孔SiO2-ZrO2,在80℃下真空干燥12h,在600℃下焙烧4h;
5)制备出催化剂粉碎至40~60目,在常压,反应温度700℃,空速5×104mL·g-1·h-1条件下,甲烷转化率为97%。
实施方式5
1)将1.42g的Zr(NO3)2.5H2O溶解于7.4mL的去离子水搅拌0.5h;
2)用等体积浸渍法将步骤1)得到溶液浸渍于5.0g的较大孔径的SiO2,在700℃下焙烧4h;
3)将0.64g的NiCl2.6H2O溶解于4.2mL的去离子水搅拌0.5h;
4)同样使用等体积浸渍法将3)得到的溶液浸渍于3.0g步骤2)得到的双介孔SiO2-ZrO2,在110℃下干燥12h,在500℃下焙烧4h;
5)制备出催化剂粉碎至40~60目,在常压,反应温度700℃,空速5×104mL·g-1·h-1条件下,甲烷转化率为93%。

Claims (5)

1.一种用于甲烷部分氧化反应的双介孔结构Ni/SiO2-ZrO2催化剂制备方法,其特征在于是一种采用简单的浸渍法,在无模板剂的情况下制备具有规整有序的,小介孔孔径为4.5~5.5nm,大孔孔径约为50nm的,且将镍纳米颗粒限定在双介孔孔道的双介孔结构的Ni/SiO2-ZrO2催化剂的方法,具体操作步骤如下:
1)将3.0~5.0g硅胶浸渍于含有0.22~1.01gZrO2的锆源溶液中,超声分散
1~3h,得负载锆源溶液的硅胶;
2)将步骤1)得到的负载锆源溶液的硅胶在400~700℃下焙烧2~6h,得到双介孔结构的SiO2-ZrO2
3)将步骤2)得到的双介孔结构的SiO2-ZrO2浸渍于含有0.16~0.67g镍
的镍盐溶液中,超声分散1~3h,得负载镍盐溶液的SiO2-ZrO2;
4)将步骤3)得到的负载镍盐溶液的SiO2-ZrO2转入干燥箱中,在120℃下干燥6~12h,在400~700℃下焙烧2~4h得双介孔NiO/SiO2-ZrO2
5)将步骤4)得到的双介孔NiO/SiO2-ZrO2在400~700℃下通氢气还原1~5h,氮气保护下降至常温,得双介孔Ni/SiO2-ZrO2催化剂。
2.按照权利要求1所述一种用于甲烷部分氧化反应的双介孔结构Ni/SiO2-ZrO2催化剂制备方法,其特征在于所选用的硅胶孔分布均匀,孔径为50nm。
3.按照权利要求1所述一种用于甲烷部分氧化反应的双介孔结构Ni/SiO2-ZrO2催化剂制备方法,其特征在于所选用的锆源为硝酸锆、氢氧化锆、氧化锆溶胶或氯化锆。
4.按照权利要求1所述一种用于甲烷部分氧化反应的双介孔结构Ni/SiO2-ZrO2催化剂制备方法,其特征在于,所述的镍盐溶液的溶剂是水、乙醇、乙二醇或丙三醇。
5.按照权利要求1所述一种用于甲烷部分氧化反应的双介孔结构Ni/SiO2-ZrO2催化剂制备方法,其特征在于所述的镍盐为硝酸镍、氯化镍或硫酸镍。
CN201510678496.2A 2015-10-20 2015-10-20 一种用于甲烷部分氧化反应的双介孔结构Ni/SiO2‑ZrO2催化剂制备方法 Active CN105363452B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510678496.2A CN105363452B (zh) 2015-10-20 2015-10-20 一种用于甲烷部分氧化反应的双介孔结构Ni/SiO2‑ZrO2催化剂制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510678496.2A CN105363452B (zh) 2015-10-20 2015-10-20 一种用于甲烷部分氧化反应的双介孔结构Ni/SiO2‑ZrO2催化剂制备方法

Publications (2)

Publication Number Publication Date
CN105363452A true CN105363452A (zh) 2016-03-02
CN105363452B CN105363452B (zh) 2018-02-27

Family

ID=55366368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510678496.2A Active CN105363452B (zh) 2015-10-20 2015-10-20 一种用于甲烷部分氧化反应的双介孔结构Ni/SiO2‑ZrO2催化剂制备方法

Country Status (1)

