CN105304920B - A kind of flat solid oxide fuel cell local temperature method of estimation - Google Patents

A kind of flat solid oxide fuel cell local temperature method of estimation Download PDF

Info

Publication number
CN105304920B
CN105304920B CN201510811980.8A CN201510811980A CN105304920B CN 105304920 B CN105304920 B CN 105304920B CN 201510811980 A CN201510811980 A CN 201510811980A CN 105304920 B CN105304920 B CN 105304920B
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
mtd
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510811980.8A
Other languages
Chinese (zh)
Other versions
CN105304920A (en
Inventor
罗慧
李曦
尹泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201510811980.8A priority Critical patent/CN105304920B/en
Publication of CN105304920A publication Critical patent/CN105304920A/en
Application granted granted Critical
Publication of CN105304920B publication Critical patent/CN105304920B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The present invention relates to a kind of flat solid oxide fuel cell local temperature method of estimation, comprise the following steps:S1, set up non-linear stack temperature model according to mass conservation law and law of conservation of energy, and finite element processing is carried out to the stack temperature model;S2, near stable operating point, to stack temperature model described in step S1 carry out linearization process obtain linear stack temperature model;S3, based on above-mentioned linear stack temperature model, the imperial Burger observer designed for observing stack temperature;S4, estimation SOFC pile interior temperature distribution situation.The present invention can ensure that the safety and stably of pile work, while having good robustness to electric loading disturbance and inlet air flow rate disturbance.

