CN105322042A - 太阳能电池及其制造方法 - Google Patents

太阳能电池及其制造方法 Download PDF

Info

Publication number
CN105322042A
CN105322042A CN201510445897.3A CN201510445897A CN105322042A CN 105322042 A CN105322042 A CN 105322042A CN 201510445897 A CN201510445897 A CN 201510445897A CN 105322042 A CN105322042 A CN 105322042A
Authority
CN
China
Prior art keywords
back surface
surface field
region
semiconductor substrate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510445897.3A
Other languages
English (en)
Other versions
CN105322042B (zh
Inventor
沈承焕
郑一炯
郑寅道
尹银彗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shangrao Xinyuan Yuedong Technology Development Co ltd
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of CN105322042A publication Critical patent/CN105322042A/zh
Application granted granted Critical
Publication of CN105322042B publication Critical patent/CN105322042B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/077Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells the devices comprising monocrystalline or polycrystalline materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太阳能电池及其制造方法。公开一种太阳能电池及其制造方法。所述太阳能电池包括:半导体基板,该半导体基板掺杂第一导电类型的杂质;正面场区域,该正面场区域位于所述半导体基板的正面并且以高于所述半导体基板的浓度掺杂所述第一导电类型的杂质;隧穿层,该隧穿层位于所述半导体基板的背面上并且由电介质材料形成;发射极区域,该发射极区域位于所述隧穿层的背面的第一部分并且掺杂与所述第一导电类型相反的第二导电类型的杂质;以及背面场区域,该背面场区域位于所述隧穿层的所述背面的第二部分并且以高于所述半导体基板的浓度掺杂所述第一导电类型的杂质。

