CN105345759A - 二维纳米伺服平台 - Google Patents

二维纳米伺服平台 Download PDF

Info

Publication number
CN105345759A
CN105345759A CN201510818771.6A CN201510818771A CN105345759A CN 105345759 A CN105345759 A CN 105345759A CN 201510818771 A CN201510818771 A CN 201510818771A CN 105345759 A CN105345759 A CN 105345759A
Authority
CN
China
Prior art keywords
flexible guide
flexible
rigid connector
decoupling zero
zero part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510818771.6A
Other languages
English (en)
Other versions
CN105345759B (zh
Inventor
张震
汪昌明
闫鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201510818771.6A priority Critical patent/CN105345759B/zh
Publication of CN105345759A publication Critical patent/CN105345759A/zh
Application granted granted Critical
Publication of CN105345759B publication Critical patent/CN105345759B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25HWORKSHOP EQUIPMENT, e.g. FOR MARKING-OUT WORK; STORAGE MEANS FOR WORKSHOPS
    • B25H1/00Work benches; Portable stands or supports for positioning portable tools or work to be operated on thereby
    • B25H1/02Work benches; Portable stands or supports for positioning portable tools or work to be operated on thereby of table type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • B23Q5/28Electric drives

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Measuring And Other Instruments (AREA)

Abstract

本发明公开了一种二维纳米伺服平台,所述二维纳米伺服平台包括:基座;终端平台;X向和Y向驱动器;第一X向和第一Y向刚性连接件,第一X向刚性连接件沿X向延伸且与X向驱动器相连,第一Y向刚性连接件沿Y向延伸且与Y向驱动器相连;第一Y向和第一X向柔性解耦件;第二X向和第二Y向刚性连接件,第二X向刚性连接件沿X向延伸且与第一X向刚性连接件刚性连接,第二Y向刚性连接件沿Y向延伸且与第一Y向刚性连接件刚性连接;第二Y向和第二X向柔性解耦件;第一和第二X向柔性导向件;以及第一和第二Y向柔性导向件。根据本发明实施例的二维纳米伺服平台具有高效率、动态稳定性好等优点。