Country Link
CN (1) CN105363452B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743554A (zh) * 2019-10-08 2020-02-04 中国科学院兰州化学物理研究所 一种有序介孔ZrO2负载Ni催化剂及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1751789A (zh) * 2005-09-02 2006-03-29 浙江大学 高分散负载型镍基催化剂的制备及应用
CN102151570A (zh) * 2011-03-01 2011-08-17 上海中科高等研究院 一种甲烷-二氧化碳重整反应催化剂及其制备方法
CN102335609A (zh) * 2011-07-15 2012-02-01 华东师范大学 一种镍基催化剂及其制备方法和用途
WO2012085354A1 (fr) * 2010-12-22 2012-06-28 IFP Energies Nouvelles Materiau spherique comprenant des nanoparticules metalliques piegees dans une matrice oxyde mesostructuree et son utilisation comme catalyseur dans les procedes du raffinage d'hydrocarbures
CN103270142A (zh) * 2010-12-23 2013-08-28 道达尔炼油与销售部 工业加氢转化催化剂的制备方法,由此获得的催化剂及其在加氢转化工艺中的用途
CN103586030A (zh) * 2013-11-19 2014-02-19 上海大学 介孔限域的镍基甲烷干重整催化剂的制备方法
CN103706374A (zh) * 2013-12-30 2014-04-09 国家安全生产监督管理总局信息研究院 一种通风瓦斯甲烷氧化整体式催化剂及其制备方法
CN104549285A (zh) * 2013-10-15 2015-04-29 中国石油化工股份有限公司 甲烷二氧化碳重整制合成气的纳米复合催化剂及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1751789A (zh) * 2005-09-02 2006-03-29 浙江大学 高分散负载型镍基催化剂的制备及应用
WO2012085354A1 (fr) * 2010-12-22 2012-06-28 IFP Energies Nouvelles Materiau spherique comprenant des nanoparticules metalliques piegees dans une matrice oxyde mesostructuree et son utilisation comme catalyseur dans les procedes du raffinage d'hydrocarbures
CN103270142A (zh) * 2010-12-23 2013-08-28 道达尔炼油与销售部 工业加氢转化催化剂的制备方法,由此获得的催化剂及其在加氢转化工艺中的用途
CN102151570A (zh) * 2011-03-01 2011-08-17 上海中科高等研究院 一种甲烷-二氧化碳重整反应催化剂及其制备方法
CN102335609A (zh) * 2011-07-15 2012-02-01 华东师范大学 一种镍基催化剂及其制备方法和用途
CN104549285A (zh) * 2013-10-15 2015-04-29 中国石油化工股份有限公司 甲烷二氧化碳重整制合成气的纳米复合催化剂及其制备方法
CN103586030A (zh) * 2013-11-19 2014-02-19 上海大学 介孔限域的镍基甲烷干重整催化剂的制备方法
CN103706374A (zh) * 2013-12-30 2014-04-09 国家安全生产监督管理总局信息研究院 一种通风瓦斯甲烷氧化整体式催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王小丽: ""双介孔SiO2的制备及其表征"", 《万方数据知识服务平台》 *
陈俭省: ""CO2重整CH4催化剂的制备及性能研究"", 《万方数据知识服务平台》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743554A (zh) * 2019-10-08 2020-02-04 中国科学院兰州化学物理研究所 一种有序介孔ZrO2负载Ni催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN105363452B (zh) 2018-02-27

Similar Documents

Publication Publication Date Title
Zhang et al. Mechanochemical nonhydrolytic sol–gel-strategy for the production of mesoporous multimetallic oxides
Zou et al. Core–shell NiO@ PdO nanoparticles supported on alumina as an advanced catalyst for methane oxidation
Lee et al. How Pt interacts with CeO2 under the reducing and oxidizing environments at elevated temperature: the origin of improved thermal stability of Pt/CeO2 compared to CeO2
Xiong et al. Fabrication of Spinel-Type Pd x Co3–x O4 Binary Active Sites on 3D Ordered Meso-macroporous Ce-Zr-O2 with Enhanced Activity for Catalytic Soot Oxidation
He et al. Understanding the promotional effect of Mn2O3 on micro-/mesoporous hybrid silica nanocubic-supported Pt catalysts for the low-temperature destruction of methyl ethyl ketone: an experimental and theoretical study
Putla et al. MnO x nanoparticle-dispersed CeO2 nanocubes: a remarkable heteronanostructured system with unusual structural characteristics and superior catalytic performance
He et al. Controlled fabrication of mesoporous ZSM-5 zeolite-supported PdCu alloy nanoparticles for complete oxidation of toluene
Wang et al. Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: a review
Li et al. Shape-controlled CeO2 nanoparticles: stability and activity in the catalyzed HCl oxidation reaction
Li et al. Yolk–satellite–shell structured Ni–Yolk@ Ni@ SiO2 nanocomposite: superb catalyst toward methane CO2 reforming reaction
Yan et al. Highly active mesoporous ferrihydrite supported Pt catalyst for formaldehyde removal at room temperature
Li et al. Simultaneous tuning porosity and basicity of nickel@ nickel–magnesium phyllosilicate core–shell catalysts for CO2 reforming of CH4
Shi On the synergetic catalytic effect in heterogeneous nanocomposite catalysts
Hu et al. Structure–activity relationship of Ni-based catalysts toward CO2 methanation: recent advances and future perspectives
Bacariza et al. Promising catalytic systems for CO2 hydrogenation into CH4: A review of recent studies
Hillary et al. Nanoscale cobalt–manganese oxide catalyst supported on shape-controlled cerium oxide: effect of nanointerface configuration on structural, redox, and catalytic properties
Wu et al. Ceria-induced strategy to tailor Pt atomic clusters on cobalt–nickel oxide and the synergetic effect for superior hydrogen generation
Palma et al. Platinum based catalysts in the water gas shift reaction: Recent advances
JP2014519463A5 (zh)
Cai et al. Synthesis of a highly stable Pd@ CeO2 catalyst for methane combustion with the synergistic effect of urea and citric acid
Tao et al. Development of platinum-based bimodal pore catalyst for CO2 reforming of CH4
Watanabe et al. Preparation of a mesoporous ceria–zirconia supported Ni–Fe catalyst for the high temperature water–gas shift reaction
Lin et al. Facile strategy to extend stability of simple component-alumina-supported palladium catalysts for efficient methane combustion
Qu et al. Construction of Pd-Modified NiCoO x Hollow Nanospheres with Surface Hydroxyls and Oxygen Vacancies for Highly Enhanced Catalytic Toluene Oxidation Activity
Ye et al. Controlled synthesis of sintering-resistant pd@ ceo2 core–shell nanotube catalysts for co oxidation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190416

Address after: 030027 Shanxi Taiyuan City Shanxi Comprehensive Reform Demonstration Zone Taiyuan Tanghuai Park, 49 Zhengyang Street, 6th floor Jinchuang Company A005

Patentee after: Qingchuang Man and Ecological Engineering Technology Co., Ltd.

Address before: 030024 79 Yingze West Street, wanBerlin District, Taiyuan, Shanxi

Patentee before: Taiyuan University of Technology