Description

太阳能电池及其制造方法
技术领域
本发明的实施方式涉及太阳能电池及其制造方法。
背景技术
近来,由于诸如石油和煤的现有能源预计将被耗尽,对用于代替现有能源的替代能源的兴趣正在增长。在替代能源当中,从太阳能生成电能的太阳能电池已经尤其引人关注。
太阳能电池通常包括:半导体部件,所述半导体部件分别具有不同的导电类型,例如p型和n型,并因此形成p-n连结;以及电极,所述电极分别与不同导电类型的半导体部件连接。
当光入射到太阳能电池上时,多个电子-空穴对在半导体部件中生成并且被分开成电子和空穴。电子向n型半导体部件移动,空穴向p型半导体部件移动。然后,电子和空穴通过分别与n型半导体部件和p型半导体部件连接的不同电极进行收集。电极利用电线彼此连接,从而获得电能。
发明内容
一方面,提供一种太阳能电池,该太阳能电池包括:半导体基板,该半导体基板掺杂有第一导电类型的杂质;正面场区域,该正面场区域被设置在所述半导体基板的正面并且以比所述半导体基板的浓度的浓度掺杂有所述第一导电类型的杂质;隧穿层,该隧穿层被设置在所述半导体基板的背面上并且由电介质材料形成;发射极区域,该发射极区域位于所述隧穿层的背面的第一部分并且掺杂有与所述第一导电类型相反的第二导电类型的杂质;背面场区域,该背面场区域被设置在所述隧穿层的所述背面的第二部分并且以比所述半导体基板的浓度高的浓度掺杂有所述第一导电类型的杂质;第一电极,该第一电极与所述发射极区域连接;以及第二电极,该第二电极与所述背面场区域连接,其中,所述正面场区域的电阻和所述背面场区域的电阻的比率为10:1至3:1。
所述背面场区域可以具有每单位面积45Ω至300Ω的电阻,所述正面场区域可以具有每单位面积450Ω至900Ω的电阻。
所述第一导电类型可以是n型,所述背面场区域的厚度可以小于所述发射极区域的厚度。
所述背面场区域的所述厚度与所述发射极区域的所述厚度之差可以是50nm至100nm。更具体地,所述发射极区域的所述厚度可以是200nm至300nm,所述背面场区域的所述厚度可以是100nm至250nm。
相反,如果所述第一导电类型为p型,则所述背面场区域的所述厚度可以大于所述发射极区域的所述厚度。
所述发射极区域和所述背面场区域可以彼此分开。由多晶硅材料形成的本征半导体层可以被设置在所述隧穿层的所述背面所述发射极区域与所述背面场区域之间的分开空间中。
所述本征半导体层可以具有所述背面场区域的厚度与所述发射极区域的厚度之间的厚度。
所述隧穿层的所述电介质材料可以包括碳化硅(SiC)和氧化硅(SiOx)。另外,所述隧穿层可以由氮化硅(SiNx)、氢化SiNx、氧化铝(AlOx)、氮氧化硅(SiON)或氢化SiON形成。所述隧穿层可以具有0.5nm至2.5nm的厚度。
另一方面,提供一种制造太阳能电池的方法,所述方法包括以下操作:将由电介质材料形成的隧穿层以及本征半导体层淀积在包含第一导电类型的杂质的半导体基板的背面上;将与所述第一导电类型相反的第二导电类型的杂质植入到所述本征半导体层的第一区域中;在所述本征半导体层的所述第一区域上形成扩散阻隔层;热扩散操作,其用于在未形成所述扩散阻隔层的所述本征半导体层的第二区域中对包含所述第一导电类型的杂质的掺杂源进行热扩散,并且同时对所述半导体基板的正面进行热扩散,以同时形成位于所述半导体基板的所述正面的正面场区域和位于所述本征半导体层的背面场区域和发射极区域;蚀刻操作,其用于对所述半导体基板的所述正面和所述背面同时进行蚀刻,以部分地蚀刻所述正面场区域的表面和所述背面场区域的表面,并且同时将形成在所述发射极区域上的所述扩散阻隔层去除;以及在所述发射极区域上形成第一电极并且在所述背面场区域上形成第二电极。
所述扩散阻隔层的形成可以包括以下操作:扩散阻隔层淀积操作,其用于将所述扩散阻隔层淀积在包括所述本征半导体层的所述第一区域在内的所述本征半导体层的整个背面上;以及背面场区域图案形成操作,其用于对形成在除了所述本征半导体层的所述第一区域之外的所述第二区域上的所述扩散阻隔层进行蚀刻,以形成所述背面场区域的图案。
所述扩散阻隔层进行蚀刻的所述本征半导体层的所述第一区域和所述本征半导体层的所述第二区域可以被彼此分开。
在所述扩散阻隔层淀积操作中,由碳化硅(SiC)形成的所述扩散阻隔层可以被淀积。
在所述背面场区域图案形成操作中,在所述本征半导体层的所述第二区域上形成的所述扩散阻隔层可以通过照射激光束进行蚀刻。
在所述热扩散操作中,植入到所述本征半导体层的所述第一区域中的所述第二导电类型的杂质可以进行热扩散并且可以被形成为由多晶硅材料形成的所述发射极区域。
由碳化硅(SiC)形成的所述扩散阻隔层通过所述热扩散操作被氧化成氧化硅(SiOx)。
在所述热扩散操作中在所述正面场区域和所述背面场区域中生成的硅酸磷玻璃(PSG)或硼硅酸玻璃(BSG)中的一种的副产品可以在所述蚀刻操作中被去除。
在所述蚀刻操作中,所述正面场区域的蚀刻速率可以大于所述背面场区域的蚀刻速率。
通过所述蚀刻操作所述正面场区域的电阻和所述背面场区域的电阻的比率可以是10:1至3:1。
通过所述蚀刻操作,所述背面场区域的厚度可以与所述发射极区域的厚度不同。
更具体地,如果所述第一导电类型是n型,则通过所述蚀刻操作所述背面场区域的厚度可以小于所述发射极区域的厚度。另选地,如果所述第一导电类型是p型,则通过所述蚀刻操作所述背面场区域的厚度可以大于所述发射极区域的厚度。
附图说明
附图被包括在内来提供对发明的进一步理解,附图被并入并构成本说明书的一部分,附图例示了发明的实施方式,并与说明书一起用于解释本发明的原理。在附图中:
图1至图4例示了根据本发明的第一实施方式的太阳能电池;
图5例示了根据本发明的第二实施方式的太阳能电池;以及
图6至图12例示了根据本发明的示例性实施方式的用于制造太阳能电池的方法。
具体实施方式
现在将详细描述本发明的实施方式,在附图中例示出了本发明的优选实施方式的示例。然而,本发明可以按照许多不同的形式来实施,不应视为局限于所述的实施方式。在可能的情况下,贯穿附图将使用相同的附图标记指代相同或类似的部件。注意,如果确定已知技术会误导本发明的实施方式,则省略这些技术的详细描述。
在附图中,为了清楚起见,层、薄膜、面板、区域等的厚度被放大。将要理解,当提到诸如层、薄膜、区域或板的一个元件位于另一个元件的“上面”时,其可以直接位于所述另一个元件上,也可以存在一个或多个中间元件。相反,当提到一个元件“直接”位于另一个元件“上面”时,不存在中间元件。此外,将要理解,当提到诸如层、薄膜、区域或基板的一个元件“整个”位于其它元件上时,其可以是位于该其它元件的整个表面上,而非位于该其它元件的边缘的一部分上。
在下面的说明中,“正面”可以是半导体基板的一个表面,光直接入射在该一个表面上,“背面”可以是与半导体基板的该一个表面相反的表面,光不直接入射或者反射光不入射在该表面上。
图1至图4例示了根据本发明的第一实施方式的太阳能电池。
更具体地,图1是根据本发明的第一实施方式的太阳能电池的局部立体图。在图2中,(a)是沿图1的线II-II截取的截面视图,(b)是图2的(a)中的部分K的放大视图。图3和图4示出了图1和图2中所示的隧穿层。
如图1和图2的(a)中所示,根据本发明的第一实施方式的太阳能电池可以包括半导体基板110、正面场区域171、隧穿层120、发射极区域121、背面场区域172、本征半导体层150、第一电极141和第二电极142。
可以在正面场区域171上进一步形成抗反射层。
作为示例,图1和图2的(a)示出太阳能电池包括隧穿层120和本征半导体层150。因此,如果期望或必要的话,其可以被省略。然而,当如图1和图2的(a)中所示太阳能电池包括隧穿层120和本征半导体层150时,可以进一步提高太阳能电池的效率。因此,作为示例,本发明的实施方式利用包括隧穿层120和本征半导体层150的太阳能电池进行描述。
本发明的实施方式可以简化制造太阳能电池的方法,同时令人满意地保持具有上述结构的太阳能电池的发电效率。即,具有图1和图2的(a)中所示的结构的太阳能电池可以通过参照图6至图12进行描述的用于制造太阳能电池的方法进行制造。图6至图12中描述的用于制造太阳能电池的方法可以通过使用相同的掺杂源同时形成太阳能电池的正面场区域171和背面场区域172来简单地执行。根据本发明的实施方式的用于制造太阳能电池的方法将在详细描述根据本发明的实施方式的太阳能电池的结构之后进行描述。
半导体基板110可以由掺杂有(尽管不需要)例如n型杂质的第一导电类型的杂质的单晶硅材料形成。当半导体基板110是n型时,半导体基板110可以用诸如磷(P)、砷(As)和锑(Sb)的V族元素的杂质掺杂。
另选地,半导体基板110可以是p型和/或可以由除了硅以外的半导体材料形成。如果半导体基板110是p型,则半导体基板110可以用诸如硼(B)、镓(Ga)和铟(In)的III族元素的杂质掺杂。
半导体基板110的入射表面可以被纹理化,以形成与具有多个凹凸部件或者具有凹凸特性的凹凸表面相对应的纹理化的表面。为了简洁且易于阅读,图1示出了仅半导体基板110的边缘具有纹理化的表面。然而,半导体基板110的整个正面大致都具有纹理化的表面,并且因此位于半导体基板110的正面上的正面场区域171可以具有纹理化的表面。
如图1中所示,正面场区域171位于半导体基板110的正面,并且可以由包含以比半导体基板110的浓度高的浓度的第一导电类型的杂质的单晶硅材料形成。
通过半导体基板110和正面场区域171的杂质浓度之差形成势垒。因此,正面场区域171可以具有防止载流子(例如,空穴)通过势垒移动到半导体基板110的正面的场效应。
此外,正面场区域171可以增加输出到外部设备的载流子的输出量,并且可以减少通过在半导体基板110的正面处和周围载流子的复合和/或消失而丢失的载流子的量。
正面场区域171可以包括氢(H)。在这种情况下,包括氢(H)的正面场区域171可以执行钝化功能,该钝化功能将例如存在于半导体基板110的正面处和周围的悬空键这样的缺陷转换成稳定键并且防止或减少由于半导体基板110的正面处和周围的缺陷导致的载流子的丢失。