Description

二维纳米伺服平台
技术领域
本发明涉及一种高效稳定的二维纳米伺服平台。
背景技术
现有的二维纳米伺服平台的解耦件是柔性的,其中一个方向上的刚度比较小,因此解耦件不能承受过大的压力。但是,现有的二维纳米伺服平台在运动过程中,不可避免地存在一个方向上的解耦件同时受压,这大大限制了终端平台大行程运动的发展。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明提出一种具有动态稳定性好、使用效率高的优点的二维纳米伺服平台。
根据本发明实施例的二维纳米伺服平台包括:基座;终端平台,所述终端平台位于所述基座的边沿的内侧;X向驱动器和Y向驱动器;第一X向刚性连接件和第一Y向刚性连接件,所述第一X向刚性连接件沿X向延伸且与所述X向驱动器相连,所述第一Y向刚性连接件沿Y向延伸且与所述Y向驱动器相连;第一Y向柔性解耦件和第一X向柔性解耦件,所述第一Y向柔性解耦件沿X向延伸且分别与所述终端平台和所述第一X向刚性连接件相连,所述第一X向柔性解耦件沿Y向延伸且分别与所述终端平台和所述第一Y向刚性连接件相连;第二X向刚性连接件和第二Y向刚性连接件,所述第二X向刚性连接件沿X向延伸且与所述第一X向刚性连接件刚性连接,所述第二Y向刚性连接件沿Y向延伸且与所述第一Y向刚性连接件刚性连接;第二Y向柔性解耦件和第二X向柔性解耦件,所述第二Y向柔性解耦件沿X向延伸且分别与所述终端平台和所述第二X向刚性连接件相连,所述第二X向柔性解耦件沿Y向延伸且分别与所述终端平台和所述第二Y向刚性连接件相连;第一X向柔性导向件和第二X向柔性导向件,所述第一X向柔性导向件沿Y向延伸且分别与所述基座和所述第一X向刚性连接件相连,所述第二X向柔性导向件沿Y向延伸且分别与所述基座和所述第二X向刚性连接件相连;以及第一Y向柔性导向件和第二Y向柔性导向件,所述第一Y向柔性导向件沿X向延伸且分别与所述基座和所述第一Y向刚性连接件相连,所述第二Y向柔性导向件沿X向延伸且分别与所述基座和所述第二Y向刚性连接件相连。
因此,根据本发明实施例的二维纳米伺服平台具有动态稳定性好、使用效率高的优点。
另外,根据本发明上述实施例的二维纳米伺服平台还可以具有如下附加的技术特征:
根据本发明的一个实施例,所述第一X向柔性导向件设在所述第一Y向柔性解耦件的下方且在上下方向上与所述第一Y向柔性解耦件相对,所述第二X向柔性导向件设在所述第二Y向柔性解耦件的下方且在上下方向上与所述第二Y向柔性解耦件相对,所述第一Y向柔性导向件设在所述第一X向柔性解耦件的下方且在上下方向上与所述第一X向柔性解耦件相对,所述第二Y向柔性导向件设在所述第二X向柔性解耦件的下方且在上下方向上与所述第二X向柔性解耦件相对。
根据本发明的一个实施例,所述第一X向刚性连接件、所述第二X向刚性连接件、所述第一Y向刚性连接件和所述第二Y向刚性连接件中的每一个均包括交叉设置的X向部和Y向部,所述第一Y向柔性解耦件的第一端与所述第一X向刚性连接件的Y向部相连且第二端与所述终端平台相连,所述第二Y向柔性解耦件的第一端与所述第二X向刚性连接件的Y向部相连且第二端与所述终端平台相连,所述第一X向柔性解耦件的第一端与所述第一Y向刚性连接件的X向部相连且第二端与所述终端平台相连,所述第二X向柔性解耦件的第一端与所述第二Y向刚性连接件的X向部相连且第二端与所述终端平台相连。
根据本发明的一个实施例,所述二维纳米伺服平台进一步包括:第三X向柔性导向件和第四X向柔性导向件,所述第三X向柔性导向件和所述第一X向柔性导向件沿X向间隔开地设置,所述第三X向柔性导向件沿Y向延伸且分别与所述基座和所述第一X向刚性连接件相连,所述第四X向柔性导向件和所述第二X向柔性导向件沿X向间隔开地设置,所述第四X向柔性导向件沿Y向延伸且分别与所述基座和所述第二X向刚性连接件相连;以及第三Y向柔性导向件和第四Y向柔性导向件,所述第三Y向柔性导向件和所述第一Y向柔性导向件沿Y向间隔开地设置,所述第三Y向柔性导向件沿X向延伸且分别与所述基座和所述第一Y向刚性连接件相连,所述第四Y向柔性导向件和所述第二Y向柔性导向件沿Y向间隔开地设置,所述第四Y向柔性导向件沿X向延伸且分别与所述基座和所述第二Y向刚性连接件相连。
根据本发明的一个实施例,所述基座包括基座本体以及设在所述基座本体上的第一安装部至第八安装部,所述第一X向柔性导向件、所述第二X向柔性导向件、所述第三X向柔性导向件、所述第四X向柔性导向件、所述第一Y向柔性导向件、所述第二Y向柔性导向件、所述第三Y向柔性导向件和所述第四Y向柔性导向件中的每一个在上下方向上与所述基座本体间隔开,所述第一X向柔性导向件的第一端与所述第一X向刚性连接件相连且第二端与所述第一安装部相连,所述第三X向柔性导向件的第一端与所述第一X向刚性连接件相连且第二端与所述第三安装部相连,所述第二X向柔性导向件的第一端与所述第二X向刚性连接件相连且第二端与所述第五安装部相连,所述第四X向柔性导向件的第一端与所述第二X向刚性连接件相连且第二端与所述第六安装部相连,所述第一Y向柔性导向件的第一端与所述第一Y向刚性连接件相连且第二端与所述第二安装部相连,所述第三Y向柔性导向件的第一端与所述第一Y向刚性连接件相连且第二端与所述第四安装部相连,所述第二Y向柔性导向件的第一端与所述第二Y向刚性连接件相连且第二端与所述第七安装部相连,所述第四Y向柔性导向件的第一端与所述第二Y向刚性连接件相连且第二端与所述第八安装部相连。
根据本发明的一个实施例,所述第一X向柔性导向件为两个且两个所述第一X向柔性导向件相对X向对称,所述第二X向柔性导向件为两个且两个所述第二X向柔性导向件相对X向对称,所述第三X向柔性导向件为两个且两个所述第三X向柔性导向件相对X向对称,所述第四X向柔性导向件为两个且两个所述第四X向柔性导向件相对X向对称,所述第一Y向柔性导向件为两个且两个所述第一Y向柔性导向件相对Y向对称,所述第二Y向柔性导向件为两个且两个所述第二Y向柔性导向件相对Y向对称,所述第三Y向柔性导向件为两个且两个所述第三Y向柔性导向件相对Y向对称,所述第四Y向柔性导向件为两个且两个所述第四Y向柔性导向件相对Y向对称,所述第一X向柔性导向件与所述第二X向柔性导向件相对Y向对称,所述第三X向柔性导向件与所述第四X向柔性导向件相对Y向对称,所述第一Y向柔性导向件与所述第二Y向柔性导向件相对X向对称,所述第三Y向柔性导向件与所述第四Y向柔性导向件相对X向对称。
根据本发明的一个实施例,所述二维纳米伺服平台进一步包括:第一刚性件,所述第一刚性件设在所述终端平台的下方,所述第一刚性件与所述第一X向刚性连接件和所述第二X向刚性连接件中的每一个刚性连接;和第二刚性件,所述第二刚性件设在所述终端平台的下方,所述第二刚性件与所述第一Y向刚性连接件和所述第二Y向刚性连接件中的每一个刚性连接。
根据本发明的一个实施例,所述第一刚性件沿X向延伸,所述第二刚性件沿Y向延伸,其中所述第一刚性件与所述第二刚性件在上下方向上间隔开,或者所述第一刚性件和所述第二刚性件中的一个上设有过孔,所述第一刚性件和所述第二刚性件中的另一个穿过所述过孔。
根据本发明的一个实施例,所述二维纳米伺服平台进一步包括:用于测量所述第一X向刚性连接件和所述第二X向刚性连接件中的至少一个在X向上的位移的X向光栅;和用于测量所述第一Y向刚性连接件和所述第二Y向刚性连接件中的至少一个在Y向上的位移的Y向光栅。
根据本发明的一个实施例,所述二维纳米伺服平台通过3D打印一体成型,优选地,所述二维纳米伺服平台为塑料材质(如ABS),通过3D打印一体成型。
附图说明
图1是根据本发明实施例的二维纳米伺服平台的俯视图;
图2是根据本发明实施例的二维纳米伺服平台的仰视图;
图3是根据本发明实施例的二维纳米伺服平台的结构示意图;
图4是根据本发明实施例的二维纳米伺服平台的结构示意图;
图5是根据本发明实施例的二维纳米伺服平台的主视图;
图6是根据本发明实施例的采用光栅的测量方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图描述根据本发明实施例的二维纳米伺服平台10。如图1-图5所示,根据本发明实施例的二维纳米伺服平台10包括基座101、终端平台102、X向驱动器(图中未示出)、Y向驱动器(图中未示出)、第一X向刚性连接件1031、第一Y向刚性连接件1032、第二X向刚性连接件1033、第二Y向刚性连接件1034、第一Y向柔性解耦件1041、第一X向柔性解耦件1042、第二Y向柔性解耦件1043、第二X向柔性解耦件1044、第一X向柔性导向件1051、第二X向柔性导向件1052、第一Y向柔性导向件1053和第二Y向柔性导向件1054。终端平台102位于基座101的边沿的内侧。
第一X向刚性连接件1031沿X向延伸,第一X向刚性连接件1031与该X向驱动器相连,第一Y向刚性连接件1032沿Y向延伸,第一Y向刚性连接件1032与该Y向驱动器相连。第二X向刚性连接件1033沿X向延伸,第二X向刚性连接件1033与第一X向刚性连接件1031刚性连接。第二Y向刚性连接件1034沿Y向延伸,第二Y向刚性连接件1034与第一Y向刚性连接件1032刚性连接。