Description

A kind of flat solid oxide fuel cell local temperature method of estimation
Technical field
The present invention relates to temperature inside fuel cell field, more particularly to a kind of flat solid oxide fuel cell pile Spend distribution estimation method.
Background technology
SOFC (SOFC, Solid Oxide Fuel Cell) can be direct by chemical energy as one kind The system of electric energy is converted into, because it has the remarkable advantages, quilt such as high energy conversion rate, low emission and flexible fuel injection method The green energy resource electricity generation system of 21 century most prospect is described as, is increasingly paid close attention in recent years by people.In different type SOFC in, flat solid oxide fuel cell is most attractive.Flat solid is aoxidized Thing fuel cell easy to manufacture, assemble and higher power efficiency can be provided.Although flat solid oxide fuel is electric Pond technically makes great progress, but still also has many difficult points to need to overcome to be allowed to extensive use and business Change.The difficult point of wherein most critical is the temperature and thermograde in detection and control fuel cell pile.
It is a kind of high temperature fuel electricity between 600~1000 DEG C to be due to the running temperature of SOFC Pond, it is contemplated that the security of battery material, it is necessary to be controlled to the maximum temperature in pile.Furthermore, solid oxide fuel The core component PEN of battery pile is to be stacked together what is constituted in the way of similar sandwich by three layers of solid.And group This three layers of solids into PEN have different thermal expansion characters again, therefore the temperature distributing disproportionation in pile is even, that is, works as temperature When gradient is excessive, PEN may produce deformation and be even broken because thermal stress is excessive.Therefore, for solid oxide fuel Battery can be stablized, long-life operation, it is necessary to which maximum temperature and the maximum temperature gradient control of pile can be born in material Within the scope of.
Maximum temperature and maximum temperature gradient are pacified as two in SOFC pile most important temperature All referring to mark, to control it, only need to grasp the Temperature Distribution in pile.However, difficulty based on practical operation and Temperature Distribution in consideration in terms of cost, SOFC pile is difficult to direct measurement and obtained.Because solid oxygen Compound fuel cell pile is operated under hot environment, and the requirement to air-tightness is very high, it is impossible to beaten on pile Too many hole is put into thermocouple, carrys out direct measurement temperature.Except on testing stand to the temperature of SOFC monocell Monitoring may make outside some thermocouple direct measurements, typically for solid oxide fuel battery system, stack temperature Index is the gas temperature for considering pile entrance and exit.
Chinese patent (CN201410184688) is estimated there is provided a kind of local temperature of SOFC Meter method, the contribution of this method is essentially consisted in there is provided a kind of synovial membrane observer of good performance.But, although sliding mode observer The characteristics of with quick response input with good robustness, but it can come the problem of one, band is serious, i.e. system controller Output has shake.This is due to sliding mode observer according to system state at that time, purposefully super flat in sliding formwork in transition mode Constantly converted near face, force system to be moved by the state trajectory of predetermined " sliding mode ", purposefully existed in transition mode Constantly converted near sliding formwork hyperplane, result in the generation of shake.
The content of the invention
It is flat that the technical problems to be solved by the invention are to provide a kind of anti-electric loading disturbance and anti-inlet air flow rate is disturbed Plate type solid oxide fuel cell local temperature method of estimation.
The technical scheme that the present invention solves above-mentioned technical problem is as follows:A kind of flat solid oxide fuel cell pile Temperature Distribution method of estimation, comprises the following steps:
S1, non-linear stack temperature model set up according to mass conservation law and law of conservation of energy, and to the pile Temperature model carries out finite element processing;
S2, near stable operating point, to stack temperature model described in step S1 carry out linearization process obtain linearly Stack temperature model;
S3, based on above-mentioned linear stack temperature model, the imperial Burger observer designed for observing stack temperature;
S4, using the reality output of SOFC as stack temperature observer input, by described imperial primary Difference between the output of lattice observer and the reality output of SOFC is acted on as observation error feedback quantity In observer, until observation error converges to zero, SOFC pile interior temperature distribution can be now estimated Situation.
Further, non-linear stack temperature mould is set up according to mass conservation law and law of conservation of energy described in step S1 Type, is specifically referred to:
According to the molar fraction of mass balance calculation air and fuel channel,
Wherein,WithOxygen in respectively k-th node, nitrogen, mole of hydrogen and vapor Fraction,WithAir mole flow velocity and fuel mole flow velocity at respectively k-th node exit,WithRespectively For the number of moles of gas of k-th of node in negative electrode and anode, ikFor the electric current of k-th of node;
The heat conservation of each node can be described with following formula:
The solid layer heat energy conservation of k-th of node can be described with following formula:
The dynamic characteristic of pile end solid layer:
Electrochemical model:
The operating voltage of the SOFC is equal to energy nernst voltage and subtracts three polarizing voltages:
Wherein VcellFor the voltage of monocell piece,For the energy nernst voltage of k-th of node,For k-th node etc. Imitate resistance,WithIt is expressed as follows:
Further, it is to the concrete mode that stack temperature model carries out linearization process in step S2:According to quasistatic matter The hypothesis for measuring conservation carries out model simplification, it is assumed that heat energy dynamical equation (10) is into (13) It is constant, then SOFC meets the quasistatic conservation of mass, then new penetration quality dynamic equilibrium equation is:
From equation (14)-(17) it can be seen that the operating voltage of single SOFC cell piece be onEquation
From equation (17)-(18) if can be seen thatWithIt is known, variable Can be byIndividually determine.Due to 15 variables It is to be described by 15 algebraic equation (17)-(18).15 variables may be considered constant in heat energy dynamic equilibrium equation And SOFC model, which can simplify, to be as follows:
Wherein,
ω=Itot,
State variable x is the temperature of air and fuel, and y is the temperature output undetermined that can be surveyed;
Following inearized model can be obtained after being linearized at stable operating point x0 to simplified nonlinear model:
Wherein Δ is the deviation of stable operating point, i.e. Δ x=x-x0, Δ u=u-u0, Δ ω=ω-ω 0.
Further, imperial Burger observer concrete mode is designed in the step S3 is, based on the linear stack temperature mould Type, the imperial Burger observer of design:
Evaluated error equation is:
Wherein
Further, the evaluated error of the imperial Burger observer designed in the step S3 is divided into air themperature evaluated error With solid temperature evaluated error, particularly:
The evaluated error of air themperature subsystem:
Wherein
The evaluated error of solid temperature subsystem:
Wherein,
Sub- observer A is configured according to direct Method of Pole Placement1-L1C1And A2-L2C2Characteristic value, defined feature value ratio, α is A1-L1C1Characteristic value and A the ratio between characteristic value,
Wherein eig (M) representing matrixs M characteristic value, after eigenvalue ratio α is determined, can obtain L1And L2.Observer Gain L can be by L1And L2Constitute:
Wherein, [L11 L12 L13 L14 L15]T=L1
[L21 L22 L23 L24 L25]T=L2