正面场区域171可以利用与背面场区域172相同的掺杂气体在相同的室中与背面场区域172的形成同时形成。这将稍后更详细地描述。
隧穿层120被设置在半导体基板110的背面上并且可以包括电介质材料。更具体地,隧穿层120可以形成在半导体基板110的整个背面上。隧穿层120可以使得在半导体基板110中产生的载流子通过,并且可以在半导体基板110的背面处执行钝化功能。
隧穿层120可以由电介质材料形成,例如,碳化硅(SiC)和氧化硅(SiOx)。另外,隧穿层120可以由氮化硅(SiNx)、氢化SiNx、氧化铝(AlOx)、氮氧化硅(SiON)或氢化SiON形成。
当隧穿层120由SiOx形成时,隧穿层120的厚度T120可以是0.8nm至1.2nm,这是因为在半导体基板110和隧穿层120之间有较大的带偏置电压差。此外,当隧穿层120由SiC形成时,隧穿层120的厚度T120可以是0.5nm至2.5nm,这是因为半导体基板110和隧穿层120之间的带偏置电压差相对减小。这将参照图3和图4详细地进行描述。
发射极区域121以多个被定位于隧穿层120的背面的一部分处,并且在预定的方向上延伸。多个发射极区域121可以由与第一导电类型相反的第二导电类型的多晶硅材料形成,并且可以连同半导体基板110形成p-n结,隧穿层120***在半导体基板110与发射极区域121之间。
因此,载流子,例如通过入射在半导体基板110上的光产生的电子-空穴对被半导体基板110和多个发射极区域121之间的p-n结被分离成电子和空穴。分离出的电子向n型半导体移动,分离出的空穴向p型半导体移动。当半导体基板110是n型并且发射极区域121是p型时,分离出的空穴可以向多个发射极区域121移动,分离出的电子可以向具有比半导体基板110的浓度高的浓度的杂质的多个背面场区域172移动。
因为每个发射极区域121连同半导体基板110形成p-n结,所以如果半导体基板110是与上述实施方式不同的p型,则发射极区域121可以是n型。在这种情况下,分离出的电子可以向多个发射极区域121移动,分离出的空穴可以向多个背面场区域172移动。
返回本发明的实施方式,当发射极区域121是p型时,发射极区域121可以用诸如B、Ga和In的III族元素的杂质掺杂。相反,如果发射极区域121是n型,则发射极区域121可以用诸如P、As和Sb的V族元素的杂质掺杂。
发射极区域121可以通过在半导体基板110的背面处形成多晶材料的本征半导体层150然后将第二导电类型的杂质植入到该多晶材料的本征半导体层150中来形成。
多个背面场区域172可以被设置在隧穿层120的背面的不形成多个发射极区域121的一部分处,并且可以在与发射极区域121相同的方向上延伸。背面场区域172可以由以比半导体基板110的浓度高的浓度掺杂有第一导电类型的杂质的多晶硅材料形成。
因此,当半导体基板110掺杂有例如n型杂质时,多个背面场区域172可以是n+型区域。
背面场区域172可以利用与正面场区域171相同的掺杂气体在相同的室中与正面场区域171到形成同时形成。这将在参照图6至图12描述用于制造太阳能电池的方法时详细进行描述。
由半导体基板110和背面场区域172的杂质浓度之差形成势垒。因此,背面场区域172防止或减少空穴穿过势垒移动到用作电子的移动路径的背面场区域172,并且使得电子较容易移动到背面场区域172。因此,背面场区域172减少了在背面场区域172或第一电极141和第二电极142处及其周围由于电子和空穴的复合和/或消失而丢失的载流子的量,并且加速电子的移动,从而增加电子向背面场区域172的移动。
背面场区域172可以邻接发射极区域121。相反,如图1和图2的(a)中所示,背面场区域172可以与发射极区域121分开。
当背面场区域172如上所述与发射极区域121分开时,本征半导体层150可以被设置在发射极区域121和背面场区域172之间。在本发明的实施方式中,本征半导体层150可以接触隧穿层120、发射极区域121和背面场区域172。并且,在本征半导体层150和第二电极142之间可以存在凹槽。
本征半导体层150可以在隧穿层120的背面处的发射极区域121和背面场区域172之间的分开空间中由多晶硅材料形成。本征半导体层150可以是本征层,与发射极区域121和背面场区域172不同,该本征层不用p型或n型杂质掺杂。
第一电极141可以是多个。该多个第一电极141可以分别被设置在多个发射极区域121上,可以沿发射极区域121延伸,并且可以与发射极区域121以电和物理的方式连接。因此,每个第一电极141可以收集移动到相应发射极区域121的载流子(例如,空穴)。
第二电极142可以是多个。该多个第二电极142可以分别被设置在多个背面场区域172上,可以沿背面场区域172延伸,并且可以与背面场区域172以电和物理的方式连接。因此,每个第二电极142可以收集移动到相应背面场区域172的载流子(例如,电子)。
多个第一电极141和多个第二电极142可以由导电金属材料形成。例如,多个第一电极141和多个第二电极142可以由选自由镍(Ni)、铜(Cu)、银(Ag)、铝(Al)、锡(Sn)、锌(Zn)、铟(In)、钛(Ti)、金(Au)及其组合组成的组的至少一种导电材料形成。另选地,多个第一电极141和多个第二电极142可以由透明导电金属例如透明导电氧化物(TCO)形成。
下面描述具有上述结构的太阳能电池的操作。
当向太阳能电池照射的光入射在半导体基板110上时,通过基于入射光产生的光能在半导体基板110中生成多个电子-空穴对。电子-空穴对通过半导体基板110和发射极区域121的p-n结被分离成电子和空穴。电子向n型背面场区域172移动,空穴向p型发射极区域121移动。移动到发射极区域121的空穴被传递到第一电极141,然后被第一电极141收集。移动到背面场区域172的电子被传递到第二电极142,然后被第二电极142收集。当第一电极141和第二电极142利用导电电线彼此连接时,电流在其中流通,从而能够使用该电流用于电能。
在根据本发明的实施方式的太阳能电池中,正面场区域171的电阻和背面场区域172的电阻的比率可以是10:1至3:1。
例如,背面场区域171可以具有每单位面积450Ω至900Ω的电阻,背面场区域172可以具有上述范围之内的每单位面积45Ω至300Ω的电阻。
当正面场区域172的电阻和背面场区域172的电阻的比率是10:1至3:1时,恰当执行场功能的正面场区域172和背面场区域172可以分别形成在半导体基板110的正面和背面。此外,当正面场区域171的电阻由于在正面场区域171上掺杂过多量的杂质而过度降低时,在正面场区域171中吸收的光的量可以增加。然而,在本发明的实施方式中,由于正面场区域171的电阻大于背面场区域172的电阻但是限于上述范围之内,在正面场区域171中吸收的光的量可以实现最小化。
换句话说,正面场区域171或背面场区域172的电阻可以依赖于第一导电类型的杂质的掺杂量而确定。例如,当正面场区域171的电阻小于每单位面积450Ω时,由于杂质的过度掺杂量,表面复合特性会过度增加,并且所吸收光的量会降低。当正面场区域171的电阻大于每单位面积900Ω时,由于杂质的小的掺杂量,正面场区域171的场效应会非常弱,并且正面场区域171的表面钝化功能会降低。因此,太阳能电池的可靠性会降低。
通过将正面场区域171或背面场区域172掺杂第一导电类型的杂质然后部分地蚀刻正面场区域171或背面场区域172的表面,可以调整正面场区域171或背面场区域172的电阻。
如图2的(a)中所示,在根据本发明的实施方式的太阳能电池中,发射极区域121的厚度T121可以与背面场区域172的厚度T172不同。
在发射极区域121和背面场区域172之间产生厚度差的原因如下。在根据本发明的实施方式的用于制造太阳能电池的方法中,第二导电类型的杂质被植入到发射极区域121中,第一导电类型的杂质被植入到背面场区域172中。然后,背面场区域172和发射极区域121被进行蚀刻,以去除形成在背面场区域172的表面处的副产品,例如硅酸磷玻璃(PSG)或硼硅酸玻璃(BSG),并且去除形成在发射极区域121的表面处的氧化层。在这种情况下,收集电子的n型组件被比收集空穴的p型组件相对更多地进行蚀刻。
因此,如图2的(a)中所示,当在背面场区域172上掺杂的第一导电类型的杂质是n型杂质时,背面场区域172可以比发射极区域121多地蚀刻。因此,背面场区域172的厚度T172可以小于发射极区域121的厚度T121。
例如,发射极区域121和背面场区域172之间的厚度差TD可以是50nm至100nm。因此,发射极区域121的厚度T121可以是200nm至300nm,背面场区域172的厚度T172可以是在比发射极区域121的厚度T121小的范围之内的100nm至250nm。
相反,当在背面场区域172上掺杂的第一导电类型的杂质是p型杂质时,发射极区域121可以比背面场区域172多地蚀刻。因此,发射极区域121的厚度T121与图2的(b)不同,可以小于背面场区域172的厚度T172。这将参照图5稍后详细进行描述。
此外,如图2的(b)中所示,本征半导体层150可以具有在背面场区域172的厚度T172和发射极区域121的厚度T121之间的厚度T150。
隧穿层120可以由即使在等于或高于600℃的高温下也具有强耐久性的电介质材料(例如,SiC或SiOx)形成。另选地,如果隧穿层120由包括非晶硅在内的材料形成,则由于在等于或高于600℃的高温下非晶硅较弱,无法从隧穿层120中获得期望的隧穿效应。
如上所述,当隧穿层120由诸如SiC和SiOx的电介质材料形成时,隧穿层120可以具有0.5nm至2.5nm的厚度T120。
例如,当隧穿层120由SiOx形成时,隧穿层120的厚度T120可以是0.8nm至1.2nm。此外,当隧穿层120由SiC形成时,隧穿层120的厚度T120可以是0.5nm至2.5nm。