第一Y向柔性解耦件1041沿X向延伸,第一Y向柔性解耦件1041分别与终端平台102和第一X向刚性连接件1031相连,第一X向柔性解耦件1042沿Y向延伸,第一X向柔性解耦件1042分别与终端平台102和第一Y向刚性连接件1032相连。第二Y向柔性解耦件1043沿X向延伸,第二Y向柔性解耦件1043分别与终端平台102和第二X向刚性连接件1033相连,第二X向柔性解耦件1044沿Y向延伸,第二X向柔性解耦件1044分别与终端平台102和第二Y向刚性连接件1034相连。
第一X向柔性导向件1051沿Y向延伸,第一X向柔性导向件1051分别与基座101和第一X向刚性连接件1031相连。第二X向柔性导向件1052沿Y向延伸,第二X向柔性导向件1052分别与基座101和第二X向刚性连接件1033相连。第一Y向柔性导向件1053沿X向延伸,第一Y向柔性导向件1053分别与基座101和第一Y向刚性连接件1032相连。第二Y向柔性导向件1054沿X向延伸,第二Y向柔性导向件1054分别与基座101和第二Y向刚性连接件1034相连。
通过将第一X向刚性连接件1031与第二X向刚性连接件1033刚性连接,从而可以改变沿X向的力的传递方式。具体而言,通过第一Y向柔性解耦件1041和第二Y向柔性解耦件1043带动终端平台102沿X向运动,无论沿X向的驱动力(该驱动力由该X向驱动器提供)是推力还是拉力,第一Y向柔性解耦件1041和第二Y向柔性解耦件1043中的一个承受拉力,第一Y向柔性解耦件1041和第二Y向柔性解耦件1043中的另一个承受压力。
由此可以极大地减小第一Y向柔性解耦件1041和第二Y向柔性解耦件1043受压失稳的可能性。也就是说,第一Y向柔性解耦件1041和第二Y向柔性解耦件1043相互制约,保证了终端平台102的动态稳定性。同时,还可以使二维纳米伺服平台10相对Y向具有更好的对称性,从而大大增加了二维纳米伺服平台10的运动精度。
通过将第一Y向刚性连接件1032与第二Y向刚性连接件1034刚性连接,从而可以改变沿Y向的力的传递方式。具体而言,通过第一X向柔性解耦件1042和第二X向柔性解耦件1044带动终端平台102沿Y向运动,无论沿Y向的驱动力(该驱动力由该Y向驱动器提供)是推力还是拉力,第一X向柔性解耦件1042和第二X向柔性解耦件1044中的一个承受拉力,第一X向柔性解耦件1042和第二X向柔性解耦件1044中的另一个承受压力。
由此可以极大地减小第一X向柔性解耦件1042和第二X向柔性解耦件1044受压失稳的可能性。也就是说,第一X向柔性解耦件1042和第二X向柔性解耦件1044相互制约,保证了终端平台102的动态稳定性。同时,还可以使二维纳米伺服平台10相对X向具有更好的对称性,从而大大增加了二维纳米伺服平台10的运动精度。
而且,由于现有的二维纳米伺服平台的在一个方向上的解耦件同时受压,因此X向驱动器和Y向驱动器提供的驱动力均为推力,导致终端平台只能在一个象限里运动。
由于根据本发明实施例的二维纳米伺服平台极大地减小了第一Y向柔性解耦件1041、第二Y向柔性解耦件1043、第一X向柔性解耦件1042和第二X向柔性解耦件1044受压失稳的可能性,因此该X向驱动器和该Y向驱动器提供的驱动力即可以是推力,也可以是拉力,由此终端平台102可以在四个象限里运动,极大地提高了二维纳米伺服平台10的使用效率。
二维纳米伺服平台因此,根据本发明实施例的二维纳米伺服平台10具有动态稳定性好、使用效率高等优点。
根据本发明实施例的二维纳米伺服平台10不仅在终端平台102低速低频运动下具有良好的动态稳定性,而且在终端平台102高速高频运动下也具有良好的动态稳定性。
如图1-图5所示,在本发明的一些实施例中,二维纳米伺服平台10包括基座101、终端平台102、该X向驱动器、该Y向驱动器、第一X向刚性连接件1031、第一Y向刚性连接件1032、第二X向刚性连接件1033、第二Y向刚性连接件1034、第一Y向柔性解耦件1041、第一X向柔性解耦件1042、第二Y向柔性解耦件1043、第二X向柔性解耦件1044、第一X向柔性导向件1051、第三X向柔性导向件1052、第一Y向柔性导向件1053、第三Y向柔性导向件1054、第二X向柔性导向件1055、第四X向柔性导向件1056、第二Y向柔性导向件1057、第四Y向柔性导向件1058、X向光栅106和Y向光栅107。
该X向驱动器和该Y向驱动器中的每一个都可以是音圈电机或压电陶瓷。第一Y向柔性解耦件1041、第一X向柔性解耦件1042、第二Y向柔性解耦件1043、第二X向柔性解耦件1044、第一X向柔性导向件1051、第三X向柔性导向件1052、第一Y向柔性导向件1053、第三Y向柔性导向件1054、第二X向柔性导向件1055、第四X向柔性导向件1056、第二Y向柔性导向件1057和第四Y向柔性导向件1058中的每一个都可以是柔性板簧。
基座101可以包括基座本体1011以及设在基座本体1011上的第一安装部1012至第八安装部1019,基座本体1011可以是回字形。具体而言,基座本体1011的内边沿和外边沿都可以是正方形,终端平台102的边沿可以是正方形。
如图1-图4所示,第一X向柔性导向件1051和第三X向柔性导向件1052沿X向间隔开地设置,第三X向柔性导向件1052沿Y向延伸,第三X向柔性导向件1052分别与基座101和第一X向刚性连接件1031相连。第二X向柔性导向件1055和第四X向柔性导向件1056沿X向间隔开地设置,第四X向柔性导向件1056沿Y向延伸,第四X向柔性导向件1056分别与基座101和第二X向刚性连接件1033相连。
第一Y向柔性导向件1053和第三Y向柔性导向件1054沿Y向间隔开地设置,第三Y向柔性导向件1054沿X向延伸,第三Y向柔性导向件1054分别与基座101和第一Y向刚性连接件1032相连。第二Y向柔性导向件1057和第四Y向柔性导向件1058沿Y向间隔开地设置,第四Y向柔性导向件1058沿X向延伸,第四Y向柔性导向件1058分别与基座101和第二Y向刚性连接件1034相连。
也就是说,第二X向柔性导向件1055对第二X向刚性连接件1033的作用与第一X向柔性导向件1051对第一X向刚性连接件1031的作用相同,第四X向柔性导向件1056对第二X向刚性连接件1033的作用与第三X向柔性导向件1052对第一X向刚性连接件1031的作用相同。第二Y向柔性导向件1057对第二Y向刚性连接件1034的作用与第一Y向柔性导向件105对第一Y向刚性连接件1032的作用相同,第四Y向柔性导向件1058对第二Y向刚性连接件1034的作用与第三Y向柔性导向件1054对第一Y向刚性连接件1032的作用相同。
如图1-图4所示,在本发明的一个实施例中,可以通过方式A和方式B中的至少一个来提高终端平台102在X向上的运动精度。方式A:第一Y向柔性解耦件1041与第一X向刚性连接件1031的连接处在X向上位于第一X向柔性导向件1051与第三X向柔性导向件1052之间。方式B:第二Y向柔性解耦件1043与第二X向刚性连接件1033的连接处在X向上位于第二X向柔性导向件1055和第四X向柔性导向件1056之间。
可以通过方式C和方式D中的至少一个来提高终端平台102在Y向上的运动精度。方式C:第一X向柔性解耦件1042与第一Y向刚性连接件1032的连接处在Y向上位于第一Y向柔性导向件1053与第三Y向柔性导向件1054之间。方式D:第二X向柔性解耦件1044与第二Y向刚性连接件1034的连接处在Y向上位于第二Y向柔性导向件1057与第四Y向柔性导向件1058之间。
当该X向驱动器驱动终端平台102时(即驱动终端平台102沿X方向运动),使得第一X向柔性解耦件1042和第二X向柔性解耦件1044产生挠变形,从而分别对第一Y向刚性连接件1032和第二Y向刚性连接件1034产生了拉力(弯矩)。第一Y向柔性导向件1053和第三Y向柔性导向件1054反作用于第一Y向刚性连接件1032,充分地抑制了第一Y向刚性连接件1032的转动,即充分地抑制了第一Y向刚性连接件1032的非Y向运动。第二Y向柔性导向件1057和第四Y向柔性导向件1058反作用于第二Y向刚性连接件1034,充分地抑制了第二Y向刚性连接件1034的转动,即充分地抑制了第二Y向刚性连接件1034的非Y向运动。由此可以极大地提高终端平台102在Y向上的运动精度。
而且,由于第一X向柔性解耦件1042与第一Y向刚性连接件1032的连接处在Y向上位于第一Y向柔性导向件1053与第三Y向柔性导向件1054之间,因此第一X向柔性解耦件1042施加在第一Y向刚性连接件1032上的拉力的作用位置在第一Y向柔性导向件1053与第三Y向柔性导向件1054之间,从而可以更加充分地抑制了第一Y向刚性连接件1032的转动。同时,由于第二X向柔性解耦件1044与第二Y向刚性连接件1034的连接处在Y向上位于第二Y向柔性导向件1057与第四Y向柔性导向件1058之间,因此第二X向柔性解耦件1044施加在第二Y向刚性连接件1034上的拉力的作用位置在第二Y向柔性导向件1057与第四Y向柔性导向件1058之间,从而可以更加充分地抑制第二Y向刚性连接件1034的转动。由此可以极大地提高终端平台102在Y向上的运动精度。