The beneficial effects of the invention are as follows:The present invention is directed to inside the SOFC pile using hydrogen as fuel Temperature Distribution is difficult to this problem measured directly, by setting up finite element mechanism mould to SOFC pile Type, and using the model as references object, set up the non-linear imperial Burger observer to pile interior temperature distribution.By selecting to close Suitable eigenvalue ratio, non-linear Luenberger observer can obtain suitable Temperature Distribution estimation performance.Present invention only requires obtain Know the entrance and outlet temperature of air and fuel, you can accurately to estimate the Temperature Distribution in pile, and then be soild oxide Fuel cell pile temperature control provides foundation, it is ensured that pile can safely and steadly work.Moreover, the present invention is to electric loading Disturbance and inlet air flow rate disturbance have good robustness.
Brief description of the drawings
Fig. 1 is signal flow diagram of the invention;
Fig. 2 is the overall structure and its operation principle schematic diagram of SOFC of the present invention;
Fig. 3 is SOFC pile finite element segmentation schematic diagram in the first embodiment of the invention;
Fig. 4 is the output pattern emulated on matlab/simulink platforms in the first of the invention embodiment.
Embodiment
The principle and feature of the present invention are described below in conjunction with accompanying drawing, the given examples are served only to explain the present invention, and It is non-to be used to limit the scope of the present invention.
As shown in figure 1, a kind of flat solid oxide fuel cell local temperature method of estimation, including following step Suddenly:
S1, non-linear stack temperature model set up according to mass conservation law and law of conservation of energy, and to the pile Temperature model carries out finite element processing;
S2, near stable operating point, to stack temperature model described in step S1 carry out linearization process obtain linearly Stack temperature model;
S3, based on above-mentioned linear stack temperature model, the imperial Burger observer designed for observing stack temperature;
S4, using the reality output of SOFC as stack temperature observer input, by described imperial primary Difference between the output of lattice observer and the reality output of SOFC is acted on as observation error feedback quantity In observer, until observation error converges to zero, SOFC pile interior temperature distribution can be now estimated Situation.
Further, non-linear stack temperature mould is set up according to mass conservation law and law of conservation of energy described in step S1 Type, is specifically referred to:
According to the molar fraction of mass balance calculation air and fuel channel,
Wherein,WithOxygen in respectively k-th node, nitrogen, mole of hydrogen and vapor Fraction,WithAir mole flow velocity and fuel mole flow velocity at respectively k-th node exit,WithRespectively For the number of moles of gas of k-th of node in negative electrode and anode, ikFor the electric current of k-th of node;
Wherein VairAnd VsolThe air capacity and fuel quantity of respectively each node,WithIn respectively k-th node The temperature of air and fuel,WithThe air pressure of respectively k-th node negative electrode and anode.
One operation SOFC pile comprising anode, negative electrode, dielectric substrate, connector, fuel and Air, its temperature is all different.The heat transfer coefficient of solid structure, i.e. PEN and connector is much smaller than the heat transfer system of air Number.It can be considered that the temperature of PEN and connector is identical.The flow velocity of fuel is much smaller than the flow velocity of air, so fuel There is time enough to be exchanged heat with solid layer.Therefore, the temperature of fuel and solid layer is considered as identical.Using these it is assumed that The solid layer temperature of each node is not changed significantly.
The heat conservation of each node can be described with following formula:
The solid layer heat energy conservation of k-th of node can be described with following formula:
The dynamic characteristic of pile end solid layer:
Electrochemical model:
The operating voltage of the SOFC is equal to energy nernst voltage and subtracts three polarizing voltages:
Wherein VcellFor the voltage of monocell piece,For the energy nernst voltage of k-th of node,For k-th node etc. Imitate resistance,WithIt is expressed as follows:
Wherein,For the energy nernst voltage of k-th of node,For the equivalent resistance of k-th of node,WithRespectively ohmic polarization resistance, activation polarization resistance and concentration polarization resistance, can nernst voltage, be monolithic battery voltage.
Based on above-mentioned complicated and nonlinear SOFC model, design one is to estimate stack temperature The non-linear imperial Burger observer of distribution is extremely difficult.
Further, it is to the concrete mode that stack temperature model carries out linearization process in step S2:According to quasistatic matter The hypothesis for measuring conservation carries out model simplification, it is assumed that in heat energy dynamical equation (10)-(13) It is constant, then SOFC meets the quasistatic conservation of mass, then new penetration quality dynamic equilibrium equation is
Then SOFC model simplification is:
Wherein,
ω=Itot,
State variable x is the temperature of air and fuel, and y is the temperature output undetermined that can be surveyed;
Following inearized model can be obtained after being linearized at stable operating point x0 to simplified nonlinear model:
Wherein Δ is the deviation of stable operating point, that is, Δ x=x-x0, Δ u=u-u0, Δ ω=ω-ω 0.
Further, imperial Burger observer concrete mode is designed in the step S3 is, based on the linear stack temperature mould Type, the imperial Burger observer of design:
Evaluated error equation is:
Wherein
Because SOFC is many time scale systems, the gain that direct POLE PLACEMENT USING is obtained may be uncomfortable With.The exponent number of L each elements differs greatly in observer gain.Big impact it is possible that, this gain can cause this to see Survey device unstable.
Comparatively,It is rightInfluence compareInfluence more directly effectively.ThereforeEvaluated error ratioEvaluated error be more suitable for adjustmentConvergence rate.Similar Conclusion pairFor be also rational.So the error system in equation (23) can be decomposed into air themperature subsystem and Solid temperature subsystem.
Further, the evaluated error of the imperial Burger observer designed in the step S3 is divided into air themperature evaluated error With solid temperature evaluated error, particularly:
The evaluated error of air themperature subsystem:
Wherein
The evaluated error of solid temperature subsystem:
Wherein,
Sub- observer A is configured according to direct Method of Pole Placement1-L1C1And A2-L2C2Characteristic value, defined feature value ratio, α is A1-L1C1Characteristic value and A the ratio between characteristic value,
Wherein eig (M) representing matrixs M characteristic value.After eigenvalue ratio α is determined, L can be obtained1And L2.Observer Gain L can be by L1And L2Constitute:
Wherein, [L11 L12 L13 L14 L15]T=L1
[L21 L22 L23 L24 L25]T=L2
In Fig. 1, input refers to fuel and air themperature, the flow velocity of porch;Feedback oscillator is solved by imperial Burger observer; Reality output is the fuel in exit and the temperature of air;The fuel in output estimation exit and the Temperature estimate of air;Other Quantity of state is estimated as the fuel of its elsewhere and the Temperature estimate of air.
During Fig. 4 is the first of the invention embodiment, the output figure emulated on matlab/simulink platforms Shape.
The condition of emulation is:
Iload=30A.
In 2000s, the current loading of pile steps to 35A from 30A, and Fig. 4 is illustrated to air themperature distribution and fuel The estimation accuracy of Temperature Distribution.
The foregoing is only presently preferred embodiments of the present invention, be not intended to limit the invention, it is all the present invention spirit and Within principle, any modification, equivalent substitution and improvements made etc. should be included in the scope of the protection.

Claims (4)

1. a kind of flat solid oxide fuel cell local temperature method of estimation, it is characterised in that including following step Suddenly:
S1, non-linear stack temperature model set up according to mass conservation law and law of conservation of energy, and to the stack temperature Model carries out finite element processing;
S2, near stable operating point, to stack temperature model described in step S1 carry out linearization process obtain linear pile Temperature model;
S3, based on above-mentioned linear stack temperature model, the imperial Burger observer designed for observing stack temperature;
S4, using the reality output of SOFC as stack temperature observer input, by the Long Baigeguan The difference surveyed between the output of device and the reality output of SOFC acts on sight as observation error feedback quantity Device is surveyed, until observation error converges to zero, SOFC pile interior temperature distribution situation can be now estimated; Non-linear stack temperature model is set up according to mass conservation law and law of conservation of energy described in step S1, specifically referred to:
The molar fraction equation of air and fuel channel is set up according to the conservation of mass:
<mrow> <mfrac> <mrow> <msubsup> <mi>dx</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> <mi>k</mi> </msubsup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>F</mi> <mrow> <mi>c</mi> <mi>a</mi> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msubsup> <mi>x</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>F</mi> <mrow> <mi>c</mi> <mi>a</mi> </mrow> <mi>k</mi> </msubsup> <msubsup> <mi>x</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> <mi>k</mi> </msubsup> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>F</mi> </mrow> </mfrac> <msup> <mi>i</mi> <mi>k</mi> </msup> </mrow> <msubsup> <mi>N</mi> <mrow> <mi>c</mi> <mi>a</mi> </mrow> <mi>k</mi> </msubsup> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>x</mi> <msub> <mi>N</mi> <mn>2</mn> </msub> <mi>k</mi> </msubsup> <mo>=</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>x</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> <mi>k</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mfrac> <mrow> <msubsup> <mi>dx</mi> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>k</mi> </msubsup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>F</mi> <mrow> <mi>a</mi> <mi>n</mi> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msubsup> <mi>x</mi> <msub> <mi>H</mi> <mn>2</mn> </msub> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>F</mi> <mrow> <mi>a</mi> <mi>n</mi> </mrow> <mi>k</mi> </msubsup> <msubsup> <mi>x</mi> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>k</mi> </msubsup> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>F</mi> </mrow> </mfrac> <msup> <mi>i</mi> <mi>k</mi> </msup> </mrow> <msubsup> <mi>N</mi> <mrow> <mi>a</mi> <mi>n</mi> </mrow> <mi>k</mi> </msubsup> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>x</mi> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>O</mi> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>x</mi> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>k</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
Wherein,WithOxygen in respectively k-th node, nitrogen, hydrogen and vapor mole point Number,WithAir mole flow velocity and fuel mole flow velocity at respectively k-th node exit,WithRespectively The number of moles of gas of k-th of node, i in negative electrode and anodekFor the electric current of k-th of node, F is mole flow velocity;
The air layer energy conservation equation of each node is set up according to the conservation of energy:
<mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msubsup> <mi>dT</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> <mi>k</mi> </msubsup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msubsup> <mi>N</mi> <mrow> <mi>c</mi> <mi>a</mi> </mrow> <mi>k</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>C</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> </msub> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> <mi>k</mi> </msubsup> <mo>)</mo> <msubsup> <mi>x</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> <mi>k</mi> </msubsup> <mo>+</mo> <msub> <mi>C</mi> <msub> <mi>N</mi> <mn>2</mn> </msub> </msub> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> <mi>k</mi> </msubsup> <mo>)</mo> <msubsup> <mi>x</mi> <msub> <mi>N</mi> <mn>2</mn> </msub> <mi>k</mi> </msubsup> <mo>-</mo> <mi>R</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;CenterDot;</mo> <mo>(</mo> <msub> <mi>C</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>T</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> <mi>k</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>F</mi> <mrow> <mi>c</mi> <mi>a</mi> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>x</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>h</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>x</mi> <msub> <mi>N</mi> <mn>2</mn> </msub> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>h</mi> <msub> <mi>N</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msubsup> <mi>F</mi> <mrow> <mi>c</mi> <mi>a</mi> </mrow> <mi>k</mi> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> <mi>k</mi> </msubsup> <msub> <mi>h</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> </msub> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> <mi>k</mi> </msubsup> <mo>)</mo> <mo>+</mo> <msubsup> <mi>x</mi> <msub> <mi>N</mi> <mn>2</mn> </msub> <mi>k</mi> </msubsup> <msub> <mi>h</mi> <msub> <mi>N</mi> <mn>2</mn> </msub> </msub> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> <mi>k</mi> </msubsup> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msup> <mi>i</mi> <mi>k</mi> </msup> <mrow> <mn>4</mn> <mi>F</mi> </mrow> </mfrac> <msub> <mi>h</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> </msub> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> <mi>k</mi> </msubsup> <mo>)</mo> <mo>)</mo> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
Pile is operated under heat-insulated environment, so provide two ends respectively and middle energy conservation equation, for intermediate node, the The solid layer energy conservation equation of k node:
<mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msubsup> <mi>dT</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mi>k</mi> </msubsup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;rho;</mi> <mrow> <mi>p</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow> <mi>p</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>&amp;tau;</mi> <mrow> <mi>p</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;rho;</mi> <mrow> <mi>i</mi> <mi>c</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mi>c</mi> </mrow> </msub> <msub> <mi>&amp;tau;</mi> <mrow> <mi>i</mi> <mi>c</mi> </mrow> </msub> </mrow> </mfrac> <mo>(</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> <mo>(</mo> <msubsup> <mi>F</mi> <mrow> <mi>a</mi> <mi>n</mi> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>(</mo> <msubsup> <mi>x</mi> <msub> <mi>H</mi> <mn>2</mn> </msub> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>h</mi> <msub> <mi>H</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msubsup> <mi>x</mi> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>O</mi> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>h</mi> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>O</mi> </mrow> </msub> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>)</mo> <mo>)</mo> <mo>-</mo> <msubsup> <mi>F</mi> <mrow> <mi>a</mi> <mi>n</mi> </mrow> <mi>k</mi> </msubsup> <mo>(</mo> <mrow> <msubsup> <mi>x</mi> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>k</mi> </msubsup> <msub> <mi>h</mi> <msub> <mi>H</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mi>k</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>x</mi> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>O</mi> </mrow> <mi>k</mi> </msubsup> <msub> <mi>h</mi> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>O</mi> </mrow> </msub> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mi>k</mi> </msubsup> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msub> <mi>C</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mi>k</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>C</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <mn>2</mn> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mi>k</mi> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msub> <mi>C</mi> <mn>5</mn> </msub> <mo>(</mo> <mrow> <mfrac> <mrow> <msup> <mi>i</mi> <mi>k</mi> </msup> <msub> <mi>h</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> <mi>k</mi> </msubsup> <mo>)</mo> </mrow> </mrow> <mrow> <mn>4</mn> <mi>F</mi> </mrow> </mfrac> <mo>-</mo> <msup> <mi>i</mi> <mi>k</mi> </msup> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>e</mi> <mi>l</mi> <mi>l</mi> </mrow> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
Wherein,WithThe temperature of air and fuel in respectively k-th node,WithRespectively oxygen and nitrogen Specific heat capacity, C1-C5It is the constant coefficient determined by battery material and electrode characteristic respectively,WithRespectively hydrogen and water Enthalpy, ρpenAnd ρicRespectively PEN and connector density, cpenAnd cicRespectively PEN and connector specific heat capacity, VcellFor monolithic Cell voltage, τpenAnd τicRespectively PEN and connector thickness, VcellFor monolithic battery voltage, R is desired air constant;
The dynamic characteristic of pile two ends solid layer:
<mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msubsup> <mi>dT</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mn>1</mn> </msubsup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;rho;</mi> <mrow> <mi>p</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow> <mi>p</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>&amp;tau;</mi> <mrow> <mi>p</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;rho;</mi> <mrow> <mi>i</mi> <mi>c</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mi>c</mi> </mrow> </msub> <msub> <mi>&amp;tau;</mi> <mrow> <mi>i</mi> <mi>c</mi> </mrow> </msub> </mrow> </mfrac> <mo>(</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> <mo>(</mo> <msubsup> <mi>F</mi> <mrow> <mi>a</mi> <mi>n</mi> </mrow> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <mo>(</mo> <msubsup> <mi>x</mi> <msub> <mi>H</mi> <mn>2</mn> </msub> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <msub> <mi>h</mi> <msub> <mi>H</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msubsup> <mi>x</mi> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>O</mi> </mrow> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <msub> <mi>h</mi> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>O</mi> </mrow> </msub> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <mo>)</mo> <mo>)</mo> <mo>-</mo> <msubsup> <mi>F</mi> <mrow> <mi>a</mi> <mi>n</mi> </mrow> <mn>1</mn> </msubsup> <mo>(</mo> <mrow> <msubsup> <mi>x</mi> <msub> <mi>H</mi> <mn>2</mn> </msub> <mn>1</mn> </msubsup> <msub> <mi>h</mi> <msub> <mi>H</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mn>1</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>x</mi> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>O</mi> </mrow> <mn>1</mn> </msubsup> <msub> <mi>h</mi> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>O</mi> </mrow> </msub> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mn>1</mn> </msubsup> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msub> <mi>C</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> <mn>1</mn> </msubsup> <mo>-</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mn>1</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>C</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mn>1</mn> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msub> <mi>C</mi> <mn>5</mn> </msub> <mo>(</mo> <mrow> <mfrac> <mrow> <msup> <mi>i</mi> <mn>1</mn> </msup> <msub> <mi>h</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> <mn>1</mn> </msubsup> <mo>)</mo> </mrow> </mrow> <mrow> <mn>4</mn> <mi>F</mi> </mrow> </mfrac> <mo>-</mo> <msup> <mi>i</mi> <mn>1</mn> </msup> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>e</mi> <mi>l</mi> <mi>l</mi> </mrow> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msubsup> <mi>dT</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mn>5</mn> </msubsup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;rho;</mi> <mrow> <mi>p</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow> <mi>p</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>&amp;tau;</mi> <mrow> <mi>p</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;rho;</mi> <mrow> <mi>i</mi> <mi>c</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mi>c</mi> </mrow> </msub> <msub> <mi>&amp;tau;</mi> <mrow> <mi>i</mi> <mi>c</mi> </mrow> </msub> </mrow> </mfrac> <mo>(</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> <mo>(</mo> <msubsup> <mi>F</mi> <mrow> <mi>a</mi> <mi>n</mi> </mrow> <mn>4</mn> </msubsup> <mo>(</mo> <msubsup> <mi>x</mi> <msub> <mi>H</mi> <mn>2</mn> </msub> <mn>4</mn> </msubsup> <msub> <mi>h</mi> <msub> <mi>H</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mn>4</mn> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msubsup> <mi>x</mi> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>O</mi> </mrow> <mn>4</mn> </msubsup> <msub> <mi>h</mi> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>O</mi> </mrow> </msub> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mn>4</mn> </msubsup> <mo>)</mo> <mo>)</mo> <mo>-</mo> <msubsup> <mi>F</mi> <mrow> <mi>a</mi> <mi>n</mi> </mrow> <mn>5</mn> </msubsup> <mo>(</mo> <mrow> <msubsup> <mi>x</mi> <msub> <mi>H</mi> <mn>2</mn> </msub> <mn>5</mn> </msubsup> <msub> <mi>h</mi> <msub> <mi>H</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mn>5</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>x</mi> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>O</mi> </mrow> <mn>5</mn> </msubsup> <msub> <mi>h</mi> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>O</mi> </mrow> </msub> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mn>5</mn> </msubsup> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msub> <mi>C</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> <mn>5</mn> </msubsup> <mo>-</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mn>5</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>C</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mn>4</mn> </msubsup> <mo>-</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mn>5</mn> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msub> <mi>C</mi> <mn>5</mn> </msub> <mo>(</mo> <mrow> <mfrac> <mrow> <msup> <mi>i</mi> <mn>5</mn> </msup> <msub> <mi>h</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> <mn>5</mn> </msubsup> <mo>)</mo> </mrow> </mrow> <mrow> <mn>4</mn> <mi>F</mi> </mrow> </mfrac> <mo>-</mo> <msup> <mi>i</mi> <mn>5</mn> </msup> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>e</mi> <mi>l</mi> <mi>l</mi> </mrow> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
The electric current i of k-th of node is obtained by electrochemical modelkWith monolithic battery voltage VcellBetween functional relation;
The operating voltage of the SOFC is equal to energy nernst voltage and subtracts three polarizing voltages:
<mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>e</mi> <mi>l</mi> <mi>l</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>E</mi> <mi>N</mi> <mi>k</mi> </msubsup> <mo>-</mo> <msup> <mi>i</mi> <mi>k</mi> </msup> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mrow> <mi>o</mi> <mi>h</mi> <mi>m</mi> </mrow> <mi>k</mi> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>a</mi> <mi>c</mi> <mi>t</mi> </mrow> <mi>k</mi> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> </mrow> <mi>k</mi> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>E</mi> <mi>N</mi> <mi>k</mi> </msubsup> <mo>-</mo> <msup> <mi>i</mi> <mi>k</mi> </msup> <msubsup> <mi>R</mi> <mi>s</mi> <mi>k</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> 2
Wherein,For the energy nernst voltage of k-th of node,For the equivalent resistance of k-th of node,WithIt is expressed as follows:
<mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>E</mi> <mi>N</mi> <mi>k</mi> </msubsup> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mn>0.003445</mn> <msup> <mrow> <mo>(</mo> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mi>k</mi> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mn>48.12</mn> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <mn>2.443</mn> <mi>e</mi> <mo>+</mo> <mn>5</mn> </mrow> <mrow> <mn>2</mn> <mi>F</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>RT</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mi>k</mi> </msubsup> </mrow> <mrow> <mn>2</mn> <mi>F</mi> </mrow> </mfrac> <mi>ln</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msubsup> <mi>x</mi> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>k</mi> </msubsup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> <mi>k</mi> </msubsup> <mo>)</mo> </mrow> <mn>0.5</mn> </msup> </mrow> <msubsup> <mi>x</mi> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>O</mi> </mrow> <mi>k</mi> </msubsup> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>R</mi> <mi>s</mi> <mi>k</mi> </msubsup> <mo>=</mo> <mo>-</mo> <mn>19.021</mn> <mo>+</mo> <mn>84.322</mn> <msup> <mrow> <mo>(</mo> <mfrac> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mi>k</mi> </msubsup> <mn>1000</mn> </mfrac> <mo>)</mo> </mrow> <mn>1</mn> </msup> <mo>-</mo> <mn>136.156</mn> <msup> <mrow> <mo>(</mo> <mfrac> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mi>k</mi> </msubsup> <mn>1000</mn> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mn>95.855</mn> <msup> <mrow> <mo>(</mo> <mfrac> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mi>k</mi> </msubsup> <mn>1000</mn> </mfrac> <mo>)</mo> </mrow> <mn>3</mn> </msup> <mo>-</mo> <mn>24.957</mn> <msup> <mrow> <mo>(</mo> <mfrac> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mi>k</mi> </msubsup> <mn>1000</mn> </mfrac> <mo>)</mo> </mrow> <mn>4</mn> </msup> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
Wherein,For the energy nernst voltage of k-th of node,For the equivalent resistance of k-th of node,With Respectively ohmic polarization resistance, activation polarization resistance and concentration polarization resistance, can nernst voltage, be monolithic battery voltage.
2. a kind of flat solid oxide fuel cell local temperature method of estimation according to claim 1, it is special Levy and be, be to the concrete mode that stack temperature model carries out linearization process in step S2:According to the quasistatic conservation of mass Assuming that carrying out model simplification, it is assumed that heat energy dynamical equation (10) is into (13)It is constant , then SOFC meets the quasistatic conservation of mass, then new penetration quality dynamic equilibrium equation is
<mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>F</mi> <mrow> <mi>c</mi> <mi>a</mi> </mrow> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <msubsup> <mi>x</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <mo>-</mo> <mrow> <mo>(</mo> <msubsup> <mi>F</mi> <mrow> <mi>c</mi> <mi>a</mi> </mrow> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>F</mi> </mrow> </mfrac> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <msup> <mi>i</mi> <mi>j</mi> </msup> <mo>)</mo> </mrow> <msubsup> <mi>x</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> <mi>k</mi> </msubsup> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>F</mi> </mrow> </mfrac> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <msup> <mi>i</mi> <mi>j</mi> </msup> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>F</mi> <mrow> <mi>a</mi> <mi>n</mi> </mrow> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <msubsup> <mi>x</mi> <msub> <mi>H</mi> <mn>2</mn> </msub> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>F</mi> <mrow> <mi>a</mi> <mi>n</mi> </mrow> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <msubsup> <mi>x</mi> <msub> <mi>H</mi> <mn>2</mn> </msub> <mi>k</mi> </msubsup> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>F</mi> </mrow> </mfrac> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <msup> <mi>i</mi> <mi>j</mi> </msup> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
Then SOFC model simplification is:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>u</mi> <mo>,</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>y</mi> <mo>=</mo> <mi>C</mi> <mi>x</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
Wherein,
<mrow> <mi>x</mi> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>T</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> <mn>1</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mn>1</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>T</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mn>2</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>T</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> <mn>3</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mn>3</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>T</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> <mn>4</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mn>4</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>T</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> <mn>5</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mn>5</mn> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow>
<mrow> <mi>y</mi> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>T</mi> <mrow> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> <mn>5</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>T</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>l</mi> </mrow> <mn>5</mn> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow>
<mrow> <mi>u</mi> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>F</mi> <mrow> <mi>c</mi> <mi>a</mi> </mrow> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> </mtd> <mtd> <msubsup> <mi>F</mi> <mrow> <mi>c</mi> <mi>a</mi> </mrow> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow>
ω=Itot,
<mrow> <mi>C</mi> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow>
State variable x is the temperature of air and fuel, and y is the temperature output undetermined that can be surveyed;
Following inearized model can be obtained after being linearized at stable operating point x0 to simplified nonlinear model:
<mrow> <mfrac> <mrow> <mi>d</mi> <mi>&amp;Delta;</mi> <mi>x</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mi>A</mi> <mi>&amp;Delta;</mi> <mi>x</mi> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>&amp;Delta;</mi> <mi>u</mi> <mo>+</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mi>&amp;Delta;</mi> <mi>&amp;omega;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow>
Wherein Δ is the deviation of stable operating point, i.e. Δ x=x-x0, Δ u=u-u0, Δ ω=ω-ω 0.
3. a kind of flat solid oxide fuel cell local temperature method of estimation according to claim 2, it is special Levy and be, imperial Burger observer concrete mode is designed in the step S3 is, based on the linear stack temperature model, design dragon Burger observer:
<mrow> <mfrac> <mrow> <mi>d</mi> <mover> <mi>x</mi> <mo>^</mo> </mover> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mi>A</mi> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>+</mo> <msub> <mi>B</mi> <mn>1</mn> </msub> <mi>u</mi> <mo>+</mo> <msub> <mi>B</mi> <mn>2</mn> </msub> <mi>&amp;omega;</mi> <mo>+</mo> <mi>L</mi> <mrow> <mo>(</mo> <mover> <mi>y</mi> <mo>^</mo> </mover> <mo>-</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow>
Evaluated error equation is:
<mrow> <mfrac> <mrow> <mi>d</mi> <mover> <mi>x</mi> <mo>~</mo> </mover> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mrow> <mo>(</mo> <mi>A</mi> <mo>-</mo> <mi>L</mi> <mi>C</mi> <mo>)</mo> </mrow> <mover> <mi>x</mi> <mo>~</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mover> <mi>x</mi> <mo>~</mo> </mover> <mo>=</mo> <mi>x</mi> <mo>-</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>,</mo> </mrow>
WhereinFor x evaluated error,For x estimate,For y estimate, L is gain matrix.
4. a kind of flat solid oxide fuel cell local temperature method of estimation according to claim 3, it is special Levy and be, the evaluated error of the imperial Burger observer designed in the step S3 is divided into air themperature evaluated error and solid temperature Evaluated error is spent, particularly:
The observer evaluated error of air themperature subsystem:
<mrow> <mfrac> <mrow> <mi>d</mi> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>1</mn> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>L</mi> <mn>1</mn> </msub> <msub> <mi>C</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow>
Wherein
The observer evaluated error of solid temperature subsystem:
<mrow> <mfrac> <mrow> <mi>d</mi> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>2</mn> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>L</mi> <mn>2</mn> </msub> <msub> <mi>C</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>2</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow>
Wherein,L1And L2The respectively observer gain square of air themperature subsystem and solid temperature subsystem Battle array, A1And A2The respectively state matrix of air themperature subsystem and solid temperature subsystem, C1And C2Respectively air themperature is sub The output matrix of system and solid temperature subsystem;
Sub- observer A is configured according to direct Method of Pole Placement1-L1C1And A2-L2C2Characteristic value, defined feature value ratio, α is A1- L1C1Characteristic value and A the ratio between characteristic value,
<mrow> <mi>&amp;alpha;</mi> <mo>=</mo> <mfrac> <mrow> <mi>e</mi> <mi>i</mi> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>L</mi> <mn>1</mn> </msub> <msub> <mi>C</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>e</mi> <mi>i</mi> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mi>e</mi> <mi>i</mi> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>L</mi> <mn>2</mn> </msub> <msub> <mi>C</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>e</mi> <mi>i</mi> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow>
Wherein eig (M) representing matrixs M characteristic value, after eigenvalue ratio α is determined, can obtain L1And L2, observer gain Matrix L is by L1And L2Constitute:
<mrow> <mi>L</mi> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>L</mi> <mn>11</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>L</mi> <mn>12</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>L</mi> <mn>13</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>L</mi> <mn>14</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>L</mi> <mn>15</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>L</mi> <mn>21</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>L</mi> <mn>22</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>L</mi> <mn>23</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>L</mi> <mn>24</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>L</mi> <mn>25</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow>
Wherein, [L11 L12 L13 L14 L15]T=L1
[L21 L22 L23 L24 L25]T=L2
CN201510811980.8A 2015-11-20 2015-11-20 A kind of flat solid oxide fuel cell local temperature method of estimation Expired - Fee Related CN105304920B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510811980.8A CN105304920B (en) 2015-11-20 2015-11-20 A kind of flat solid oxide fuel cell local temperature method of estimation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510811980.8A CN105304920B (en) 2015-11-20 2015-11-20 A kind of flat solid oxide fuel cell local temperature method of estimation

Publications (2)

Publication Number Publication Date
CN105304920A CN105304920A (en) 2016-02-03
CN105304920B true CN105304920B (en) 2017-11-07

Family

ID=55201893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510811980.8A Expired - Fee Related CN105304920B (en) 2015-11-20 2015-11-20 A kind of flat solid oxide fuel cell local temperature method of estimation

Country Status (1)

Country Link
CN (1) CN105304920B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105680071B (en) 2016-03-16 2018-04-13 华中科技大学 Based on fractional order sliding moding structure SOFC system thermoelectricity cooperative control methods
CN106814325A (en) * 2016-12-15 2017-06-09 华中科技大学 A kind of Forecasting Methodology of SOFC pile interior temperature distribution
CN108241128B (en) * 2018-01-09 2019-10-01 西南交通大学 A kind of proton exchange film fuel battery system method for estimating state
CN110098422A (en) * 2018-01-30 2019-08-06 南京特亿达新能源科技有限公司 A kind of method for numerical simulation of SOFC system
CN108615917B (en) * 2018-04-11 2020-08-18 华中科技大学 Fault detection system and method for solid oxide fuel cell system
CN109004251B (en) * 2018-06-28 2021-07-13 电子科技大学 Intelligent control method of solid oxide fuel cell system
CN110071308B (en) * 2019-05-08 2022-03-11 福州大学 Temperature prediction control system and method for cathode open type fuel cell
CN110474069A (en) * 2019-07-16 2019-11-19 武汉理工大学 A kind of Fuel Cell Control System based on dSPACE
CN112038671B (en) * 2020-08-21 2022-04-12 华中科技大学 Method and system for estimating temperature distribution of solid oxide fuel cell
CN113013450B (en) * 2021-02-26 2022-05-31 清华大学 Method for determining self-heating balance of hydrocarbon fuel solid oxide fuel cell stack and application
CN114325398A (en) * 2021-11-08 2022-04-12 淮阴工学院 Fault detection method for proton exchange membrane fuel cell system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU757500B2 (en) * 1999-06-24 2003-02-20 Nippon Shokubai Co., Ltd. Ceramic sheet and process for producing the same
US6521202B1 (en) * 1999-06-28 2003-02-18 University Of Chicago Oxygen ion conducting materials
CN102663219B (en) * 2011-12-21 2015-03-04 北京理工大学 Fuel cell output prediction method and system based on mixing model
CN103384014A (en) * 2013-05-29 2013-11-06 西南交通大学 Maximum net power strategy based proton exchange membrane fuel cell air-supply system control
CN104009247B (en) * 2014-05-04 2015-10-28 华中科技大学 A kind of Solid Oxide Fuel Cell local temperature method of estimation

Also Published As

Publication number Publication date
CN105304920A (en) 2016-02-03

Similar Documents

Publication Publication Date Title
CN105304920B (en) A kind of flat solid oxide fuel cell local temperature method of estimation
CN104009247B (en) A kind of Solid Oxide Fuel Cell local temperature method of estimation
CN104849675B (en) The acquisition methods of lithium ion battery battery chemically and thermally coupling model
US10396381B2 (en) Thermoelectric cooperation control method for SOFC system based on fractional order sliding mode variable structure
Motupally et al. Diffusion of water in Nafion 115 membranes
CN112038671B (en) Method and system for estimating temperature distribution of solid oxide fuel cell
CN108241128A (en) A kind of proton exchange film fuel battery system method for estimating state
Müller et al. Correlating nitrogen accumulation with temporal fuel cell performance
Wu et al. Two-dimensional temperature distribution estimation for a cross-flow planar solid oxide fuel cell stack
Mennola et al. Mass transport in the cathode of a free-breathing polymer electrolyte membrane fuel cell
CN106814325A (en) A kind of Forecasting Methodology of SOFC pile interior temperature distribution
CN110336057A (en) A kind of cross-current pile two-dimension temperature distributive observation device construction method and its application
Piffard et al. Control by state observer of PEMFC anodic purges in dead-end operating mode
CN106898797B (en) Direct methanol fuel cell stack feeding control method
CN101494292A (en) Fuel cell system cathode inlet relative humidity control
Jin et al. Modeling of chemical–mechanical couplings in anode-supported solid oxide fuel cells and reliability analysis
Wei et al. Research on PEMFC internal temperature predictions and thermal management strategy based on a Kalman algorithm
Kim et al. Numerical study of a planar solid oxide fuel cell during heat-up and start-up operation
Liu et al. Differential flatness-based observer design for a PEM fuel cell using adaptive-gain sliding mode differentiators
CN108615917A (en) A kind of fault detection system and method for solid oxide fuel battery system
Shi et al. Inverse approach to quantify multi-physicochemical properties of porous electrodes for solid oxide fuel cells
Wu et al. Two-dimensional temperature distribution estimation for a cross-flow planar solid oxide fuel cell stack
Luo et al. A nonlinear Luenberger observer for the estimation of temperature distribution in a planar solid oxide fuel cell
US9531017B2 (en) Method of operating a fuel cell
Ma et al. A multi-domain syngas solid oxide fuel cell model for transportation applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171107

Termination date: 20191120

CF01 Termination of patent right due to non-payment of annual fee