这将在下面参照图3和图4详细地进行描述。
在图3中,(a)例示了当图1和图2中所示的隧穿层120由SiOx形成时半导体基板110和隧穿层120之间的带偏置电压差,(b)示出了依赖于图3的(a)中所示的隧穿层120的厚度T120的短路电流Jsc和开路电压Voc的变化。
在图4中,(a)例示了当图1和图2中所示的隧穿层120由SiC形成时半导体基板110和隧穿层120之间的带偏置电压;(b)例示了当隧穿层120由SiC形成时电子向半导体基板110、隧穿层120和背面场区域172的移动;以及(c)例示了当隧穿层120由SiC形成时空穴向半导体基板110、隧穿层120和发射极区域121的移动。
如图3的(a)中所示,当隧穿层120由SiOx形成时,半导体基板110和隧穿层120之间的带偏置电压可以由于SiOx的特性而相对增加。
更具体地,在半导体基板110和隧穿层120之间形成的价带(valenceband)的带偏置电压CBO可以大约为3.2eV,在半导体基板110和隧穿层120之间形成的导电带的带偏置电压VBO可以大约为4.7eV。
在这种情况下,如图3的(a)中所示,在半导体基板110中产生的电子无法跳过在半导体基板110和隧穿层120之间形成的价带的带偏置电压CBO,并且能够通过穿过隧穿层120移动到背面场区域172。
因此,如图3的(b)中所示,当隧穿层120由SiOx形成时,如果隧穿层120的厚度T120不满足0.8nm至1.2nm的范围,则穿过隧穿层120的载流子的量会如箭头所指示的那样迅速地降低。此外,短路电流Jsc会迅速降低。
结果,依赖于短路电流Jsc和开路电压Voc而确定的填充因数FF会大大降低,并且太阳能电池的效率会降低。
另一方面,如图4的(a)中所示,当隧穿层120由SiC形成时,半导体基板110和隧穿层120之间的带偏置电压会由于SiC的特性而相对降低。
更具体地,在半导体基板110和隧穿层120之间形成的导电带的带偏置电压VBO可以大约为0.5eV,在半导体基板110和隧穿层120之间形成的价带的带偏置电压CBO可以大约为0.9eV。
因此,如图4的(b)中所示,与示出隧穿层120由SiOx形成的图3的(a)不同,当隧穿层120由SiC形成时,从半导体基板110向背面场区域172移动的电子能够跳过在半导体基板110和隧穿层120之间形成的导电带的带偏置电压VBO并且能够移动到背面场区域172,即使隧穿层120的厚度T120是超出0.8nm至1.2nm范围的0.5nm至2.5nm。此外,如图4的(c)中所示,从半导体基板110向发射极区域121移动的空穴能够跳过在半导体基板110和隧穿层120之间形成的价带的带偏置电压CBO,并且能够移动到发射极区域121。
换句话说,当隧穿层120由SiC形成时,即使隧穿层120的厚度T120是超出0.8nm至1.2nm范围的0.5nm至2.5nm,也可以令人满意地维持短路电流Jsc和填充因数FF。
结果,由于隧穿层120的厚度T120的余量可以进一步增加,可以在更加容易地执行制造太阳能电池的处理的同时进一步提高太阳能电池的过程产出。
至此,本发明的实施方式描述了半导体基板110、正面场区域171和背面场区域172掺杂有第一导电类型杂质,例如n型杂质。然而,在下面的描述中,利用p型作为第一导电类型的示例来描述本发明的实施方式。
图5例示了根据本发明的第二实施方式的太阳能电池。
在本发明的第二实施方式中将省略与本发明的第一实施方式中所例示的结构和组件相同或相当的结构和组件的描述,并且主要描述其之间的差异。
如图5中所示,根据本发明的第二实施方式的太阳能电池可以包括半导体基板110、正面场区域171、隧穿层120、发射极区域121、背面场区域172、本征半导体层150、第一电极141和第二电极142。
本发明的第二实施方式中的半导体基板110、正面场区域171、发射极区域121和背面场区域172的导电类型可以与本发明的第一实施方式中的半导体基板110、正面场区域171、发射极区域121和背面场区域172的导电类型相反。此外,发射极区域121的厚度T121在本发明的第一实施方式中大于背面场区域172的厚度T172,但是发射极区域121的厚度T121在本发明的第二实施方式中可以小于背面场区域172的厚度T172。
由于已经参照图1至图4在本发明的第一实施方式中进行了其它描述,因此可以简短地进行进一步描述或者可以完全省略掉进一步描述。
在根据本发明的第二实施方式的太阳能电池中,在半导体基板110、正面场区域171和背面场区域172上掺杂的杂质的第一导电类型可以是p型,在发射极区域121上掺杂的杂质的第二导电类型可以是n型。
在这种情况下,在根据本发明的实施方式的用于制造太阳能电池的方法中,主要生成电子的发射极区域121比主要生成空穴的背面场区域172相对多地蚀刻。因此,如图5中所示,发射极区域121的厚度T121可以小于背面场区域172的厚度T172。
如上所述,主要生成电子的发射极区域121比主要生成空穴的背面场区域172相对多地进行蚀刻的原因是包括氢氧化钾(KOH)和过氧化氢(H2O2)在内的蚀刻剂相对于电子具有相对较高的反应性,但是相对于空穴具有相对较低的反应性或相对于空穴几乎不具有任何反应性。
即使在这种情况下,正面场区域171的电阻和背面场区域172的电阻的比率也可以是10:1至3:1。例如,背面场区域171可以具有每单位面积450Ω至900Ω的电阻,背面场区域172可以具有上述范围之内的每单位面积45Ω至300Ω的电阻。
发射极区域121和背面场区域172之间的厚度差TD可以是50nm至100nm。与本发明的第一实施方式不同,在本发明的第二实施方式中,背面场区域172的厚度T172可以是200nm至300nm,发射极区域121的厚度T121可以是100nm至250nm。
如图5中所示,本征半导体层150可以具有发射极区域121的厚度T121和背面场区域172的厚度T172之间的厚度T150。
隧穿层120可由电介质材料形成,例如SiC或SiOx。隧穿层120可以具有0.5nm至2.5nm的厚度T120。
至此,本发明的实施方式描述了能够通过根据本发明的实施方式的用于制造太阳能电池的方法来实现的太阳能电池的结构和效果。在此之后,将详细描述根据本发明的实施方式的用于制造太阳能电池的方法。
图6至图12例示了根据本发明的实施方式的用于制造太阳能电池的方法。更具体地,图6是示出用于制造图1和图2中所示的太阳能电池的方法的示例的流程图。图7详细例示了图6中所示的操作S1和操作S2。图8详细例示了图6中所示的操作S3。图9详细例示了图6中所示的操作S4。图10详细例示了图6中所示的操作S5。图11详细例示了图6中所示的操作S6。图12详细例示了图6中所示的操作S7。
如图6中所示,根据本发明的实施方式的用于制造太阳能电池的方法可以包括以下操作:隧穿层120和本征半导体层150的淀积操作S1、杂质植入操作S2、扩散阻隔层的形成操作S3和S5、正面纹理化操作S4、热扩散操作S6、蚀刻操作S7以及电极形成操作S8。
在根据本发明的实施方式的用于制造太阳能电池的方法中可以省略正面纹理化操作S4。然而,当执行正面纹理化操作S4时,入射在半导体基板110上的光的反射可以最小化。因此,作为示例,本发明的实施方式描述了包括正面纹理化操作S4在内的用于制造太阳能电池的方法。
参照图6和图7,在隧穿层120和本征半导体层150的淀积操作S1中,由电介质材料形成的隧穿层120可以被淀积在由包含第一导电类型的杂质的单晶硅材料形成的半导体基板110的整个背面上。
更具体地,淀积在半导体基板110的整个背面上的隧穿层120可以由例如如上所述的SiC或SiOx的电介质材料形成。隧穿层120可以以0.5nm至2.5nm的厚度淀积。
隧穿层120的特性在高温下几乎不发生变化。隧穿层120可以防止被热扩散到本征半导体层150中的第一导电类型或第二导电类型的杂质在随后的热扩散操作S6中被扩散到半导体基板110中。
在淀积了隧穿层120之后,由多晶硅材料形成的本征半导体层150可以被淀积在隧穿层120的背面上。
本征半导体层150可以以大约200nm至300nm的厚度淀积。低压化学汽相淀积(LPCVD)方法可以被用于淀积本征半导体层150。用于淀积本征半导体层150的温度可以大约为600℃至650℃。
接下来,在杂质植入操作S2中,如图7中所示,与第一导电类型相反的第二导电类型的杂质可以被植入到本征半导体层150的第一区域S1中,以在本征半导体层150的一部分出形成包含第二导电类型的杂质的发射极区域121。
例如,如果第一导电类型是n型并且第二导电类型是p型,则在杂质植入操作S2中被植入到本征半导体层150的第一区域S1中的第二导电类型的杂质可以是硼(B)。
当第二导电类型的杂质被植入时,第二导电类型的杂质可以被分离成多个部分并且可以在预定的方向上延伸。因此,被植入有第二导电类型的杂质的本征半导体层150的第一区域S1可以与图1和图2中所示的发射极区域121的图案相同。
植入有第二导电类型的杂质的本征半导体层150的一部分DP可以在随后的处理中形成为发射极区域121。
在杂质植入操作S2完成之后,扩散阻隔层的形成操作S3和S5可以如图6中所示地执行。
扩散阻隔层形成操作S3和S5可以包括在本征半导体层150的第一区域S1上形成扩散阻隔层BAD,在该扩散阻隔层BAD中植入了第二导电类型的杂质。
为此,如图6中所示,扩散阻隔层形成操作S3和S5可以包括扩散阻隔层淀积操作S3和背面场区域图案形成操作S5。正面纹理化操作S4可以附加地在扩散阻隔层淀积操作S3与背面场区域图案形成操作S5之间执行。
如图8中所示,在扩散阻隔层淀积操作S3中,扩散阻隔层BAD包括本征半导体层150的第一区域S1并且可以被淀积在本征半导体层150的整个背面上。
也就是,在扩散阻隔层淀积操作S3中,扩散阻隔层BAD可以被淀积在本征半导体层150的整个背面上,使得扩散阻隔层BAD不但覆盖植入有第二导电类型的杂质的本征半导体层150的第一区域S1而且覆盖未植入第二导电类型的杂质的本征半导体层150的部分。