当该Y向驱动器驱动终端平台102时(即驱动终端平台102沿Y方向运动),使得第一Y向柔性解耦件1041和第二Y向柔性解耦件1043产生挠变形,从而分别对第一X向刚性连接件1031和第二X向刚性连接件1033产生了拉力(弯矩)。第一X向柔性导向件1051和第三X向柔性导向件1052反作用于第一X向刚性连接件1031,充分地抑制了第一X向刚性连接件1031的转动,即充分地抑制了第一X向刚性连接件1031的非X向运动。第二X向柔性导向件1055和第四X向柔性导向件1056反作用于第二X向刚性连接件1033,充分地抑制了第二X向刚性连接件1033的转动,即充分地抑制了第二X向刚性连接件1033的非X向运动。由此可以极大地提高终端平台102在X向上的运动精度。
而且,由于第一Y向柔性解耦件1041与第一X向刚性连接件1031的连接处在X向上位于第一X向柔性导向件1051与第三X向柔性导向件1052之间,因此第一Y向柔性解耦件1041施加在第一X向刚性连接件1031上的拉力的作用位置在第一X向柔性导向件1051与第三X向柔性导向件1052之间,从而可以更加充分地抑制了第一X向刚性连接件1031的转动。同时,由于第二Y向柔性解耦件1043与第二X向刚性连接件1033的连接处在X向上位于第二X向柔性导向件1055与第四X向柔性导向件1056之间,因此第二Y向柔性解耦件1043施加在第二X向刚性连接件1033上的拉力的作用位置在第二X向柔性导向件1055与第四X向柔性导向件1056之间,从而可以更加充分地抑制了第二X向刚性连接件1033的转动。由此可以极大地提高终端平台102在X向上的运动精度。
根据本发明实施例的二维纳米伺服平台10可以极大地降低双轴耦合度,使终端平台102的运动精度有了质的飞跃。因此,根据本发明实施例的二维纳米伺服平台10具有运动精度高等优点。
而且,本申请的一些技术方案是基于发明人对以下事实和问题的发现和认识作出的:二维纳米伺服平台的结构设计需要同测量相结合考虑。而现有的大行程精密运动平台的结构设计未与测量相结合考虑。
正是由于本申请的发明人将二维纳米伺服平台10的结构设计与测量相结合考虑,因此根据本发明实施例的二维纳米伺服平台10通过上述方式A和方式B中的至少一个以及上述方式C和方式D中的至少一个,从而可以约束第一X向刚性连接件1031和第二X向刚性连接件1033中的相应的至少一个的非X向运动,以及约束第一Y向刚性连接件1032和第二Y向刚性连接件1034中的相应的至少一个的非Y向运动。
换言之,第一X向刚性连接件1031和第二X向刚性连接件1033中的相应的至少一个的非X向运动小于预设值,第一Y向刚性连接件1032和第二Y向刚性连接件1034中的相应的至少一个的非Y向运动小于预设值。也就是说,第一X向刚性连接件1031和第二X向刚性连接件1033中的相应的至少一个基本上只沿X向运动,第一Y向刚性连接件1032和第二Y向刚性连接件1034中的相应的至少一个基本上只沿Y向运动。
第一X向刚性连接件1031和第二X向刚性连接件1033中的相应的至少一个的Y向平动以及平面内的转动被限制,第一Y向刚性连接件1032和第二Y向刚性连接件1034中的相应的至少一个的X向平动以及平面内的转动被限制。因此,第一X向刚性连接件1031和第二X向刚性连接件1033中的相应的至少一个,以及第一Y向刚性连接件1032和第二Y向刚性连接件1034中的相应的至少一个,能够满足光栅大行程精密测量的条件。也就是说,第一X向刚性连接件1031和第二X向刚性连接件1033中的相应的至少一个的非轴向运动,以及第一Y向刚性连接件1032和第二Y向刚性连接件1034中的相应的至少一个的非轴向运动,被限制在光栅非轴向许可误差范围内,即第一X向刚性连接件1031和第二X向刚性连接件1033中的相应的至少一个的非轴向运动,以及第一Y向刚性连接件1032和第二Y向刚性连接件1034中的相应的至少一个的非轴向运动,被限制在光栅的几何限度内。
由此可以利用X向光栅106测量第一X向刚性连接件1031和第二X向刚性连接件1033中的相应的至少一个在X向上的位移,以及利用Y向光栅107测量第一Y向刚性连接件1032和第二Y向刚性连接件1034中的相应的至少一个在Y向上的位移的,再根据第一X向刚性连接件1031和第二X向刚性连接件1033中的相应的至少一个在X向上的位移,以及第一Y向刚性连接件1032和第二Y向刚性连接件1034中的相应的至少一个在Y向上的位移,计算得到终端平台102的平面位移。
因此,根据本发明实施例的二维纳米伺服平台10具有结构简单、制造成本低(无需使用昂贵的测量装置)、便于使用、便于携带、便于测量终端平台102的平面位移等优点。
此外,根据本发明实施例的二维纳米伺服平台10满足解耦和导向分离,导向件单独导向,解耦件单独解耦。
有利地,根据本发明实施例的二维纳米伺服平台10为大行程二维纳米伺服平台。其中,术语“大行程”是指二维纳米伺服平台10具有厘米级的行程,术语“纳米”是指二维纳米伺服平台10具有纳米级的运动精度。
下面参考图6描述根据本发明实施例的二维纳米伺服平台10的采用光栅的测量方法,所述采用光栅的测量方法包括以下步骤:
A)利用X向光栅106测量第一X向刚性连接件1031和第二X向刚性连接件1033中的至少一个在X向上的位移,利用Y向光栅107测量第一Y向刚性连接件1032和第二Y向刚性连接件1034中的至少一个在Y向上的位移;和
B)根据第一X向刚性连接件1031和第二X向刚性连接件1033中的至少一个在X向上的位移,以及第一Y向刚性连接件1032和第二Y向刚性连接件1034中的至少一个在Y向上的位移,计算得到终端平台102的平面位移。
也就是说,根据本发明实施例的采用光栅的测量方法可以用于测量二维纳米伺服平台10的终端平台102的平面位移。其中,第一X向刚性连接件1031和第二X向刚性连接件1033中的至少一个在X向上的位移被视为终端平台102在X向上的位移,第一Y向刚性连接件1032和第二Y向刚性连接件1034中的至少一个在Y向上的位移被视为终端平台102在Y向上的位移。
根据本发明实施例的采用光栅的测量方法步骤简单,可以方便地、容易地、精确地测量出终端平台102的平面位移,且无需使用昂贵、复杂的测量仪器,也无需对测量结构进行繁复的补偿。
具体而言,第二Y向柔性解耦件1043对第二X向刚性连接件1033的作用与第一Y向柔性解耦件1041对第一X向刚性连接件1031的作用相同,第二X向柔性解耦件1044对第二Y向刚性连接件1034的作用与第一X向柔性解耦件1042对第一Y向刚性连接件1032的作用相同。
在本发明的一个实施例中,如图1-图4所示,第一X向柔性导向件1051和第一Y向柔性导向件1053中的至少一个位于第一Y向柔性解耦件1041和第一X向柔性解耦件1042中的相应的至少一个的下方。
也就是说,第一X向柔性导向件1051位于第一Y向柔性解耦件1041的下方且第一X向柔性导向件1051在上下方向上与第一Y向柔性解耦件1041相对,或者第一Y向柔性导向件1053位于第一X向柔性解耦件1042的下方且第一Y向柔性导向件1053在上下方向上与第一X向柔性解耦件1042相对,或者第一X向柔性导向件1051位于第一Y向柔性解耦件1041的下方且第一Y向柔性导向件1053位于第一X向柔性解耦件1042的下方且第一X向柔性导向件1051在上下方向上与第一Y向柔性解耦件1041相对、第一Y向柔性导向件1053在上下方向上与第一X向柔性解耦件1042相对。上下方向如图5中的箭头A所示。
其中,第一X向柔性导向件1051在上下方向上与第一Y向柔性解耦件1041相对是指:第一Y向柔性解耦件1041在X向上具有第一端和第二端,第一X向柔性导向件1051在X向上位于第一Y向柔性解耦件1041的该第一端与该第二端之间。第一Y向柔性导向件1053在上下方向上与第一X向柔性解耦件1042相对是指:第一X向柔性解耦件1042在Y向上具有第一端和第二端,第一Y向柔性导向件1053在Y向上位于第一X向柔性解耦件1042的该第一端与该第二端之间。
在现有的大行程多层纳米伺服平台中,X向柔性导向件与Y向柔性解耦件在X向上并排设置,导致现有的大行程多层纳米伺服平台在X向上的尺寸很大,且Y向柔性导向件与X向柔性解耦件在Y向上并排设置,导致现有的大行程多层纳米伺服平台在Y向上的尺寸很大。
当第一X向柔性导向件1051位于第一Y向柔性解耦件1041的下方且在上下方向上与第一Y向柔性解耦件1041相对时,可以减小二维纳米伺服平台10在X向上的尺寸。而且,由于第一X向柔性导向件1051在上下方向上与第一Y向柔性解耦件1041相对,因此第一X向柔性导向件1051与第一X向刚性连接件1031的连接处邻近第一Y向柔性解耦件1041与第一X向刚性连接件1031的连接处,从而可以更好地抑制第一X向刚性连接件1031的转动,即可以充分地抑制终端平台102的转动,以便提高对终端平台102的支撑效果。