扩散阻隔层BAD可以由碳化硅(SiC)形成。碳化硅(SiC)的特征在于其可以通过激光束非常容易地进行蚀刻,具有强耐高温性能,不对在正面纹理化操作S4中用来蚀刻硅材料的包括氢氧化钾(KOH)在内的蚀刻剂起反应。
因此,在如图8中所示将扩散阻隔层BAD淀积在本征半导体层150的整个背面上之后,可以如图9中所示在半导体基板110的正面上执行用于形成多个凹凸部分的正面纹理化操作S4。
正面纹理化操作S4可以通过将半导体基板110浸入在蚀刻剂中来执行。在这种情况下,其上形成有扩散阻隔层BAD的半导体基板110的背面不被蚀刻,并且仅半导体基板110的正面可以被蚀刻。
由于半导体基板110由单晶硅材料形成,可以在半导体基板110的正面上形成具有例如棱锥形状的凹凸部分。
在正面纹理化操作S4完成之后,可以如图6中所示地执行背面场区域图案形成操作S5。
如图10中所示,背面场区域图案形成操作S5可以对形成在来自本征半导体层150的排除第一区域S1的第二区域S2上的扩散阻隔层BAD进行蚀刻,并且可以形成用于在扩散阻隔层BAD上形成背面场区域172的图案。
如图10中所示,植入有第二导电类型的杂质的本征半导体层150的第一区域S1以及对扩散阻隔层BAD进行蚀刻的本征半导体层150的第二区域S2可以以距离D分开。
也就是,如图10中所示,淀积在本征半导体层150的第二区域S2上的扩散阻隔层BAD可以被蚀刻,使得扩散阻隔层BAD可以形成得比植入有第二导电类型的杂质的本征半导体层150的第一区域S1宽。因此,当从半导体基板110的背面观察时,本征半导体层150的第一区域S1和第二区域S2不彼此交叠并且可以彼此分开。
如上所述,背面场区域图案形成操作S5可以通过将激光束照射在淀积在本征半导体层150的第二区域S2上的扩散阻隔层BAD上来执行。也就是,如图10中所示,淀积在本征半导体层150的第二区域S2上的扩散阻隔层BAD可以通过将激光束照射在由碳化硅(SiC)形成的扩散阻隔层BAD上进行蚀刻和去除。
然后,可以如图6中所示地执行热扩散操作S6。
热扩散操作S6通过将相同的掺杂源热扩散到半导体基板110的正面和背面中可以同时形成正面场区域171、背面场区域172和发射极区域121。
换句话说,在热扩散操作S6中,包含第一导电类型的杂质的掺杂源可以同时在半导体基板110的正面和淀积在半导体基板110的背面上的本征半导体层150的第二区域S2中扩散,其中扩散阻隔层BAD被蚀刻和去除(即,不形成扩散阻隔层BAD)。因此,如图11中所示,由单晶硅材料形成的正面场区域171可以形成在半导体基板110的正面,并且同时由多晶硅材料形成的背面场区域172和发射极区域121可以形成在淀积在半导体基板110的背面上的本征半导体层150处。
更具体地,如图10中所示,热扩散处理S6可以将其上形成有扩散阻隔层BAD的半导体基板110设置在腔室中,并且可以对该室腔施加热量同时将包含磷(P)的POCl2气体(作为掺杂源)作为第一导电类型的杂质的示例注入到该腔室中,从而在半导体基板110的正面中热扩散作为第一导电类型的杂质的磷(P),同时在淀积在半导体基板110的背面上的本征半导体层150的第二区域S2热扩散对磷(P)。
因此,正面场区域171可以形成在半导体基板110的正面,背面场区域172可以形成在本征半导体层150的第二区域S2的内部。
此外,在热扩散操作S6中,作为先前已植入到本征半导体层150的第一区域S1中的第二导电类型的杂质的示例,硼(B)可以在本征半导体层150的内部热扩散和激活。因此,由多晶硅材料形成的发射极区域121可以在本征半导体层150的第一区域S1中形成。
本征半导体层150的第一区域S1和第二区域S2之间的空间不掺杂第一导电类型和第二导电类型的杂质。
在热扩散操作S6中,由碳化硅(SiC)形成的扩散阻隔层BAD可以由包括在作为掺杂源的POCl2气体内的氧气(O)而被氧化成氧化硅(SiOx)。以供参考,去除碳化硅(SiC)是不容易的,但是氧化硅(SiOx)可以利用在后面的蚀刻操作中使用的蚀刻剂容易地去除。
在热扩散操作S6中,副产品171’和172’,例如硅酸磷玻璃(PSG),会形成在正面场区域171和表面和背面场区域172的表面处。在本发明的实施方式中,由于第一导电类型是n型并且第二导电类型是p型,硅酸磷玻璃(PSG)作为副产品171’和172’的示例形成。相反,第一导电类型是p型并且第二导电类型是n型,硼硅酸玻璃(BSG)可以作为副产品171’和172’的示例形成。
在热扩散操作S6之后,扩散阻隔层BAD被氧化成氧化硅(SiOx),副产品171’和172’可以在蚀刻操作S7中被去除。
更具体地,经过直至热扩散操作S6的半导体基板110可以完全被浸入在包括氢氧化钾(KOH)过氧化氢(H2O2)在内的蚀刻剂中。因此,半导体基板110的正面和背面可以被同时蚀刻。
在蚀刻操作S7中,正面场区域171的表面和背面场区域172的表面可以被部分地蚀刻,并且同时可以去除形成在发射极区域121上的氧化硅(SiOx)的扩散阻隔层BAD。
因此,可以在蚀刻操作S7中去除在热扩散操作S6中形成在正面场区域171和背面场区域172处的副产品171’和172’,即PSG或BSG。
在蚀刻操作S7中,由单晶硅材料形成的正面场区域171的蚀刻速率、由多晶硅材料形成的发射极区域121和由多晶硅材料形成的背面场区域172的蚀刻速率、以及不掺杂杂质的本征半导体层150的蚀刻速率可以彼此不同。
更具体地,在蚀刻操作S7中,正面场区域171的蚀刻速率可以大于背面场区域172的蚀刻速率。
这可以是由于包括在正面场区域171和背面场区域172中的硅材料的特性的原因。也就是,由于蚀刻操作S7中使用的包括氢氧化钾(KOH)和过氧化氢(H2O2)在内的蚀刻剂可以对具有单晶结构的单晶硅材料进行比多晶硅材料多的蚀刻,所以由单晶硅材料形成的正面场区域171的蚀刻速率可以大于由多晶硅材料形成的背面场区域172的蚀刻速率。
换句话说,对于相同的蚀刻时间,正面场区域171可以被比背面场区域172多的蚀刻,因此正面场区域171的蚀刻厚度可以大于背面场区域172的蚀刻厚度。
因此,正面场区域171的第一导电类型杂质的量可以小于背面场区域172的第一导电类型杂质的量,并且正面场区域171的电阻可以大于背面场区域172的电阻。
作为蚀刻操作S7的结果,正面场区域171的电阻和背面场区域172的电阻的比率可以获得为10:1至3:1。由于上面描述了通过电阻比率获得的效果,将省略掉其进一步描述。
此外,如图12中所示,作为蚀刻操作S7的结果,发射极区域121的厚度T121可以与背面场区域172的厚度T172不同。
这是由于在蚀刻操作S7中使用的包括氢氧化钾(KOH)和过氧化氢(H2O2)在内的蚀刻剂相对于电子具有相对较高的反应性,但是相对于空穴具有相对较低的反应性或相对于空穴几乎不具有反应性。
更具体地,当第一导电类型为n型时,发射极区域121是p型并且背面场区域172是n型。在这种情况下,空穴主要存在于发射极区域121中,并且电子主要存在于背面场区域172中。由于蚀刻剂相对于电子具有相对较高的反应性,蚀刻剂可以对背面场区域172进行比发射极区域121多的蚀刻。
作为蚀刻操作S7的结果,背面场区域172的厚度T172可以小于发射极区域121的厚度T121。由于上面参照图1至图5描述了在蚀刻操作S7之后形成的发射极区域121的厚度T121或背面场区域172的厚度T172,因此将省略掉其进一步说明。
与本发明的实施方式不同,如果第一导电类型是p型,则发射极区域121可以是n型并且背面场区域172可以是p型。因此,作为蚀刻操作S7的结果,发射极区域121的厚度T121可以小于背面场区域172的厚度T172。
由于本征半导体层150不掺杂任何导电类型的杂质,当第一导电类型是n型时,本征半导体层150可以比发射极区域121多地蚀刻并且可以比背面场区域172少地蚀刻。因此,如图12中所示,作为蚀刻操作S7的结果,本征半导体层150的厚度T150可以小于发射极区域121的厚度T121并且可以大于背面场区域172的厚度T172。
相反,如果第一导电类型是p型,则本征半导体层150可以比背面场区域172多地蚀刻并且可以比发射极区域121更少地蚀刻。因此,与图12不同,本征半导体层150的厚度T150可以大于发射极区域121的厚度T121并且可以小于背面场区域172的厚度T172。
因此,不论第一导电类型是n型还是p型,本征半导体层150的厚度T150可以具有发射极区域121和厚度T121和背面场区域172的厚度T172之间的值。
接下来,如图6中所示,执行电极形成操作S8,以在发射极区域121上形成第一电极并且在背面场区域172上形成第二电极142。作为结果,图1和图2中所示的太阳能电池可以实现。
通过在热扩散操作S6中使用相同的掺杂源形成正面场区域171和背面场区域172并且同时在热扩散操作S6中形成发射极区域121,可以简化根据本发明的实施方式的用于制造太阳能电池的方法。
通过在热扩散操作S6之后同时对半导体基板110的正面和背面进行蚀刻并且同时去除形成在正面场区域171的表面和背面场区域172的表面处的副产品同时去除形成在发射极区域121上的扩散阻隔层BAD可以进一步简化根据本发明的实施方式的用于制造太阳能电池的方法。
尽管已经参照实施方式的多个例示性实施方式描述了这些实施方式,但是应当理解,本领域技术人员可设计出落入本公开的原理的范围内的许多其它修改和实施方式。更具体地说,可以在本公开、附图及所附权利要求的范围内对本主题组合装置的组成部件和/装置进行各种变换和修改。除对组成部件和/或装置的变换和修改外,替代性使用对本领域的技术人员也是明显的。
相关申请的交叉引用
本申请要求2014年7月28日向韩国知识产权局提交的韩国专利申请No.10-2014-0095993的优先权和权益,该韩国专利申请的全部内容通过引用被包含在本文中。