当第一Y向柔性导向件1053位于第一X向柔性解耦件1042的下方且在上下方向上与第一X向柔性解耦件1042相对时,可以减小二维纳米伺服平台10在Y向上的尺寸。而且,由于第一Y向柔性导向件1053在上下方向上与第一X向柔性解耦件1042相对,因此第一Y向柔性导向件1053与第一Y向刚性连接件1032的连接处邻近第一X向柔性解耦件1042与第一Y向刚性连接件1032的连接处,从而可以更好地抑制第一Y向刚性连接件1032的转动,即可以充分地抑制终端平台102的转动,以便提高对终端平台102的支撑效果。
根据本发明实施例的二维纳米伺服平台10通过将第一X向柔性导向件1051和第一Y向柔性导向件1053中的至少一个位于第一Y向柔性解耦件1041和第一X向柔性解耦件1042中的相应的至少一个的下方,从而可以减小二维纳米伺服平台10在X向和Y向中的相应的至少一个上的尺寸,由此可以使二维纳米伺服平台10的结构更加紧凑。
因此,根据本发明实施例的二维纳米伺服平台10具有结构紧凑、尺寸小、便于携带、终端平台支撑效果好等优点。换言之,根据本发明实施例的二维纳米伺服平台10为紧凑型大行程多层纳米伺服平台。二维纳米伺服平台二维纳米伺服平台二维纳米伺服平台二维纳米伺服平台二维纳米伺服平台二维纳米伺服平台二维纳米伺服平台如图1-图4所示,有利地,第二X向柔性导向件1055和第二Y向柔性导向件1057中的至少一个位于第二Y向柔性解耦件1043和第二X向柔性解耦件1044中的相应的至少一个的下方。
也就是说,第二X向柔性导向件1055位于第二Y向柔性解耦件1043的下方且第二X向柔性导向件1055在上下方向上与第二Y向柔性解耦件1043相对,或者第二Y向柔性导向件1057位于第二X向柔性解耦件1044的下方且第二Y向柔性导向件1057在上下方向上与第二X向柔性解耦件1044相对,或者第二X向柔性导向件1055位于第二Y向柔性解耦件1043的下方且第二Y向柔性导向件1057位于第二X向柔性解耦件1044的下方且第二X向柔性导向件1055在上下方向上与第二Y向柔性解耦件1043相对、第二Y向柔性导向件1057在上下方向上与第二X向柔性解耦件1044相对。
其中,第二X向柔性导向件1055在上下方向上与第二Y向柔性解耦件1043相对是指:第二Y向柔性解耦件1043在X向上具有第一端和第二端,第二X向柔性导向件1055在X向上位于第二Y向柔性解耦件1043的该第一端与该第二端之间。第二Y向柔性导向件1057在上下方向上与第二X向柔性解耦件1044相对是指:第二X向柔性解耦件1044在Y向上具有第一端和第二端,第二Y向柔性导向件1057在Y向上位于第二X向柔性解耦件1044的该第一端与该第二端之间。
当第二X向柔性导向件1055位于第二Y向柔性解耦件1043的下方且在上下方向上与第二Y向柔性解耦件1043相对时,可以减小二维纳米伺服平台10在X向上的尺寸。而且,由于第二X向柔性导向件1055在上下方向上与第二Y向柔性解耦件1043相对,因此第二X向柔性导向件1055与第二X向刚性连接件1033的连接处邻近第二Y向柔性解耦件1043与第二X向刚性连接件1033的连接处,从而可以更好地抑制第二X向刚性连接件1033的转动,即可以充分地抑制终端平台102的转动,以便提高对终端平台102的支撑效果。
当第二Y向柔性导向件1057位于第二X向柔性解耦件1044的下方且在上下方向上与第二X向柔性解耦件1044相对时,可以减小二维纳米伺服平台10在Y向上的尺寸。而且,由于第二Y向柔性导向件1057在上下方向上与第二X向柔性解耦件1044相对,因此第二Y向柔性导向件1057与第二Y向刚性连接件1034的连接处邻近第二X向柔性解耦件1044与第二Y向刚性连接件1034的连接处,从而可以更好地抑制第二Y向刚性连接件1034的转动,即可以充分地抑制终端平台102的转动,以便提高对终端平台102的支撑效果。
由此不仅可以进一步减小二维纳米伺服平台10在X向和Y向中的相应的至少一个上的尺寸,而且可以使二维纳米伺服平台10的结构更加紧凑、尺寸更小、更加便于携带、终端平台支撑效果更好。二维纳米伺服平台二维纳米伺服平台有利地,第一X向刚性连接件1031与第二X向刚性连接件1033相对Y向对称,第一Y向刚性连接件1032与第二Y向刚性连接件1034相对X向对称。第一X向柔性导向件1051与第二X向柔性导向件1055相对Y向对称,第三X向柔性导向件1052与第四X向柔性导向件1056相对Y向对称。第一Y向柔性导向件1053与第二Y向柔性导向件1057相对X向对称,第三Y向柔性导向件1054与第四Y向柔性导向件1058相对X向对称。高度的对称性提高了二维纳米伺服平台10的运动精度。
如图1-图4所示,第一X向柔性导向件1051位于第三X向柔性导向件1052和第一Y向柔性解耦件1041的下方,第二X向柔性导向件1055位于第四X向柔性导向件1056和第二Y向柔性解耦件1043的下方,第一Y向柔性导向件1053位于第三Y向柔性导向件1054和第一X向柔性解耦件1042的下方,第二Y向柔性导向件1057位于第四Y向柔性导向件1058和第二X向柔性解耦件1044的下方。由此可以使二维纳米伺服平台10的结构更加紧凑,而且终端平台102与第一X向柔性导向件1051、第二X向柔性导向件1055、第一Y向柔性导向件1053和第二Y向柔性导向件1057互不接触,从而保证在运动的过程中不存在任何摩擦,提高了终端平台102的运动精度。
当第一X向柔性导向件1051位于第三X向柔性导向件1052和第一Y向柔性解耦件1041的下方、以及第二X向柔性导向件1055位于第四X向柔性导向件1056和第二Y向柔性解耦件1043的下方时,可以减小二维纳米伺服平台10在X向上的尺寸。当第一Y向柔性导向件1053位于第三Y向柔性导向件1054和第一X向柔性解耦件1042的下方、以及第二Y向柔性导向件1057位于第四Y向柔性导向件1058和第二X向柔性解耦件1044的下方时,可以减小二维纳米伺服平台10在Y向上的尺寸。由此可以使二维纳米伺服平台10具有结构紧凑、尺寸小、便于携带等优点。
有利地,如图1所示,第一X向柔性导向件1051为两个且两个第一X向柔性导向件1051相对X向对称,第三X向柔性导向件1052为两个且两个第三X向柔性导向件1052相对X向对称,第二X向柔性导向件1055为两个且两个第二X向柔性导向件1055相对X向对称,第四X向柔性导向件1056为两个且两个第四X向柔性导向件1056相对X向对称。
第一Y向柔性导向件1053为两个且两个第一Y向柔性导向件1053相对Y向对称,第三Y向柔性导向件1054为两个且两个第三Y向柔性导向件1054相对Y向对称。第二Y向柔性导向件1057为两个且两个第二Y向柔性导向件1057相对Y向对称,第四Y向柔性导向件1058为两个且两个第四Y向柔性导向件1058相对Y向对称。高度的对称性提高了二维纳米伺服平台10的运动精度。
如图1-图4所示,一个第一X向柔性导向件1051的第一端与第一X向刚性连接件1031相连且第二端与第一安装部1012相连,另一个第一X向柔性导向件1051的第一端与第一X向刚性连接件1031相连且第二端与第二安装部1013相连。一个第三X向柔性导向件1052的第一端与第一X向刚性连接件1031相连且第二端与第三安装部1014相连,另一个第三X向柔性导向件1052的第一端与第一X向刚性连接件1031相连且第二端与第四安装部1015相连。一个第二X向柔性导向件1055的第一端与第二X向刚性连接件1033相连且第二端与第五安装部1016相连,另一个第二X向柔性导向件1055的第一端与第二X向刚性连接件1033相连且第二端与第七安装部1018相连。一个第四X向柔性导向件1056的第一端与第二X向刚性连接件1033相连且第二端与第六安装部1017相连,另一个第四X向柔性导向件1056的第一端与第二X向刚性连接件1033相连且第二端与第八安装部1019相连。
一个第一Y向柔性导向件1053的第一端与第一Y向刚性连接件1032相连且第二端与第二安装部1013相连,另一个第一Y向柔性导向件1053的第一端与第一Y向刚性连接件1032相连且第二端与第五安装部1016相连。一个第三Y向柔性导向件1054的第一端与第一Y向刚性连接件1032相连且第二端与第四安装部1015相连,另一个第三Y向柔性导向件1054的第一端与第一Y向刚性连接件1032相连且第二端与第六安装部1017相连。一个第二Y向柔性导向件1057的第一端与第二Y向刚性连接件1034相连且第二端与第七安装部1018相连,另一个第二Y向柔性导向件1057的第一端与第二Y向刚性连接件1034相连且第二端与第一安装部1012相连。一个第四Y向柔性导向件1058的第一端与第二Y向刚性连接件1034相连且第二端与第八安装部1019相连,另一个第四Y向柔性导向件1058的第一端与第二Y向刚性连接件1034相连且第二端与第三安装部1014相连。