Claims (20)

1.一种太阳能电池,该太阳能电池包括:
半导体基板,该半导体基板掺杂有第一导电类型的杂质;
正面场区域,该正面场区域被设置在所述半导体基板的正面并且以比所述半导体基板的浓度高的浓度掺杂有所述第一导电类型的杂质;
隧穿层,该隧穿层被设置在所述半导体基板的背面上并且由电介质材料形成;
发射极区域,该发射极区域被设置在所述隧穿层的背面的第一部分处并且掺杂有与所述第一导电类型相反的第二导电类型的杂质;
背面场区域,该背面场区域被设置在所述隧穿层的所述背面的第二部分处并且以比所述半导体基板的浓度高的浓度掺杂有所述第一导电类型的杂质;
第一电极,该第一电极与所述发射极区域连接;以及
第二电极,该第二电极与所述背面场区域连接,
其中,所述正面场区域的电阻和所述背面场区域的电阻的比率为10:1至3:1。
2.根据权利要求1所述的太阳能电池,其中,所述背面场区域具有每单位面积45Ω至300Ω的电阻,并且所述正面场区域具有每单位面积450Ω至900Ω的电阻。
3.根据权利要求1所述的太阳能电池,其中,所述第一导电类型是n型,并且所述背面场区域的厚度小于所述发射极区域的厚度。
4.根据权利要求3所述的太阳能电池,其中,所述背面场区域的所述厚度和所述发射极区域的所述厚度之间的差是50nm至100nm。
5.根据权利要求3所述的太阳能电池,其中,所述发射极区域的所述厚度是200nm至300nm,并且所述背面场区域的所述厚度是100nm至250nm。
6.根据权利要求1所述的太阳能电池,该太阳能电池还包括本征半导体层,
其中,所述发射极区域和所述背面场区域彼此分开,并且
其中,由多晶硅材料形成的所述本征半导体层被设置在所述隧穿层的所述背面处的所述发射极区域与所述背面场区域之间的分开空间中。
7.根据权利要求6所述的太阳能电池,其中,所述本征半导体层具有处于所述背面场区域的厚度和所述发射极区域的厚度之间的厚度。
8.根据权利要求1所述的太阳能电池,其中,所述隧穿层的所述电介质材料包括碳化硅SiC和氧化硅SiOx。
9.根据权利要求8所述的太阳能电池,其中,所述隧穿层具有0.5nm至2.5nm的厚度。
10.一种用于制造太阳能电池的方法,该方法包括以下操作:
将由电介质材料形成的隧穿层以及本征半导体层淀积在包含第一导电类型的杂质的半导体基板的背面上;
将与所述第一导电类型相反的第二导电类型的杂质植入到所述本征半导体层的第一区域中;
在所述本征半导体层的所述第一区域上形成扩散阻隔层;
热扩散操作,其用于在未形成所述扩散阻隔层的所述本征半导体层的第二区域中对包含所述第一导电类型的杂质的掺杂源进行热扩散,并且同时对所述半导体基板的正面进行热扩散,以同时形成位于所述半导体基板的所述正面的正面场区域和位于所述本征半导体层的背面场区域和发射极区域;
蚀刻操作,其用于对所述半导体基板的所述正面和所述背面同时进行蚀刻,以部分地蚀刻所述正面场区域的表面和所述背面场区域的表面,并且同时将形成在所述发射极区域上的所述扩散阻隔层去除;以及
在所述发射极区域上形成第一电极并且在所述背面场区域上形成第二电极。
11.根据权利要求10所述的方法,其中,所述扩散阻隔层的形成包括以下操作:
扩散阻隔层淀积操作,其用于将所述扩散阻隔层淀积在包括所述本征半导体层的所述第一区域在内的所述本征半导体层的整个背面上;以及
背面场区域图案形成操作,其用于对在除了所述本征半导体层的所述第一区域之外的所述第二区域上形成的所述扩散阻隔层进行蚀刻,以形成针对所述背面场区域的图案。
12.根据权利要求11所述的方法,其中,所述扩散阻隔层进行了蚀刻的所述本征半导体层的所述第一区域和所述本征半导体层的所述第二区域被彼此分开。
13.根据权利要求11所述的方法,其中,在所述扩散阻隔层淀积操作中,淀积由碳化硅SiC形成的所述扩散阻隔层。
14.根据权利要求11所述的方法,其中,在所述背面场区域图案形成操作中,在所述本征半导体层的所述第二区域上形成的所述扩散阻隔层通过照射激光束进行蚀刻。
15.根据权利要求14所述的方法,其中,在所述热扩散操作中,植入到所述本征半导体层的所述第一区域中的所述第二导电类型的杂质被热扩散并且被形成为由多晶硅材料形成的所述发射极区域。
16.根据权利要求10所述的方法,其中,由碳化硅SiC形成的所述扩散阻隔层通过所述热扩散操作被氧化成氧化硅SiOx。
17.根据权利要求10所述的方法,其中,在所述热扩散操作中在所述正面场区域和所述背面场区域中生成的为硅酸磷玻璃PSG或硼硅酸玻璃BSG中的一种的副产品在所述蚀刻操作中去除。
18.根据权利要求10所述的方法,其中,在所述蚀刻操作中,所述正面场区域的蚀刻速率大于所述背面场区域的蚀刻速率。
19.根据权利要求10所述的方法,其中,所述正面场区域的电阻和所述背面场区域的电阻的比率为10:1至3:1。
20.根据权利要求10所述的方法,其中,通过所述蚀刻操作,所述背面场区域的厚度与所述发射极区域的厚度不同。
CN201510445897.3A 2014-07-28 2015-07-27 太阳能电池及其制造方法 Active CN105322042B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0095993 2014-07-28
KR1020140095993A KR101661807B1 (ko) 2014-07-28 2014-07-28 태양 전지 및 그 제조 방법

Publications (2)

Publication Number Publication Date
CN105322042A true CN105322042A (zh) 2016-02-10
CN105322042B CN105322042B (zh) 2017-05-17

Family

ID=53761178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510445897.3A Active CN105322042B (zh) 2014-07-28 2015-07-27 太阳能电池及其制造方法

Country Status (5)

Country Link
US (1) US10566488B2 (zh)
EP (1) EP2980858B1 (zh)
JP (1) JP6272800B2 (zh)
KR (1) KR101661807B1 (zh)
CN (1) CN105322042B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206838A (zh) * 2015-05-28 2016-12-07 Lg电子株式会社 太阳能电池及其制造方法
CN107039536A (zh) * 2016-01-12 2017-08-11 Lg电子株式会社 太阳能电池及其制造方法
CN108091711A (zh) * 2017-11-10 2018-05-29 中国科学院微电子研究所 晶体硅太阳能电池
CN111755537A (zh) * 2019-03-26 2020-10-09 松下电器产业株式会社 太阳能单电池和太阳能电池组件
CN112466961A (zh) * 2020-11-19 2021-03-09 晶科绿能(上海)管理有限公司 太阳能电池及其制造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102257824B1 (ko) 2016-12-05 2021-05-28 엘지전자 주식회사 태양 전지 제조 방법
KR102644518B1 (ko) * 2017-01-06 2024-03-08 상라오 신위안 웨동 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양 전지의 제조 방법
CN111108609A (zh) * 2017-09-22 2020-05-05 荷兰应用自然科学研究组织Tno 具有p型导电性的指叉背接触式太阳能电池
CN112635592A (zh) * 2020-12-23 2021-04-09 泰州隆基乐叶光伏科技有限公司 一种太阳能电池及其制作方法
CN116259679A (zh) * 2021-12-09 2023-06-13 浙江晶科能源有限公司 太阳能电池及光伏组件
EP4195299A1 (en) 2021-12-13 2023-06-14 International Solar Energy Research Center Konstanz E.V. Interdigitated back contact solar cell and method for producing an interdigitated back contact solar cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777603A (zh) * 2009-01-08 2010-07-14 北京北方微电子基地设备工艺研究中心有限责任公司 背接触太阳能电池的制造方法
US20120073650A1 (en) * 2010-09-24 2012-03-29 David Smith Method of fabricating an emitter region of a solar cell
US20120322199A1 (en) * 2011-06-15 2012-12-20 Varian Semiconductor Equipment Associates, Inc. Patterned doping for polysilicon emitter solar cells
WO2014051646A1 (en) * 2012-09-28 2014-04-03 Sunpower Corporation Spacer formation in a solar cell using oxygen ion implantation
US20140096821A1 (en) * 2012-10-10 2014-04-10 Au Optronics Corp. Solar cell and method for making thereof
US20140170800A1 (en) * 2012-12-19 2014-06-19 Paul Loscutoff Solar cell emitter region fabrication using silicon nano-particles