其中,第一X向柔性导向件1051、第三X向柔性导向件1052、第二X向柔性导向件1055、第四X向柔性导向件1056、第一Y向柔性导向件1053、第三Y向柔性导向件1054、第二Y向柔性导向件1057和第四Y向柔性导向件1058中的每一个在上下方向上与基座本体1011间隔开。
如图1-图4所示,第一Y向柔性解耦件1041、第二Y向柔性解耦件1043、第一X向柔性解耦件1042和第二X向柔性解耦件1044中的每一个都可以是两个。其中,两个第一Y向柔性解耦件1041相对X向对称,两个第二Y向柔性解耦件1043相对X向对称,两个第一X向柔性解耦件1042相对Y向对称,两个第二X向柔性解耦件1044相对Y向对称。对称结构设计可以提高二维纳米伺服平台10的运动精度。
第一Y向柔性解耦件1041与第二Y向柔性解耦件1043相对Y向对称,第一X向柔性解耦件1042与第二X向柔性解耦件1044相对X向对称。由此可以进一步提高二维纳米伺服平台10的运动精度。
如图1-图4所示,第一X向刚性连接件1031、第一Y向刚性连接件1032、第二X向刚性连接件1033和第二Y向刚性连接件1034中的每一个为十字形且包括X向部和Y向部。
具体而言,一个第一Y向柔性解耦件1041的第一端与第一X向刚性连接件1031的Y向部10311相连且第二端与终端平台102相连,另一个第一Y向柔性解耦件1041的第一端与第一X向刚性连接件1031的Y向部10311相连且第二端与终端平台102相连。两个第一Y向柔性解耦件1041的第一端以及第一X向刚性连接件1031的Y向部10311在X向上位于第一X向柔性导向件1051和第三X向柔性导向件1052之间,第一X向刚性连接件1031的X向部10312在Y向上位于两个第一Y向柔性解耦件1041之间。
一个第一X向柔性解耦件1042的第一端与第一Y向刚性连接件1032的X向部10321相连且第二端与终端平台102相连,另一个第一X向柔性解耦件1042的第一端与第一Y向刚性连接件1032的X向部10321相连且第二端与终端平台102相连。两个第一X向柔性解耦件1042的第一端以及第一Y向刚性连接件1032的X向部10321在Y向上位于第一Y向柔性导向件1053与第三Y向柔性导向件1054之间,第一Y向刚性连接件1032的Y向部10322在X向上位于两个第一X向柔性解耦件1042之间。
一个第二Y向柔性解耦件1043的第一端与第二X向刚性连接件1033的Y向部10331相连且第二端与终端平台102相连,另一个第二Y向柔性解耦件1043的第一端与第二X向刚性连接件1033的Y向部10331相连且第二端与终端平台102相连。两个第二Y向柔性解耦件1043的第一端以及第二X向刚性连接件1033的Y向部10331在X向上位于第二X向柔性导向件1055与第四X向柔性导向件1056之间,第二X向刚性连接件1033的X向部10332在Y向上位于两个第二Y向柔性解耦件1043之间。
一个第二X向柔性解耦件1044的第一端与第二Y向刚性连接件1034的X向部10341相连且第二端与终端平台102相连,另一个第二X向柔性解耦件1044的第一端与第二Y向刚性连接件1034的X向部10341相连且第二端与终端平台102相连。两个第二X向柔性解耦件1044的第一端以及第二Y向刚性连接件1034的X向部10341在Y向上位于第二Y向柔性导向件1057与第四Y向柔性导向件1058之间,第二Y向刚性连接件1034的Y向部10342在X向上位于两个第二X向柔性解耦件1044之间。由此可以使二维纳米伺服平台10的结构更加合理。
在本发明的一个具体示例中,二维纳米伺服平台10通过3D打印一体成型。由此不仅可以进一步提高终端平台102的运动精度,而且可以进一步将第一X向刚性连接件1031、第一Y向刚性连接件1032、第二X向刚性连接件1033和第二Y向刚性连接件1034的非轴向运动限制在光栅非轴向许可误差范围内。
有利地,二维纳米伺服平台10为塑料材质(如ABS),通过3D打印一体成型。由此可以进一步提高二维纳米伺服平台10的行程。
X向光栅106包括设在第一X向刚性连接件1031的上表面上的X向光栅尺1061以及用于测量X向光栅尺1061在X向上的位移的X向光栅传感器1062,Y向光栅107包括设在第一Y向刚性连接件1032的上表面上的Y向光栅尺1071以及用于测量Y向光栅尺1071在Y向上的位移的Y向光栅传感器1072。此外,X向光栅106和Y向光栅107可以按照已知的方式进行安装。也就是说,如何将光栅(X向光栅106和Y向光栅107)安装到被测部件上是已知的。
在本发明的一些实施例中,X向光栅106用于测量第二X向刚性连接件1033在X向上的位移,Y向光栅107用于测量第二Y向刚性连接件1034在Y向上的位移。根据第二X向刚性连接件1033在X向上的位移和第二Y向刚性连接件1034在Y向上的位移,计算得到终端平台102的平面位移。
具体而言,X向光栅尺1061设在第二X向刚性连接件1033的上表面上,Y向光栅尺1071设在第二Y向刚性连接件1034的上表面上。
如图2-图4所示,在本发明的一个示例中,二维纳米伺服平台10进一步包括第一刚性件1035和第二刚性件1036。第一刚性件1035设在终端平台102的下方,第一刚性件1035与第一X向刚性连接件1031和第二X向刚性连接件1033中的每一个刚性连接。第二刚性件1036设在终端平台102的下方,第二刚性件1036与第一Y向刚性连接件1032和第二Y向刚性连接件1034中的每一个刚性连接。
具体而言,第一刚性件1035沿X向延伸,第一刚性件1035的第一端与第一X向刚性连接件1031刚性连接,第一刚性件1035的第二端与第二X向刚性连接件1033刚性连接。第二刚性件1036沿Y向延伸,第二刚性件1036的第一端与第一Y向刚性连接件1032刚性连接,第二刚性件1036的第二端与第二Y向刚性连接件1034刚性连接。由此可以使二维纳米伺服平台10的结构更加合理。
其中,第一刚性件1035与第二刚性件1036可以在上下方向上间隔开。有利地,如图3和图4所示,第一刚性件1035和第二刚性件1036中的一个上设有过孔1037,第一刚性件1035和第二刚性件1036中的另一个穿过过孔1037。由此可以使二维纳米伺服平台10的结构更加合理。
下面参照图1-图5描述根据本发明实施例的二维纳米伺服平台10的工作过程。当该X向驱动器驱动终端平台102时,驱动力作用于第一X向刚性连接件1031和第二X向刚性连接件1033上,进而通过第一Y向柔性解耦件1041和第二Y向柔性解耦件1043带动终端平台102沿X向运动。无论沿X向的驱动力是推力还是拉力,第一Y向柔性解耦件1041和第二Y向柔性解耦件1043中的一个承受拉力,第一Y向柔性解耦件1041和第二Y向柔性解耦件1043中的另一个承受压力。由此第一Y向柔性解耦件1041和第二Y向柔性解耦件1043可以在更大的压力范围内不会受压失稳。
当终端平台102沿X方向运动时,使得第一X向柔性解耦件1042和第二X向柔性解耦件1044产生挠变形,从而对第一Y向刚性连接件1032和第二Y向刚性连接件1034产生了拉力(弯矩)。第一Y向柔性导向件1053和第三Y向柔性导向件1054反作用于第一Y向刚性连接件1032,充分地抑制了第一Y向刚性连接件1032的转动,第二Y向柔性导向件1057和第四Y向柔性导向件1058反作用于第二Y向刚性连接件1034,充分地抑制了第二Y向刚性连接件1034的转动,大大地提高了Y方向测量的精度。
当该Y向驱动器驱动终端平台102时,驱动力作用于第一Y向刚性连接件1032和第二Y向刚性连接件1034上,并通过第一X向柔性解耦件1042和第二X向柔性解耦件1044带动终端平台102沿Y向运动。无论沿Y向的驱动力是推力还是拉力,第一X向柔性解耦件1042和第二X向柔性解耦件1044中的一个承受拉力,第一X向柔性解耦件1042和第二X向柔性解耦件1044中的另一个承受压力。由此第一X向柔性解耦件1042和第二X向柔性解耦件1044可以在更大的压力范围内不会受压失稳。
当终端平台102沿Y方向运动时,使得第一Y向柔性解耦件1041和第二Y向柔性解耦件1043产生挠变形,从而对第一X向刚性连接件1031和第二X向刚性连接件1033产生了拉力(弯矩)。第一X向柔性导向件1051和第三X向柔性导向件1052反作用于第一X向刚性连接件1031,充分地抑制了第一X向刚性连接件1031的转动,第二X向柔性导向件1055和第四X向柔性导向件1056反作用于第二X向刚性连接件1033,充分地抑制了第二X向刚性连接件1033的转动,大大提高了X方向测量的精度。
当该X向驱动器和该Y向驱动器同时工作时,在X向和Y向上分别产生上述运动,从而实现终端平台102在平面(XOY平面)内的***。第一Y向柔性解耦件1041、第一X向柔性解耦件1042、第二Y向柔性解耦件1043和第二X向柔性解耦件1044的存在,保证了终端平台102的高精度运动,即二维纳米伺服平台10高度的解耦性保证了终端平台102的高精度运动。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

1.一种二维纳米伺服平台,其特征在于,包括:
基座;
终端平台,所述终端平台位于所述基座的边沿的内侧;
X向驱动器和Y向驱动器;
第一X向刚性连接件和第一Y向刚性连接件,所述第一X向刚性连接件沿X向延伸且与所述X向驱动器相连,所述第一Y向刚性连接件沿Y向延伸且与所述Y向驱动器相连;
第一Y向柔性解耦件和第一X向柔性解耦件,所述第一Y向柔性解耦件沿X向延伸且分别与所述终端平台和所述第一X向刚性连接件相连,所述第一X向柔性解耦件沿Y向延伸且分别与所述终端平台和所述第一Y向刚性连接件相连;
第二X向刚性连接件和第二Y向刚性连接件,所述第二X向刚性连接件沿X向延伸且与所述第一X向刚性连接件刚性连接,所述第二Y向刚性连接件沿Y向延伸且与所述第一Y向刚性连接件刚性连接;
第二Y向柔性解耦件和第二X向柔性解耦件,所述第二Y向柔性解耦件沿X向延伸且分别与所述终端平台和所述第二X向刚性连接件相连,所述第二X向柔性解耦件沿Y向延伸且分别与所述终端平台和所述第二Y向刚性连接件相连;
第一X向柔性导向件和第二X向柔性导向件,所述第一X向柔性导向件沿Y向延伸且分别与所述基座和所述第一X向刚性连接件相连,所述第二X向柔性导向件沿Y向延伸且分别与所述基座和所述第二X向刚性连接件相连;以及
第一Y向柔性导向件和第二Y向柔性导向件,所述第一Y向柔性导向件沿X向延伸且分别与所述基座和所述第一Y向刚性连接件相连,所述第二Y向柔性导向件沿X向延伸且分别与所述基座和所述第二Y向刚性连接件相连。
2.根据权利要求1所述的二维纳米伺服平台,其特征在于,所述第一X向柔性导向件设在所述第一Y向柔性解耦件的下方且在上下方向上与所述第一Y向柔性解耦件相对,所述第二X向柔性导向件设在所述第二Y向柔性解耦件的下方且在上下方向上与所述第二Y向柔性解耦件相对,所述第一Y向柔性导向件设在所述第一X向柔性解耦件的下方且在上下方向上与所述第一X向柔性解耦件相对,所述第二Y向柔性导向件设在所述第二X向柔性解耦件的下方且在上下方向上与所述第二X向柔性解耦件相对。
3.根据权利要求1所述的二维纳米伺服平台,其特征在于,所述第一X向刚性连接件、所述第二X向刚性连接件、所述第一Y向刚性连接件和所述第二Y向刚性连接件中的每一个均包括交叉设置的X向部和Y向部,
所述第一Y向柔性解耦件的第一端与所述第一X向刚性连接件的Y向部相连且第二端与所述终端平台相连,所述第二Y向柔性解耦件的第一端与所述第二X向刚性连接件的Y向部相连且第二端与所述终端平台相连,
所述第一X向柔性解耦件的第一端与所述第一Y向刚性连接件的X向部相连且第二端与所述终端平台相连,所述第二X向柔性解耦件的第一端与所述第二Y向刚性连接件的X向部相连且第二端与所述终端平台相连。
4.根据权利要求1-3中任一项所述的二维纳米伺服平台,其特征在于,进一步包括:
第三X向柔性导向件和第四X向柔性导向件,所述第三X向柔性导向件和所述第一X向柔性导向件沿X向间隔开地设置,所述第三X向柔性导向件沿Y向延伸且分别与所述基座和所述第一X向刚性连接件相连,所述第四X向柔性导向件和所述第二X向柔性导向件沿X向间隔开地设置,所述第四X向柔性导向件沿Y向延伸且分别与所述基座和所述第二X向刚性连接件相连;以及
第三Y向柔性导向件和第四Y向柔性导向件,所述第三Y向柔性导向件和所述第一Y向柔性导向件沿Y向间隔开地设置,所述第三Y向柔性导向件沿X向延伸且分别与所述基座和所述第一Y向刚性连接件相连,所述第四Y向柔性导向件和所述第二Y向柔性导向件沿Y向间隔开地设置,所述第四Y向柔性导向件沿X向延伸且分别与所述基座和所述第二Y向刚性连接件相连。
5.根据权利要求4所述的二维纳米伺服平台,其特征在于,所述基座包括基座本体以及设在所述基座本体上的第一安装部至第八安装部,所述第一X向柔性导向件、所述第二X向柔性导向件、所述第三X向柔性导向件、所述第四X向柔性导向件、所述第一Y向柔性导向件、所述第二Y向柔性导向件、所述第三Y向柔性导向件和所述第四Y向柔性导向件中的每一个在上下方向上与所述基座本体间隔开,
所述第一X向柔性导向件的第一端与所述第一X向刚性连接件相连且第二端与所述第一安装部相连,所述第三X向柔性导向件的第一端与所述第一X向刚性连接件相连且第二端与所述第三安装部相连,所述第二X向柔性导向件的第一端与所述第二X向刚性连接件相连且第二端与所述第五安装部相连,所述第四X向柔性导向件的第一端与所述第二X向刚性连接件相连且第二端与所述第六安装部相连,
所述第一Y向柔性导向件的第一端与所述第一Y向刚性连接件相连且第二端与所述第二安装部相连,所述第三Y向柔性导向件的第一端与所述第一Y向刚性连接件相连且第二端与所述第四安装部相连,所述第二Y向柔性导向件的第一端与所述第二Y向刚性连接件相连且第二端与所述第七安装部相连,所述第四Y向柔性导向件的第一端与所述第二Y向刚性连接件相连且第二端与所述第八安装部相连。
6.根据权利要求4所述的二维纳米伺服平台,其特征在于,
所述第一X向柔性导向件为两个且两个所述第一X向柔性导向件相对X向对称,所述第二X向柔性导向件为两个且两个所述第二X向柔性导向件相对X向对称,
所述第三X向柔性导向件为两个且两个所述第三X向柔性导向件相对X向对称,所述第四X向柔性导向件为两个且两个所述第四X向柔性导向件相对X向对称,
所述第一Y向柔性导向件为两个且两个所述第一Y向柔性导向件相对Y向对称,所述第二Y向柔性导向件为两个且两个所述第二Y向柔性导向件相对Y向对称,
所述第三Y向柔性导向件为两个且两个所述第三Y向柔性导向件相对Y向对称,所述第四Y向柔性导向件为两个且两个所述第四Y向柔性导向件相对Y向对称,
所述第一X向柔性导向件与所述第二X向柔性导向件相对Y向对称,所述第三X向柔性导向件与所述第四X向柔性导向件相对Y向对称,
所述第一Y向柔性导向件与所述第二Y向柔性导向件相对X向对称,所述第三Y向柔性导向件与所述第四Y向柔性导向件相对X向对称。
7.根据权利要求1所述的二维纳米伺服平台,其特征在于,进一步包括:
第一刚性件,所述第一刚性件设在所述终端平台的下方,所述第一刚性件与所述第一X向刚性连接件和所述第二X向刚性连接件中的每一个刚性连接;和
第二刚性件,所述第二刚性件设在所述终端平台的下方,所述第二刚性件与所述第一Y向刚性连接件和所述第二Y向刚性连接件中的每一个刚性连接。
8.根据权利要求7所述的二维纳米伺服平台,其特征在于,所述第一刚性件沿X向延伸,所述第二刚性件沿Y向延伸,其中所述第一刚性件与所述第二刚性件在上下方向上间隔开,或者所述第一刚性件和所述第二刚性件中的一个上设有过孔,所述第一刚性件和所述第二刚性件中的另一个穿过所述过孔。
9.根据权利要求4所述的二维纳米伺服平台,其特征在于,进一步包括:
用于测量所述第一X向刚性连接件和所述第二X向刚性连接件中的至少一个在X向上的位移的X向光栅;和
用于测量所述第一Y向刚性连接件和所述第二Y向刚性连接件中的至少一个在Y向上的位移的Y向光栅。
10.根据权利要求1-9中任一项所述的二维纳米伺服平台,其特征在于,所述二维纳米伺服平台通过3D打印一体成型,优选地,所述二维纳米伺服平台为塑料材质(如ABS),通过3D打印一体成型。
CN201510818771.6A 2015-11-23 2015-11-23 二维纳米伺服平台 Active CN105345759B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510818771.6A CN105345759B (zh) 2015-11-23 2015-11-23 二维纳米伺服平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510818771.6A CN105345759B (zh) 2015-11-23 2015-11-23 二维纳米伺服平台