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7468485B1 (en) * 2005-08-11 2008-12-23 Sunpower Corporation Back side contact solar cell with doped polysilicon regions
US7737357B2 (en) * 2006-05-04 2010-06-15 Sunpower Corporation Solar cell having doped semiconductor heterojunction contacts
DE102008013446A1 (de) * 2008-02-15 2009-08-27 Ersol Solar Energy Ag Verfahren zur Herstellung monokristalliner n-Silizium-Solarzellen sowie Solarzelle, hergestellt nach einem derartigen Verfahren
CN101999175A (zh) * 2008-04-09 2011-03-30 应用材料股份有限公司 用于多晶硅发射极太阳能电池的简化背触点
US20120211063A1 (en) 2009-03-17 2012-08-23 Jong-Jan Lee Back Contact Solar Cell with Organic Semiconductor Heterojunctions
US8779280B2 (en) * 2009-08-18 2014-07-15 Lg Electronics Inc. Solar cell and method of manufacturing the same
KR101027829B1 (ko) 2010-01-18 2011-04-07 현대중공업 주식회사 후면전극형 태양전지의 제조방법
JP5519440B2 (ja) * 2010-08-03 2014-06-11 日東電工株式会社 発光装置
EP2498583B1 (fr) * 2011-03-07 2017-05-03 Zedel Lampe LED dotée d' un dispositif de sécurité
US20130213469A1 (en) * 2011-08-05 2013-08-22 Solexel, Inc. High efficiency solar cell structures and manufacturing methods
KR101757874B1 (ko) * 2011-12-08 2017-07-14 엘지전자 주식회사 태양 전지
KR101569417B1 (ko) * 2014-07-07 2015-11-16 엘지전자 주식회사 태양 전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777603A (zh) * 2009-01-08 2010-07-14 北京北方微电子基地设备工艺研究中心有限责任公司 背接触太阳能电池的制造方法
US20120073650A1 (en) * 2010-09-24 2012-03-29 David Smith Method of fabricating an emitter region of a solar cell
US20120322199A1 (en) * 2011-06-15 2012-12-20 Varian Semiconductor Equipment Associates, Inc. Patterned doping for polysilicon emitter solar cells
WO2014051646A1 (en) * 2012-09-28 2014-04-03 Sunpower Corporation Spacer formation in a solar cell using oxygen ion implantation
US20140096821A1 (en) * 2012-10-10 2014-04-10 Au Optronics Corp. Solar cell and method for making thereof
US20140170800A1 (en) * 2012-12-19 2014-06-19 Paul Loscutoff Solar cell emitter region fabrication using silicon nano-particles

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206838A (zh) * 2015-05-28 2016-12-07 Lg电子株式会社 太阳能电池及其制造方法
CN106206838B (zh) * 2015-05-28 2017-12-08 Lg电子株式会社 太阳能电池及其制造方法
US10388804B2 (en) 2015-05-28 2019-08-20 Lg Electronics Inc. Solar cell and method of manufacturing the same
US10777694B2 (en) 2015-05-28 2020-09-15 Lg Electronics Inc. Solar cell and method of manufacturing the same
CN107039536A (zh) * 2016-01-12 2017-08-11 Lg电子株式会社 太阳能电池及其制造方法
CN107039536B (zh) * 2016-01-12 2021-04-20 Lg电子株式会社 太阳能电池及其制造方法
CN108091711A (zh) * 2017-11-10 2018-05-29 中国科学院微电子研究所 晶体硅太阳能电池
CN111755537A (zh) * 2019-03-26 2020-10-09 松下电器产业株式会社 太阳能单电池和太阳能电池组件
CN112466961A (zh) * 2020-11-19 2021-03-09 晶科绿能(上海)管理有限公司 太阳能电池及其制造方法
CN112466961B (zh) * 2020-11-19 2024-05-10 晶科绿能(上海)管理有限公司 太阳能电池及其制造方法
US11990554B2 (en) 2020-11-19 2024-05-21 Jinko Green Energy (shanghai) Management Co., Ltd. Solar cell and method for producing same

Also Published As

Publication number Publication date
EP2980858B1 (en) 2021-06-30
KR101661807B1 (ko) 2016-09-30
EP2980858A3 (en) 2016-02-24
US10566488B2 (en) 2020-02-18
KR20160013751A (ko) 2016-02-05
JP6272800B2 (ja) 2018-01-31
EP2980858A2 (en) 2016-02-03
US20160027951A1 (en) 2016-01-28
CN105322042B (zh) 2017-05-17
JP2016032115A (ja) 2016-03-07

Similar Documents

Publication Publication Date Title
CN105322042A (zh) 太阳能电池及其制造方法
US8569614B2 (en) Solar cell and method of manufacturing the same
CN103367478B (zh) 太阳能电池及其制造方法
US8759140B2 (en) Solar cell and method for manufacturing the same
US8895839B2 (en) Multijunction photovoltaic device
US8680392B2 (en) Solar cell and method of manufacturing the same
US20160225935A1 (en) Solar cell and method for manufacturing the same
US20090314337A1 (en) Photovoltaic devices
KR101630526B1 (ko) 태양 전지
TWI667798B (zh) 具無溝槽射極區之太陽能電池
US20110284060A1 (en) Solar cell and method of fabricating the same
CN103681953A (zh) 制造太阳能电池的方法
US20130125964A1 (en) Solar cell and manufacturing method thereof
US20190334041A1 (en) Solar cell and method for manufacturing the same
KR102657230B1 (ko) 태양 전지 및 이의 제조 방법
CN103608934A (zh) 制造具有选择性发射器的光伏电池的方法
US10256356B2 (en) Thin film solar cell module including series connected cells formed on a flexible substrate by using lithography
Ortega et al. Fully low temperature interdigitated back-contacted c-Si (n) solar cells based on laser-doping from dielectric stacks
KR20150109745A (ko) 태양 전지 및 이의 제조 방법
KR20140136555A (ko) 양면수광형 perl 태양전지 및 그 제조방법
KR101772432B1 (ko) 다중밴드 Si-Ge 박막 단결정을 이용한 태양전지 및 그의 효율 개선방법
KR20180034091A (ko) 실리콘 태양 전지 및 그 제조 방법
KR101612959B1 (ko) 태양 전지 및 그 제조 방법
KR101854237B1 (ko) 태양전지 및 그 제조방법
ZHENHUA Optical and Electrical Studies of Silicon Nanowires in Photovoltaic Applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20160210

Assignee: Hanhua thinksin Co.,Ltd.

Assignor: LG ELECTRONICS Inc.

Contract record no.: X2022990000645

Denomination of invention: Solar cell and method of making the same

Granted publication date: 20170517

License type: Common License

Record date: 20220914

EE01 Entry into force of recordation of patent licensing contract
TR01 Transfer of patent right

Effective date of registration: 20221031

Address after: No. 3, Yingbin Avenue, Shangrao Economic and Technological Development Zone, Jiangxi Province

Patentee after: Shangrao Jingke Green Energy Technology Development Co.,Ltd.

Address before: Seoul, South Kerean

Patentee before: LG ELECTRONICS Inc.

TR01 Transfer of patent right
CP01 Change in the name or title of a patent holder

Address after: No. 3, Yingbin Avenue, Shangrao Economic and Technological Development Zone, Jiangxi Province 334100

Patentee after: Shangrao Xinyuan Yuedong Technology Development Co.,Ltd.

Address before: No. 3, Yingbin Avenue, Shangrao Economic and Technological Development Zone, Jiangxi Province 334100

Patentee before: Shangrao Jingke Green Energy Technology Development Co.,Ltd.

CP01 Change in the name or title of a patent holder