Publications (2)

Publication Number Publication Date
CN105345759A true CN105345759A (zh) 2016-02-24
CN105345759B CN105345759B (zh) 2017-03-29

Family

ID=55321892

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510818771.6A Active CN105345759B (zh) 2015-11-23 2015-11-23 二维纳米伺服平台

Country Status (1)

Country Link
CN (1) CN105345759B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601307A (zh) * 2016-12-09 2017-04-26 清华大学 二维纳米柔性运动平台
CN107017031A (zh) * 2017-05-02 2017-08-04 清华大学 二维纳米柔性运动平台
CN109465650A (zh) * 2018-11-30 2019-03-15 广东工业大学 气缸式刚度切换装置及使用其的刚柔耦合运动平台和方法
CN112349344A (zh) * 2020-11-03 2021-02-09 清华大学 一种全解耦二维纳米柔性运动平台
CN112720461A (zh) * 2020-12-09 2021-04-30 大连理工大学 可实现高精度、大行程和高频响的二自由度运动解耦柔顺机构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003026838A1 (en) * 2001-09-24 2003-04-03 Agency For Science, Technology And Research Decoupled planar positioning system
US20100017921A1 (en) * 2007-01-29 2010-01-21 Technische Universitaet Ilmenau Device and method for the micromechanical positioning and handling of an object
CN104091619A (zh) * 2014-06-13 2014-10-08 清华大学 二维纳米柔性运动平台
CN104464839A (zh) * 2014-10-21 2015-03-25 清华大学 二维纳米柔性运动平台
CN104505128A (zh) * 2014-12-26 2015-04-08 天津大学 二自由度大行程大载荷微定位平台
CN104595642A (zh) * 2015-01-06 2015-05-06 山东大学 一种二自由度压电驱动纳米定位平台

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003026838A1 (en) * 2001-09-24 2003-04-03 Agency For Science, Technology And Research Decoupled planar positioning system
US20100017921A1 (en) * 2007-01-29 2010-01-21 Technische Universitaet Ilmenau Device and method for the micromechanical positioning and handling of an object
CN104091619A (zh) * 2014-06-13 2014-10-08 清华大学 二维纳米柔性运动平台
CN104464839A (zh) * 2014-10-21 2015-03-25 清华大学 二维纳米柔性运动平台
CN104505128A (zh) * 2014-12-26 2015-04-08 天津大学 二自由度大行程大载荷微定位平台
CN104595642A (zh) * 2015-01-06 2015-05-06 山东大学 一种二自由度压电驱动纳米定位平台

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601307A (zh) * 2016-12-09 2017-04-26 清华大学 二维纳米柔性运动平台
CN106601307B (zh) * 2016-12-09 2019-04-23 清华大学 二维纳米柔性运动平台
CN107017031A (zh) * 2017-05-02 2017-08-04 清华大学 二维纳米柔性运动平台
CN107017031B (zh) * 2017-05-02 2019-07-02 清华大学 二维纳米柔性运动平台
CN109465650A (zh) * 2018-11-30 2019-03-15 广东工业大学 气缸式刚度切换装置及使用其的刚柔耦合运动平台和方法
CN112349344A (zh) * 2020-11-03 2021-02-09 清华大学 一种全解耦二维纳米柔性运动平台
CN112349344B (zh) * 2020-11-03 2021-07-06 清华大学 一种全解耦二维纳米柔性运动平台
CN112720461A (zh) * 2020-12-09 2021-04-30 大连理工大学 可实现高精度、大行程和高频响的二自由度运动解耦柔顺机构

Also Published As

Publication number Publication date
CN105345759B (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
CN105500301A (zh) 二维纳米伺服平台及采用光栅的测量方法
CN105345759A (zh) 二维纳米伺服平台
CN105345760A (zh) 大行程二维纳米伺服平台及采用光栅的测量方法
CN103592824B (zh) 一种二自由度高精度大行程气浮工件台
CN103021473B (zh) 一种直驱式运动解耦的高精度伺服平台
CN104595642A (zh) 一种二自由度压电驱动纳米定位平台
CN103309176B (zh) 一种带升降真空爪的六自由度微动台
CN107393599B (zh) 集传感单元和约束元件于一体的二维快速偏转台及方法
CN102880013A (zh) 一种掩模台工作台
CN104464839A (zh) 二维纳米柔性运动平台
CN104364893A (zh) 一种平面定位***与使用该平面定位***的方法
CN206504070U (zh) 一种音圈电机驱动二维超精密定位平台
CN106601307A (zh) 二维纳米柔性运动平台
WO2024131434A1 (zh) 直线电机安装方法、结构及其用电设备
TWI572542B (zh) Workpiece cable assembly
CN202438847U (zh) 一种同轴宏微复合直线运动平台装置
CN104934075A (zh) 大行程三维纳米柔性运动平台
CN102109765B (zh) 一种旋转台
CN103543612A (zh) 一种带真空罩的动铁式无线缆六自由度磁浮运动平台
CN105448353A (zh) 紧凑型多层纳米伺服平台
CN105157661A (zh) 一种大行程亚微米级平面精度测量***
CN102722086B (zh) 一种无接触式单自由度定位装置及其同步运动控制方法
CN208505266U (zh) 一种超精密三坐标测试平台
CN108594603B (zh) 基于双层气浮的悬臂式直线运动基准装置
CN106907550A (zh) 一种音圈电机驱动二维超精密定位平台

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant