CN105303999A - 用于amoled显示器的像素电路的缺陷检测及修正 - Google Patents

用于amoled显示器的像素电路的缺陷检测及修正 Download PDF

Info

Publication number
CN105303999A
CN105303999A CN201510293521.5A CN201510293521A CN105303999A CN 105303999 A CN105303999 A CN 105303999A CN 201510293521 A CN201510293521 A CN 201510293521A CN 105303999 A CN105303999 A CN 105303999A
Authority
CN
China
Prior art keywords
voltage
pixel
current
oled
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510293521.5A
Other languages
English (en)
Inventor
戈尔拉玛瑞扎·恰吉
贾马尔·索尼
乔纳森·杰基尔
阿利森·詹尼科里斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ignis Innovation Inc
Original Assignee
Ignis Innovation Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/291,231 external-priority patent/US10996258B2/en
Application filed by Ignis Innovation Inc filed Critical Ignis Innovation Inc
Publication of CN105303999A publication Critical patent/CN105303999A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • G09G2320/0295Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了在基于阵列的半导体器件的制造期间检测所述半导体器件的缺陷的方法,其包括如下步骤:在制造形成所述半导体器件的多种类型的实体的中间阶段检测形成所述半导体器件的所述实体中的缺陷;确定检测到的缺陷是否超过了检测出缺陷的所述实体的类型的预选阀值;如果所述检测到的缺陷没有超过所述预选阀值,则继续所述半导体器件的制造;以及如果所述检测到的缺陷超过所述预选阀值,则对所述检测到的缺陷的类型进行识别,修复识别出的缺陷并且继续所述半导体器件的制造。根据本发明,能够在制造期间识别出缺陷和不均匀性。

Description

用于AMOLED显示器的像素电路的缺陷检测及修正
技术领域
本发明大体上涉及有源矩阵有机发光器件(AMOLED)显示器,并具体地涉及确定要求对这类显示器的像素进行补偿的老化条件,以及用于检测这类显示器中的缺陷和不均匀性的检测***。
背景技术
当前需要用于提供显示器时间和空间信息的精确测量的技术以及应用这样的信息来提高AMOLED显示器中的显示均匀性的方法。出于老化补偿的目的,也需要精确地确定像素特性的基线测量。
AMOLED显示器中使用的OLED和薄膜晶体管(TFT)都会因生产问题而在显示面板上呈现出不均匀的表现。如果在生产面板时(例如,在制造期间或紧随制造之后)能够识别出缺陷和不均匀性,那么就能够解决这类问题。
发明内容
根据一个实施例,提供了一种用于通过如下方式在基于阵列的半导体器件的制造期间检测所述半导体器件的缺陷的***:(a)在制造形成所述半导体器件的多种类型的实体的中间阶段检测形成所述半导体器件的所述实体中的缺陷;(b)确定检测到的缺陷是否超过了检测出缺陷的所述实体的类型的预选阀值;(C)如果所述检测到的缺陷没有超过所述预选阀值,则继续所述半导体器件的制造;以及(d)如果所述检测到的缺陷超过所述预选阀值,则对所述检测到的缺陷的类型进行识别,修复识别出的缺陷并且继续所述半导体器件的制造。
在一个实施例中,所述基于阵列的半导体器件是有源矩阵有机发光器件(AMOLED)显示面板,且多种类型的主体至少包括驱动晶体管、OLED和信号线。所述预选阀值可随着所述检测到的缺陷的数目的增大而变化,并且通过根据检测出缺陷的所述实体的类型而定制的测试来对缺陷的所述类型进行识别。可以通过下述方式在所述实体中检测缺陷:测量单个像素中的电压或电流并将测量值与所述电压或电流的预选阀值进行比较。测量的所述电流可以是流至像素的发光器件的电流,且测量的所述电压可以是在像素电路与所述像素的发光器件的连接处的电压。可以通过下述方式在所述实体中检测缺陷:基于正常像素中的电流或电压的最低电平来预选电流或电压的参考电平,并且将测量的电流或电压与对应的预选的所述参考电平进行比较。
根据参考附图(接下来将对它们进行简要说明)对各种实施例和/或各方面进行的详细说明,对本领域技术人员而言,本发明的前述的和附加的方面及实施例将是显而易见的。
附图说明
在阅读下面的详细说明并参考附图后,本发明的前述的和其他的优点对本领域技术人员而言将是显而易见的。
图1是具有用于修正参数补偿控制的数据的参考像素的AMOLED显示器的框图;
图2A是AMOLED的可进行老化参数的测试的一个像素的的驱动电路的框图;
图2B是AMOLED的像素中的一个像素的驱动电路的电路图;
图3是用于确定被测装置的基线老化参数之一的***的框图;
图4A是图3中的用于将参考电流电平与用于老化补偿的被测装置进行比较的电流比较器的框图;
图4B是图4A中的电流比较器的详细电路图;
图4C是与图4A中的电流比较器连接的图3中的被测装置的详细框图;
图5A是在确定被测装置的电流输出的过程中用于图3-4中的电流比较器的信号的信号时序图;
图5B是图3至4中的电流比较器的用于校正偏置电流的信号的信号时序图;
图6是用于补偿图1中的AMOLED显示器的老化的参考电流***的框图;
图7是用于在不同情况下调整显示器所使用的多个亮度文件的***的框图;
图8是用于显示器中的像素的校准的视频帧的框图;以及
图9示出了用于更精确的老化补偿的施加至参考像素的小电流的使用。
图10是具有包括参考像素的行的像素矩阵的显示器的示意图。
图11是通过在编程之前施加重置循环而进行的老化补偿的时序图,在重置循环期间使用重置值对像素进行编程。
图12A是具有IR降补偿的像素电路的电路图。
图12B是图12A的像素电路的正常操作的时序图。
图12C是图12A的像素电路的直接TFT读出的时序图。
图12D是图12A的像素电路的直接OLED读出的时序图。
图13A是具有电荷基补偿的像素电路的电路图。
图13B是图13A的像素电路的正常操作的时序图。
图13C是图13A的像素电路的直接TFT读出的时序图。
图13D是图13A的像素电路的直接OLED读出的时序图。
图13E是图13A的像素电路的间接OLED读出的时序图。
图14是偏置像素电路的电路图。
图15A是具有与OLED和像素电路连接的信号线的像素电路的电路图。
图15B是具有作为信号线而被图案化的ITO电极的像素电路的电路图。
图16是用于面板的探测的焊盘布置的示意图。
图17是用于背板测试的像素电路的电路图。
图18是用于全显示器测试的像素电路的电路图。
图19是适于接收探针卡(probecard)的显示面板的示意性立体图。
图20是图1中所示的显示面板的示意性正视图,该图示出了用于接收探针卡的探针焊盘的位置。
图21示出了连接至用于将探针信号提供至探针焊盘的多路复用器的一对探针焊盘。
图22是图3中所示的被连接用来接收显示信号的一个探针焊盘的示意性电路图。
图23是用于进行AMOLED面板的测量以及各种的修正动作的检测***的示意图,所述修正可用来修复通过该测量的分析而识别出的缺陷。
图24是具有信号WR的像素电路的示意性电路图。
图25是适于检测的一对像素电路的电路图。
本发明能够具有各种修改和替代形式,已通过附图中的示例示出了具体实施例并将在本文中详细地对它们进行说明。然而,应当理解的是,本发明并不限于所披露的特定形式。本发明能够覆盖在如本发明所附的权利要求所限定的本发明的精神和范围内的所有的修改、等同物及替代物。
具体实施方式
图1是具有有源矩阵区或像素阵列102的电子显示***100,其中,有效像素104a-d的阵列以行和列的构造排列。为了便于说明,仅示出了两行和两列。有源矩阵区(像素阵列102)的外部是布置有用于驱动和控制像素阵列102的区域的周边电路的周边区域106。周边电路包括栅极或地址驱动电路108、源级或数据驱动电路110、控制器112以及可选电源电压(例如,Vdd)驱动器114。控制器112控制栅极驱动器108、源级驱动器110和电源电压驱动器114。在控制器12的控制下,栅极驱动器108对地址或选择线SEL[i]和SEL[i+1]等进行操作,地址或选择线用于像素阵列102中的像素104的每行。在下述的像素共享构造中,栅极或地址驱动电路108也可选择地对全局选择线GSEL[j]和/GSEL[j]进行操作,全局选择线GSEL[j]和/GSEL[j]对像素阵列102中的多行像素104a-d进行操作,诸如像素104a-d的每两行。电压数据线将指示像素104中的每个发光器件的亮度的电压编程信息输送至每个像素104。每个像素104中的诸如电容器等存储元件存储电压编程信息,直到发光或驱动循环开启发光器件为止。可选电源电压驱动器114在控制器112的控制下控制电源电压(EL_Vdd)线,电源电压线用于像素阵列102中的像素104a-d的每行。
显示***100还可包括提供电流偏置线上的固定电流的电流源电路。在一些构造中,能够将参考电流提供至电流源电路。在这种构造中,电流源控制器控制电流偏置线上的偏置电流的施加时序。在参考电流没有被提供至电流源电路的构造中,电流源地址驱动器控制电流偏置线上的偏置电流的施加时序。
众所周知,显示***100中的每个像素104a-d都需要利用指示像素104a-d中的发光器件的亮度的信息来进行编程。帧(frame)限定了包括编程周期或阶段以及驱动或发光周期或阶段的时间周期,其中在所述编程周期内利用指示亮度的编程电压对显示***100中的每个像素进行编程,且在所述驱动周期内每个像素中的每个发光器件被开启从而以与存储元件中所存储的编程电压相应的亮度发光。因此,帧是构成显示***100上所显示的完整运动图像的许多静态图像之中的一个静态图像。用于编程并驱动像素的方案至少有两种:逐行(row-by-row)或逐帧(frame-by-frame)。在逐行编程中,一行像素被编程并然后被驱动,然后下一行像素被编程并被驱动。在逐帧编程中,首先对显示***100中的所有行的像素进行编程,然后逐行地对所有的帧进行驱动。任一种方案都能够使用在每帧的开始或结束处的短暂的垂直消隐时间,在垂直消隐时间内既不对像素进行编程也不对像素进行驱动。
在布置有像素阵列102的同一物理基板上,位于像素阵列102外部的部件可以被布置在像素阵列102周围的周边区域106中。这些部件包括栅极驱动器108、源级驱动器110和可选电源电压控制器114。或者,周边区域中的一些部件可以被布置在与像素阵列102相同的基板上,而其它部件被布置在不同的基板上,或者周边区域中的所有部件都被布置在与布置有像素阵列102的基板不同的基板上。栅极驱动器108、源级驱动器110、电源电压控制器114共同构成显示驱动电路。一些构造中的显示驱动电路可包括栅极驱动器108和源级驱动器110,但不包括电源电压控制器114。
显示***100还包括从数据输出线VD[k]和VD[k+1]等读取输出数据的电流供给和读出电路120,数据输出线用于像素阵列102中的每列像素104a和104c。在像素阵列102的边缘处,一组列参考像素130被装配在每列(诸如像素104a和104c的列)的端部。列参考像素130还可从控制器112接收输入信号并将数据信号输出至电流供给和读出电路120。列参考像素130包括驱动晶体管和OLED,但不是显示图像的像素阵列102的一部分。如下面将进行说明的,列参考像素130在多数编程周期中不被驱动,这是因为它们不是显示图像的像素阵列102的一部分,并且因此与像素104a和104c相比不会因编程电压的持续施加而老化。虽然在图1中仅示出了一个列参考像素130,但是应当理解的是,可以有任意数量的列参考像素,尽管在本示例中的每列像素可使用二到五个这样的参考像素。阵列102中的每行像素还包括位于每行像素104a-d(诸如像素104a和104b)的末端处的行参考像素132。行参考像素132包括驱动晶体管和OLED,但不是显示图像的像素阵列102的一部分。如将进行说明地那样,行参考像素132具有提供像素的亮度曲线的基准检查的功能,所述像素的亮度曲线是在生产时被确定的。
图2A示出了图1的像素104的驱动电路200的框图。驱动电路200包括驱动装置202、有机发光器件(“OLED”)204、存储元件206和开关装置208。电压源212连接至驱动装置202。选择线214连接至开关装置以激活驱动电路200。数据线216使编程电压被施加至驱动装置202。监控线218使OLED204和/或驱动装置202的输出被监控。或者,监控线218和数据线216可被合并成一条线(即,Data/Mon),以通过这一条线既执行编程功能又执行监控功能。
图2B示出了实施图2A中的驱动电路200的电路的一个示例。如图2B所示,驱动装置202是驱动晶体管,在本示例中,该驱动晶体管是由非晶硅制成的薄膜晶体管。在本示例中,存储元件206为电容器。开关装置208包括将不同的信号切换至驱动电路200的选择晶体管226和监控晶体管230。选择线214连接至选择晶体管226和监控晶体管230。在读出时间期间,选择线214被拉高。可经由编程电压输入线216施加编程电压。可从与监控晶体管230连接的监控线218读取监控电压。可与像素编程周期平行地发送信号至选择线214。如下面将进行说明的那样,可通过将参考电压施加至驱动晶体管的栅极来周期性地测试驱动电路200。
有几种用于从诸如显示***100等被测装置(DUT)提取电特性数据的技术。被测装置(DUT)可以是包括(但不限于)发光二极管(LED)或OLED的任何材料(或器件)。这种测试可以有效地确定由诸如图1中的阵列102等像素阵列组成的面板中的OLED的老化(和/或均匀性)。在图1中的控制器112中的存储器中,可将此提取出的数据存储在查找表中作为原始或被处理的数据。所述查找表可被用来对背板或OLED的电参数中的任何偏移(例如,阀值电压偏移或OLED操作电压的偏移)进行补偿。尽管在这些示例中使用了图1中的OLED显示器,但是本文中说明的技术可以被应用于包括但不限于OLED、液晶显示器(LCD)、发光二极管显示器或等离子体显示器等的任何显示技术。在OLED的情况下,测量出的电信息可以提供可能已经发生的任何老化的提示。
可将电流施加至被测装置且可对输出电压进行测量。在此示例中,使用模数转换器(ADC)对电压进行测量。为了有相同的输出,与新的OLED的编程电压相比,发生老化的诸如OLED等器件需要更高的编程电压。此方法给出了被测装置的此电压变化的直接测量。电流流向可以是任何方向,但是出于说明的目的电流通常被馈入至被测装置(DUT)。
图3是可用于确定被测装置302的基线值以确定老化对被测装置302的影响的比较***300的框图。比较***使用两个参考电流来确定被测装置302的基线电流输出。被测装置302可以是诸如图2B中的驱动晶体管202等驱动晶体管或诸如图2B中的OLED204等OLED。当然,也可使用图3中所示的***对其它类型的显示装置进行测试。被测装置302具有被保持在恒定电平的编程电压输入304以输出电流。电流比较器306具有第一参考电流输入308和第二参考电流输入310。参考电流输入308经由开关314连接至第一参考电流源312。比较器306的第二电流输入310经由开关318连接至第二参考电流源316。被测装置302的输出320也连接至第二电流输入310。电流比较器306包括比较输出322。
通过使输入304的电压保持恒定,被测装置302的输出电流也是恒定的。此电流取决于被测装置302的特性。针对来自第一参考电流源312的第一参考电流确立恒定电流且经由开关314将第一参考电流施加至电流比较器306的第一输入308。第二参考电流被调整成不同的电平,其中各电平经由开关318连接至比较器306的第二输入310。第二参考电流与被测装置302的输出电流混合。由于第一参考电流电平和第二参考电流电平是已知的,所以电流比较器306的输出322的两个参考电流电平之间的差就是被测装置302的电流电平。为被测装置302存储得到的输出电流并将该输出电流与在被测装置302的使用寿命操作期间基于相同的编程电压电平周期性地测量出的电流进行比较,以确定老化的影响。
针对显示器中的每个器件,获得的确定器件电流可以被存储在查找表中。由于被测装置302发生老化,所以电流将从期望电平发生改变且因此编程电压可被改变为对基于通过图3中的校准过程确定的基线电流的老化的影响进行补偿。
图4A是可用于将参考电流与例如图3中的被测装置302的电流进行比较的电流比较器电路400的框图。电流比较器电路400具有允许诸如两个参考电流等各种电流输入以及诸如图1中的像素驱动电路200等被测装置的电流的控制节点402。在驱动晶体管202的电流被比较时电流为正电流或在OLED204的电流被比较时电流为负电流。电流比较器电路400还包括运算跨阻放大电路404、前置放大器406以及产生电压输出410的电压比较器电路408。组合电流被输入至运算跨阻放大电路404并被转换成电压。该电压被输入至前置放大器并且电压比较器电路408确定电流差是为正还是为负并输出各电流差或零值。
图4B是图4A中的可以被用来针对诸如装置302等被测装置如图3中的处理中所述地比较电流的电流比较器电路400的示例的部件的电路图。运算跨阻放大电路404包括运算放大器412、第一电压输入414(CMP_VB)、第二电压输入416(CMP_VB)、电流输入端418以及偏置电流源420。运算跨阻放大电路404还包括两个校准开关424和426。如下面将进行说明的,在本示例中,诸如图3中所示的被测装置302的电流、可变的第一参考电流及固定的第二参考电流等各种电流连接至电流输入418。当然,若需要,可将固定的第二参考电流设定为零。
第一参考电流输入与运算放大器412的负输入连接。因此,运算放大器412的负输入与图3中的被测装置302的输出电流以及一个或两个参考电流连接。运算放大器412的正输入与第一电压输入414连接。运算放大器412的输出与晶体管432的栅极连接。电阻器434连接在运算放大器412的负输入与晶体管432的源级之间。电阻器436连接在晶体管432的源级与第二电压输入416之间。
晶体管432的漏极直接连接至晶体管446的漏极并经由校准开关426连接至晶体管446的栅极。采样电容器444通过开关424连接在晶体管446的栅极与电源电压线411之间。晶体管446的源级也连接至电源电压线411。晶体管446的漏极和栅极分别与晶体管440和442的栅极端子连接。晶体管440和442的源级连接在一起并连接至偏置电流源438。晶体管440和442的漏极分别连接至晶体管448和450,晶体管448和450以二极管连接的构造被接线至电源电压线411。如图4B所示,晶体管440、442、448和450以及偏置电流源438是前置放大器406的部件。
晶体管442的漏极和晶体管440的漏极分别与晶体管452的栅极和晶体管454的栅极连接。晶体管452和454的漏极连接至晶体管456和458。晶体管456的漏极和晶体管458的漏极分别连接至晶体管460的源级和晶体管462的源级。晶体管460和462的漏极端子和栅极端子分别连接至晶体管464和466的漏极端子和栅极端子。晶体管464和466的源级端子连接至电源电压线411。晶体管464的源级和漏极连接至晶体管468的源级和漏极,晶体管466的源级和漏极连接至晶体管470的源级和漏极。晶体管456和458的栅极连接至使能输入(enableinput)472。使能输入472还连接至双晶体管468和470的栅极。
缓冲电路474连接至晶体管462的漏极和晶体管460的栅极。输出电压410连接至缓冲电路476,缓冲电路476连接至晶体管460的漏极和晶体管462的栅极。缓冲电路474用于平衡缓冲电路476。晶体管452、454、456、458、460、462、464、466、468和470以及缓冲电路474和476构成了电压比较器电路408。
电流比较器***400可以基于包括但不限于CMOS半导体制造的任何集成电路技术。在本示例中,电流比较器***400的部件是CMOS器件。针对来自第一电流输入端418(Iref)的给定参考电流电平,确定输入电压414和416的输入电压的值。在本示例中,输入电压414和416的电压电平相同。可以通过使用在图4中没有示出的数模转换器(DAC)装置来控制输入至运算放大器412的电压输入414和416。如果DAC的电压范围不足,那么也可增加电平移位器。偏置电流可以由诸如跨阻放大器电路等电压控制电流源或诸如薄膜晶体管等晶体管产生。
图4C示出了诸如图3中所示的***300等测试***的一个示例的详细框图。图4C中的测试***连接至被测装置302,其中被测装置302可以是诸如图2中所示的像素驱动电路200等的像素驱动电路。在本示例中,对平板显示器的所有驱动电路进行测试。栅极驱动器电路480连接至所有驱动电路的选择线。栅极驱动器电路480包括使能输入,在本示例中当输入的信号为低时所述使能输入启动被测装置302。
被测装置302从源级驱动器电路484接收数据信号。源级驱动器电路484可以是诸如图1中的源级驱动器120等的源级驱动器。数据信号为预定值的编程电压。当栅极驱动器电路480启动装置时,被测装置302在监控线上输出电流。来自被测装置302的监控线的输出连接至使多个装置能够进行测试的模拟多路复用电路482连接。在本示例中,模拟多路复用电路482允许210个输入的多路复用,但是,当然可以对任意数量的输入进行多路复用。
被测装置302的信号输出与运算跨阻放大电路404的参考电流输入418连接。在本示例中,如图3所述,可变参考电流源连接至电流输入端418。在本示例中,不存在诸如图3中的第一参考电流等固定电流。因此,图3中的第一参考电流源的值在本示例中被认为是零。
图5A是图4A-4C中所示的电流比较器的信号的时序图。图5A中的时序图示出了图4C中的栅极驱动器480的栅极使能信号502、与模拟多路复用器482连接的CSE使能信号504、由可变参考电流源(其在测试处理的每次重复中被设定为预定电平并与电流输入端418连接)产生的电流参考信号506、控制校准开关426的校准信号508、控制校准开关424的校准信号510、连接至使能输入472的比较器使能信号512以及输出410上的输出电压514。CSE使能信号504被保持为高,以确保被测装置302的监控线上的任何泄漏在最终的电流比较中被消除。
在第一阶段520中,栅极使能信号502被拉高且因此,图4C中的被测装置302的输出为零。因此,输入至电流比较器400的电流仅是来自被测装置302的监控线的泄漏电流。参考电流506的输出也被设定为零,使得图4B和4C中的晶体管432和436的最佳静止状态仅受线泄漏或读出电路的偏移最小程度地影响。校准信号508被设定为高,这使校准开关426关闭。校准信号510被设定为高,这使校准开关424关闭。比较器使能信号512被设定为低且因此电压比较器电路408的输出被重置为逻辑1。因此,泄漏电流被输入至电流输入418且用于表示面板上的监控线的泄漏电流的电压被存储在电容器444上。
在第二阶段522中,栅极使能信号502被拉低且因此被测装置302的输出在来自源极驱动器电路484的设定编程电压输入下产生未知电流。来自被测装置302的电流与被设定为第一预定值并与被测装置的电流方向相反的参考电流506一起通过电流输入418而被输入。因此,电流输入418是参考电流506与来自被测装置302的电流的差。校准信号510被短暂地设定为低,以打开开关424。然后,校准信号508被设定为低且因此开关426被打开。然后,控制开关424的校准信号510被设定为高,以关闭开关424,从而使晶体管446的栅极端子上的电压稳定化。比较器使能信号512保持为低且因此没有来自电压比较器电路408的输出。
在第三阶段524中,比较器使能信号512被拉高且电压比较器408在电压输出410上产生输出。在本示例中,输出电压信号514的正电压输出逻辑1表示正电流,因此表明了被测装置302的电流大于预定参考电流。电压输出端410上的零电压表示负电流,该负电流表明被测装置302的电流小于预定电平的参考电流。以此方式,被测装置的电流与参考电流之间的任何差异都被电流比较器电路400放大并检测出。然后,基于检测的结构将参考电流的值移至第二预定电平且重复阶段520、522和524。对参考电流进行调整使得比较电路400能够被测试***使用,以确定被测装置302的电流输出。
图5B是为了确定用于运算跨阻放大电路404的图4B中的偏置电流源420的最佳偏置电流值而施加至图4C中所示的测试***的信号的时序图。为了获得电流比较器电路400的最大信噪比(SNR),必须对电流比较器进行校准。通过偏置电流源420的微调(finetuning)来实现所述校准。偏置电流源420的最佳偏置电流电平使像素的测量期间的噪声功率(其也是线泄漏的函数)最小化。因此,需要捕捉电流比较器的校准期间的线泄漏。
图5B中的时序图示出了图4C中的栅极驱动器480的栅极使能信号552、与模拟多路复用器482连接的CSE使能信号554、控制校准开关426的校准信号556、与使能输入472连接的比较器使能信号558、由可变参考电流源(其在测试过程的每次重复中被设定为预定电平并与电流输入端418连接)产生的电流参考信号560以及输出410上的输出电压562。
CSE使能信号554被保持为高,以确保线上的任何泄漏被包括在校准处理中。为了防止被测装置302输出来自任何数据输入的电流,栅极使能信号552也被保持为高。在第一阶段570中,校准信号556被拉高,从而关闭校准开关426。另一校准信号被拉高,以关闭校准开关424。为了重置来自电压比较器电路408的电压输出,比较器使能信号558被拉低。来自被测装置302的监控线的任何泄漏电流被转换成存储在电容器444中的电压。
当输入至开关424的校准信号被拉低且随后校准信号556被拉低从而打开开关426时,进入第二阶段572。然后,输入至开关424的信号被拉高从而关闭开关424。小电流从参考电流源被输出至电流输入418。该小电流值是与电流比较器400的最小可检测信号(MDS)范围相对应的最小值。
当比较器使能信号558被拉高从而使电压比较器电路408能够读取输入时,进入第三阶段574。电压比较器电路408在输出410上的输出应当为正,这表示与泄漏电流相比的正电流。
当校准信号556再次被拉高从而关闭校准开关426时,进入第四阶段576。为了重置从电压比较器电路408输出的电压,比较器使能信号558被拉低。来自被测装置302的监控线的任何泄漏电流被转换成存储在电容器444中的电压。
当输入至开关424的校准信号被拉低且随后校准信号556被拉低从而打开开关426时,进入第五阶段578。然后,输入至开关424的信号被拉高,从而关闭开关424。小电流从参考电流源被输出至电流输入418。该小电流为与电流比较器400的最小可检测信号(MDS)范围相对应的最小值,但是是与第二阶段572中的正电流相反的负电流。
当比较器使能信号558被拉高从而使电压比较器电路408能够读取输入时,进入第六阶段580。电压比较器电路408在输出410上的输出应当为零,这表示与泄漏电流相比的负电流。
重复阶段570、572、574、576、578和580。通过调整偏置电流的值,最终,在1和0之间的有效输出电压触发的比率达到表示最佳偏置电流值的最大值。
图6是图1中的显示***100的控制器112的补偿组件的框图。补偿组件包括老化提取部600、背板老化/匹配模块602、色彩共享/伽马修正模块604、OLED老化存储器606以及补偿模块608。用于驱动显示***100的具有电子元件的背板可以是包括(但不限于)非晶硅、多晶硅、单晶硅、有机半导体和氧化半导体的任何技术。而且,显示***100可以是包括(但不限于)LED或OLED的任何显示器材料(或器件)。
老化提取部600被连接用来接收来自阵列102的输出数据,该输出数据基于阵列的像素的输入并且与用于测试老化对于阵列102的影响的输出相对应。老化提取部600使用列参考像素130的输出作为用于与有效像素104a-d的输出进行比较的基线,以确定包括各个列参考像素130在内的每列上的像素104a-d中的各者受到的老化影响。可替代地,可计算出列中的像素的平均值并将其与参考像素的值进行比较。色彩共享/伽马修正模块604也从列参考像素130获取数据以确定适当的色彩修正,从而补偿像素受到的老化影响。用于比较对比测量的基线可以被存储在存储器606中的查找表中。背板老化/匹配模块602计算用于显示器的背板和电子产品的组件的调整。补偿模块608被提供有来自老化提取部600、背板老化/匹配模块602以及色彩共享/伽马修正模块604的输入,以修改输入至图1中的像素104a-d的编程电压从而对老化影响进行补偿。补偿模块608访问查找表,以获得阵列102上的像素104a-d中的每个像素基础数据,所述基础数据将与校准数据结合使用。补偿模块608基于查找表中的值以及从显示阵列102中的像素获得的数据对像素104a-d的编程电压进行相应地修改。
图2中的控制器112对来自图1中的显示阵列102中的像素104a-d的数据进行测量,以对测量期间收集到的数据进行正确地规一化。对于每列上的像素,列参考像素130在这些功能中起到辅助作用。列参考像素130可位于用图1中的像素104a-d代表的有效观看区域(activeviewingarea)的外部,但是这类参考像素也可嵌入积极观察区域内。列参考像素130保存有诸如未老化或以预定方式老化等受控条件,从而为显示阵列102中的像素104a-d的测量数据提供补偿和抵消信息(offsetandcancellationinformation)。此信息帮助控制器112抵消来自诸如室温等外源或诸如来自其它像素104a-d的泄漏电流等***自身内部的共模噪声。使用阵列102上的几个像素的加权平均值也可提供关于全面板特性的信息,以解决诸如由于整个面板上的电阻引起的电压降,即电流/电阻(IR)降等问题。列参考像素130的由已知和受控源施加的信息可被使用在由补偿模块608执行的补偿算法中,以减小任何发散性产生的补偿误差。可使用从面板的初始基线测量收集的数据来对多个列参考像素130进行选择。坏的参考像素被识别出,且可选择替代的参考像素130以确保进一步的可靠性。当然,应当理解的是,为了校准和测量,可以使用行参考像素132来代替列参考像素130并且可以使用行来代替列。
在使用外部读出电路来对像素特性的漂移进行补偿的显示器中,当像素随时间而被提供已知的输入信号时,读出电路从像素中读取电流、电压和电荷中的至少一者。读出信号被翻译成像素参数的漂移并被用来对像素特性变化进行补偿。这些***主要容易出现因诸如温度变化、老化和漏电等不同的现象产生的读出电路变化的偏移。如图10所述,可使用参考像素行(图10中的具有阴影线的像素)来从读出电路消除这些影响,且可在显示阵列中使用这些参考行。这些参考像素行以大体上不受老化影响的方式而被偏置。读出电路读出这些参考像素行,也读出正常的显示行。之后,通过参考值来对正常行的读出值进行修正,以消除不期望的影响。由于每一列连接至一个读出电路,所以实用的方法是使用列中的参考像素来调整这列的正常像素。
主要变化将是面板上的既影响参考像素又影响像素电路的诸如温度等的全局影响。在此情况下,将通过补偿值来消除这种影响,所以将存在针对这样的现象的单独补偿。
为了在没有额外补偿因素或传感器的情况下提供针对全局现象的补偿,从参考像素减去全局现象的影响。有不同的方法来计算全局现象的影响。然而,直接影响是:
平均参考值:这里,参考像素值的平均值被用作全局现象的影响。然后,可从所有的参考像素中减去此值。因此,如果使用全局现象对参考值进行修改,那么它将被从这些参考值中减去。因此,当通过参考值对像素测量值进行修正时,像素值中的全局影响将保持不变。因此,这将能够对这样的影响进行补偿。
主参考像素:另一种方法是使用主参考像素(主参考像素可以是参考像素的子集或完全不同的参考像素)。与前一方法类似,从参考像素电路中减去主参考像素的平均值,这导致在像素测量值中留有全局现象的影响。
有多种可以利用图1中的列参考像素130的补偿方法。例如,在薄膜晶体管测量中,将列参考像素130所需的用于输出电流的数据值从有源区(像素阵列102)中的相同列的像素104a-d的数据值中减去,以输出相同的电流。列参考像素130和像素104a-d的测量在时间上可以发生得非常接近,例如,在相同的视频帧期间内。电流的任何差异表示像素104a-d受到的老化影响。控制器112可使用获得的值来计算对像素104a-d的编程电压的适当调整,以在显示器的使用寿命内保持相同的亮度。列参考像素130的另一作用是为其它像素104提供参考电流以用作基线并且确定那些像素的电流输出受到的老化影响。因为参考像素130和有效像素104具有共同的数据和供电线,所以一些共模噪声抵消在测量中是固有的,因而参考像素130可简化数据操作。为了验证在生产显示器期间为了补偿用控制器的使用而存储的像素的亮度曲线是正确的,可对行参考像素132进行周期性地测量。
对于1080p显示器,在发货之前对显示器上的诸如图2中的驱动电路200等所有驱动电路的驱动晶体管和OLED的测量需要60至120秒,并将检测任何短路和开路的驱动晶体管和OLED(这导致故障或不发光的像素)。它还将检测驱动晶体管或OLED性能中的不均匀性(这导致亮度不均匀)。此技术可代替使用数码相机的光学检测,这使得在生产设备中不需要此昂贵的部件。由于滤色器是纯光学元件,所以不能够以电学的方式对使用滤色器的AMOLED进行完全地检测。在此情况下,通过提供额外的诊断信息并潜在地降低光学检测的复杂性,诸如Ignis的MAXLIFETM等对老化进行补偿的技术结合光学检测步骤可能是有用的。
这些测量提供的数据比光学检测可以提供的数据更多。知道点缺陷是否是由于短路或开路的驱动晶体管或者短路或开路的OLED而造成的可以帮助识别生产过程中的根本原因或缺陷。例如,短路OLED的最常见原因是在处理期间落在玻璃上的使OLED的阳极和阴极短路的微粒子污染。OLED短路的增加可以表明应当关闭生产线进行反应室清洗,或可以开始查找颗粒的新源头(过程,或设备,或人员,或材料的变化)。
诸如MAXLIFETM***等用于对老化影响进行补偿的弛豫***可以对过程不均匀性进行修正,这提高了显示器的良品率(yield)。然而,TFT或OLED中的测量电流和电压关系或特性对诊断也是有帮助的。例如,OLED电流电压特性的形状可以揭示出增大的电阻。可能的原因可能是晶体管源级/漏极金属与ITO之间的接触电阻的变化(在底部发射AMOLED中)。如果显示器的角落里的OLED显示出不同的电流电压特性,那么可能的原因可能是制造过程中的掩模未对准。
显示器上的具有不同的OLED电流电压特性的条纹或圆形区域可能是由于在制造过程中用来使有机蒸汽分散的歧管中的缺陷而造成的。在一个可能的情况中,OLED材料的小颗粒可能从高处护罩剥落并落在歧管上,从而部分地阻塞孔口。测量数据将以具体图案显示出不同的OLED电流电压特性,这将有助于讯速地诊断问题。由于测量的精确性(例如,4.8英寸显示器以100nA的分辨率测量电流)以及OLED电流电压特性本身(代替亮度)的测量,所以能够检测到使用光学检测无法发现的变化。
此高精度的数据可用于统计过程控制,从而在处理开始漂移出所述控制的控制界限时进行识别。这能够使在完成的产品中检测出缺陷之前就提早进行修正动作(在OLED或驱动晶体管(TFT)的制造过程中)。由于对每个显示器上的每个TFT和OLED进行采样,所以测量样品被最大化。
如果驱动晶体管和OLED都正常地工作,那么期望范围内的读数将被返回至各组件。像素驱动电路要求,当对驱动晶体管进行测量时,OLED关闭(反之亦然),所以如果驱动晶体管或OLED处于短路中,那么将使其它的测量不准确。如果OLED短路(所以电流读数为MAX),那么数据将显示驱动晶体管开路(电流读出MIN),但是实际上,驱动晶体管可能是能够进行操作的或开路。如果需要关于驱动晶体管的额外数据,那么暂时地断开电源电压(EL_VSS)并使它浮动,这将获得表明TFT实际上是能够进行操作的还是处于开路的正确的驱动晶体管测量。
以相同的方式,如果驱动晶体管短路,数据将显示OLED开路(但是OLED可能是能够进行操作的或开路)。如果需要关于OLED的额外数据,那么断开电源电压(EL_VDD)并使它浮动,这将获得表明OLED实际上是能够进行操作的还是处于开路的正确的OLED测量。
如果像素中的OLED和TFT均表现为短路,那么像素中的一个元件将在测量期间讯速被烧毁,这导致了开路并进入不同的状态。在下面的表1中对这些结果进行了概括。
表1
图7示出了用于基于不同方面随时间控制显示器702的亮度的控制***700的***图。显示器702可包括OLED阵列或基于其它像素的显示装置。***700包括文件生成器(profilegenerator)704和决策器706。文件生成器704接收来自OLED特性表710、背板特性表712和显示器规格文件714的特性数据。对于不同的条件,文件生成器704生成不同的亮度文件720a、720b…720n。这里,为了提高功率消耗、显示寿命和图像质量,可基于OLED和背板信息定义不同的亮度文件720a、720b…720n。而且,基于不同的应用,人们可以从亮度文件720a、720b…720n中选择不同的文件。例如,与时间相关的平板亮度文件可用于显示诸如电影等视频输出,而对于更明亮的应用,亮度能够以限定的速率降低。决策器706可以基于软件或硬件并包括作为对编程电压进行调整的因数的应用输入730、环境参数输入732、背板老化数据输入734和OLED老化数据输入736,以确保显示器702的适当亮度。
为了完美地对显示器老化进行补偿,在显示特性中,短期和长期变化是分离的。一个方法是在测量之间以更短的时间测量显示器上的多个点。因此,快速扫描能够揭示出短期影响,而正常的老化提取能够揭示出长期影响。
补偿***的之前的实施示例使用常规驱动方案,其中,总是存在显示在面板上的视频帧且OLED和TFT电路不断地处于电压力下。每个像素的校准通过如下方式发生:在视频帧期间通过将有效像素的灰度值改变为期望值来进行各像素的校准,所述期望值导致在校准期间看见所测量的子像素的视觉伪影(visualartifact)。如果视频的帧率为X,那么在常规视频驱动中,每个视频帧在图1中的像素阵列102上显示1/X秒且面板始终在运行视频帧。相比之下,如图8所示,本示例中的弛豫视频驱动将帧时间分成四个子帧。图8是包括视频子帧802、虚拟子帧804、弛豫子帧806和替换子帧808的帧800的时序图。
视频子帧802是作为实际视频帧的第一子帧。该视频帧以与常规视频驱动相同的方式产生,从而使用从编程输入接收的视频数据对图1中的整个像素阵列102进行编程。虚拟子帧804是发送至像素阵列102的没有任何实际数据的空子帧。虚拟子帧804用于在施加弛豫子帧806之前将显示在面板102上的同一视频帧保持一段时间。这增加了面板的亮度。
弛豫子帧806是作为像素阵列102中的所有红黄蓝白(RGBW)子像素的灰度值均为零的黑帧的第三子帧。这使面板变黑并将所有的像素104设定至准备好进行校准以及下一个视频子帧***的预定义状态。替换子帧808是为了校准而单独地生成的短子帧。当弛豫子帧806完成且面板变黑时,在下一个视频帧开始数据替换阶段。除了具有替换数据的行之外,在此阶段内没有视频或空白数据被发送至像素阵列102。对于不进行替换的行,仅栅极驱动器的计时器被触发以使整个栅极驱动器的令牌(token)移位。这样是为了加速整个面板的扫描并还能够每帧进行更多测量。
另一种方法用于在替换子帧808内进一步减轻测量的子像素的视觉伪影。该方法是通过如下方式完成的:一旦完成校准,就通过使用黑色对测量的行进行再编程。这使子像素返回至它之前在弛豫子帧806内的状态。然而,仍然有小电流通过像素中的OLED,这使像素被点亮并引起外界注意。因此,为使流过OLED的电流改道,使用非零值对控制器112进行编程,以降低来自像素的驱动晶体管的电流并保持OLED关闭。
具有替换子帧808的缺点在于测量的时间被限制为整个帧的小部分。这限制了每帧的子像素测量的数目。此限制在像素阵列102的工作时间内是可接受的。然而,对于面板的快速基线测量而言,由于必须测量每个像素,所以测量整个显示器将是耗时的任务。为克服此问题,将基线模式添加至弛豫驱动方案。图8还示出了在显示器的基线测量模式期间用于驱动方案的基线帧820。基线测量帧820包括视频子帧822和替换子帧824。如果***被切换至基线模式,那么驱动方案发生改变,使得在诸如帧820等的基线帧中仅有两个子帧。视频子帧822包括用于图像的正常编程数据。在本示例中,如图8所示,替代子帧(测量子帧)824具有比正常替换帧更长的持续时间。因为在该帧时间内可对更多的像素进行测量,所以更长的子帧大幅增加了每帧的测量总数并能够实现面板的更精确的测量。
初期的OLED压力时间下的ΔV偏移(电老化)的陡峭斜率导致效率下降与ΔV偏移的曲线,对于与高ΔV范围相比的低值的ΔV,该曲线表现得不同。这可产生高度非线性的Δη-ΔV曲线,该Δη-ΔV曲线对OLED的初始电老化或对OLED预老化过程非常敏感。此外,由于过程差异,初期的ΔV偏移下降的形状(持续时间和斜率)可能因面板的不同而发生显著地变化。
在上面对参考像素和对应的OLED的使用进行了说明。由于热效应等同地影响有效像素和参考像素,所以这样的参考像素的使用抵消了热效应对ΔV测量的影响。然而,可使用具有低水平应力的OLED的参考像素来代替使用没有老化(零应力)的OLED作为诸如图1中的列参考像素130等参考像素。对电压的热冲击与非老化OLED类似,因此低应力OLED仍可被用来去除因热效应而导致的测量噪声。同时,由于同一面板上剩余的基于OLED的器件具有类似的制造条件,所以有轻微应力的OLED可以作为用于抵消过程差异对列中的有效像素的Δη-ΔV曲线的影响的良好参考。如果这样的OLED被用作参考,那么陡峭的早期ΔV偏移也将得以缓和。
为使用有应力的OLED作为参考,以恒定的低电流(全电流的1/5至1/3)对参考OLED施压,其(针对某一外加电流的)电压必须如下被用来抵消像素OLED的热问题和过程问题:
W = V pixelOLED - V refOLED V refOLED
在此方程式中,W是基于有效像素OLED的电压与参考像素OLED的电压之间的差除以参考像素OLED的电压而获得的相对电老化。图9是示出了基于W值的268uA的应力电流的点的绘图902的图900。如图900所示,对于高压力OLED而言,像素OLED的W值与亮度下降如所示出地为接近线性的关系。
图11是涉及在编程之前对像素电路的重置的像素补偿的时序图1100。根据工艺参数,被驱动后的像素电路可能受到诸如电荷陷阱或快速光跃迁(fastlighttransition)等不利伪影的影响。例如,非晶或多晶硅工艺可能导致电荷陷阱,在电荷陷阱中,像素电路在驱动循环之后在存储电容器中保留残余量的电荷。金属氧化物工艺可能导致像素电路在诸如快速视频序列期间内更容易发生快速光跃迁,在快速光跃迁期间像素快速地变化。在测量像素电流(以对老化、过程不均匀性或其它影响进行补偿)之前,这些伪影可能影响像素电路的校准。为了对这些伪影进行补偿,时序序列1100具有重置循环1102。在重置循环1102期间,使用取决于用来制造显示阵列的工艺的与最大电压值或最小电压值相对应的重置电压值对将要测量的像素电路进行编程。例如,在根据非晶或多晶硅工艺制造的显示阵列中,重置电压值可对应于全黑值(使像素电路显示黑色的值)。例如,在使用金属氧化物工艺制造的显示器中,重置电压值可对应于全白值(使像素电路显示白色的值)。
在重置循环1102期间,消除了先前的测量对像素电路的影响(例如,像素电路中的残余电荷陷阱),也消除了由于像素电路中的短期变化而造成的任何影响(例如,快速光跃迁)。紧接着重置循环1102,在校准循环1104期间,使用基于像素电路的之前的提取数据或参数的校准电压对像素电路进行编程。校准电压也可以基于预定义的电流、电压或亮度。在校准循环1104中,随后对像素电路的像素电流进行测量,且基于测量的电流对像素电路的提取数据或参数进行更新。
在紧接着校准循环1104之后的编程周期1106期间,使用视频数据对像素电路进行编程,其中所述视频数据是使用更新过的提取数据或参数校准后的视频数据。然后,在紧接着编程周期1106之后的驱动循环1108中,像素电路被驱动以基于编程的视频数据发光。
图12A图示了具有IR降补偿的像素电路。因为Vmonitor在编程期间没有作用且Vdata在测量循环期间没有作用,所以Vmonitor和Vdata可以是同一条线(或连接在一起)。可以在行和列间共用晶体管Ta和Tb。各列可以共用信号线EM(发光)。
图12B是图示了图12A中所示的像素电路的正常操作的时序图。信号WR是有效的且编程数据(VP)被写入到电容器CS中。同时,信号线EM断开且因此电容器CS的另一侧被连接至参考电压Vref。因此,存储在电容器CS中的电压是(Vref-VP)。在驱动(发光)循环期间,信号线EM是有效的且WR断开。因此,栅极源级电压变为Vref-VP并与VDD无关。
图12C是图12A的电路的直接TFT读出的时序图。使用针对已知的目标电流的校准电压对像素电路进行编程。在第二循环中,RD是有效的且通过Vmonitor来读取像素电流。第二循环期间的Vmonitor电压应当足够低以使OLED没有开启。对校准电压进行修改直到像素电流变得与目标电流相同。经修改的校准电压被用作TFT电流电压特性中的点以提取该点的参数。也可以在WR是有效的且Vdata被设定为固定电压时通过Vmonitor将电流施加至像素。此时,Vmonitor上产生的电压为对应于相应电流的TFT栅极电压。
图12D是图12A的电路中的直接OLED读出的时序图。使用关闭电压来对像素电路进行编程,使得TFT不提供任何电流。在第二循环期间,RD是有效的且通过Vmonitor来读取OLED电流。第二循环期间的Vmonitor电压是基于已知的目标电流而被预校准的。对Vmonitor电压进行修改直到OLED电流变得与目标电流相同。经修改的Vmonitor电压被用作OLED电流电压特性中的点以提取该点的参数。可以在保持写入线WR有效的同时使信号线EM断开状态一直延伸至读出循环结束。在此情况下,用于读取OLED的剩余像素操作将与前面的步骤相同。也可以通过Vmonitor将电流施加至OLED。此时,Vmonitor上产生的电压是对应于相应电流的TFT栅极电压。
图13A图示了具有基于电荷的补偿的像素电路。相邻的列之间可以共用Vmonitor读出线,且行之间可以共用晶体管Ta和Tb。Vmonitor线可以是与Vdata线相同的线或与Vdata线连接。在此情况下,Vdata线可以是固定电压(Vref)。
图13B是图示了图13A中所示的像素电路的正常操作的时序图。在WR(写入)和RD(读出)线有效时,通过Vdata线和Vmonitor线将编程电压VP和参考电压Vref施加至像素电路。参考电压Vref应当足够低以使OLED不会开启。读出线RD可以比写入线WR更快地关断。在此时间间隔期间,因为所产生的电荷将是TFT参数的函数,所以晶体管T1将开始对VOLED进行充电并因此一部分补偿TFT差异。因为晶体管T1的源级在编程周期内从电源电压Vdd断开,所以像素也不受IR降的影响。
在图13C的时序图中绘出了直接TFT读出。使用针对已知目标电流的校准电压对像素电路进行编程。在第二循环期间,RD是有效的且通过Vmonitor线读取像素电流。第二循环期间的Vmonitor电压应当足够低以使OLED不会开启。对校准电压进行修改直到像素电流变得与目标电流相同。经修改的校准电压被用作TFT电流电压特性中的点,以提取该点的参数。当写入线WR是有效的且数据线Vdata被设定为固定电压时,也可以通过Vmonitor将电流施加至像素。此时,Vmonitor上产生的电压是对应于相应电流的TFT栅极电压。
在图13D的时序图中绘出了直接OLED读出。使用关断电压(offvoltage)来对像素电路进行编程,以使TFTT1不提供任何电流。在第二循环期间,读出线RD是有效的且通过Vmonitor线来读取OLED电流。第二循环期间的Vmonitor电压是针对已知的目标电流而被预校准的。对Vmonitor电压进行修改直到OLED电流变得与目标电流相同。经修改的Vmonitor电压被用作OLED电流电压特性中的点以提取该点的参数。可以使发射线EM处于断开状态一直延伸至读出循环结束并且保持写入线WR有效。在此情况下,用于读取OLED的剩余像素操作将与前面的步骤相同。也可以通过Vmonitor将电流施加至OLED。此时,Vmonitor上产生的电压是与相应电流相对应的TFT栅极电压。
在图13E的时序图中绘出了间接OLED读出。这里,以与图12中所绘出的操作类似的方式读出像素电流。唯一的区别在于,在编程期间,RD断开且因此晶体管T1的栅极电压被设定为OLED电压。因此,为了使像素电流等于目标电流,校准电压需要考虑OLED电压和TFT参数的影响。可以使用此校准电压以及从直接TFT读出提取的电压来提取OLED电压。例如,如果两个目标电流相同,那么从由直接TFT读出提取出的校准电压中减去通过此处理提取的校准电压将得到OLED的影响。
图14图示了偏置像素电路,其中第二参考电压Vref2可以与电源电压Vdd相同,各行和各列可以共用晶体管Ta和Tb,各行可以共用晶体管Ta和Tc,且各列可以共用像素监控线Vmonitor。在正常操作中,写入线WR和读出线RD是有效的且发射线EM被禁用,像素电压监控线Vmonitor被连接至参考电流Iref且数据线Vdata被连接至来自源级驱动器的编程电压。T1的栅极被充电至与参考电流相关的偏置电压并且使得存储在电容器CS中的电压是VP和偏置电压的函数。
可以使用本文中说明的***在制造的不同阶段对面板进行分析,以检测缺陷。可以在面板制造之后、在OLED制造之后和/或在完全组装之后执行主要的检测步骤。在每个阶段,可以使用由上述***提供的信息来对缺陷进行识别,然后可以使用诸如激光修复(laserrepair)等不同的方法来对这些缺陷进行修复。
图15A图示了具有连接至OLED和TFT的信号线的像素电路,且图15B图示了像素电路以及图案化成为信号线的ITO电极。为能够对面板进行测量,如图15A所示,应当有用于测量像素电流的通至每个像素的直接路径,或者可以将部分电极图案用于测量路径。在后一种情况下,如图15B所示,电极(例如,ITO或任何其它材料)首先被图案化为垂直线路,且然后,在完成测量之后电极被图案化至像素。
图16图示了面板的典型布置和在测试期间面板的信号。每一个其它信号都通过多路复用器连接至一个焊盘,所述多路复用器具有将信号连接至缺省值的缺省段。可以通过多路复用器选择每一个信号,以对面板进行编程或测量来自像素的电流/电压/电荷。
图17图示了可用于工厂测试以在背板制造之后对像素中的缺陷进行识别的像素电路。基于图17中所示的像素电路对下面的测试进行限定,但是也可以使用不同的像素电路来执行类似的测试。
在第一个测试中:
WR为高(Data=高和Data=低和Vdd=高)
这里,Ith_low是Data=低时所允许的最低可接受电流,且Ith_high是Data=高时所允许的最高可接受电流。
在第二个测试中:
静态:WR为高(Data=高和Data=低);
动态:WR变高且在编程之后WR变低(Data=低至高和Data=高至低)。
Istatic_high<Ith_high_st Istatic_high>Ith_high_st
Idyn_high>Ith_high_dyn T2:正常
Idyn_high<Ith_high_dyn T2:开路 T2:短路
Ith_high_dyn是在动态编程的情况下数据高(datahigh)的最高可接受电流。
Ith_high_st是在静态编程的情况下数据高的最高可接受电流。
也可以使用下面的模式:
静态:WR为高(Data=低和Data=高)
动态:WR变高且在编程之后WR变低(Data=高至低)
图18是可用于测试整个显示器的示例像素电路。在整个显示器的测试中:
通过Vmonitor线来测量T1和OLED电流。
条件1:T1经背板测试是正常的。
Itft_high是针对特定数据值的TFT电流的最高可能电流。
Itft_low是针对特定数据值的TFT电流的最低可能电流。
Ioled_high是针对特定OLED电压的OLED电流的最高可能电流。
Ioled_low是针对特定OLED电压的OLED电流的最低可能电流。
在另一个测试中:
通过监视器测量T1和OLED电流;
条件2:T1经背板测试是开路的。
在又一个测试中:
通过监视器测量T1和OLED电流;
条件3:T1经背板测试为短路的。
可通过在显示器中进行补偿调整来校正检测到的缺陷。对于比周围的像素更暗的缺陷,可以使用周围的像素来提供视频/图像所需的额外亮度。存在有用于提供这种额外亮度的不同方法,诸如:
(1)使用所有紧邻的像素,在它们中的每者之间进行额外亮度的划分。此方法的挑战在于,在大多数情况下,被指定至每个像素的部分并不是由该像素精确地生成的。由于由每个周围像素产生的误差将被加入总误差,所以误差将会非常大,这减小了校正的效果。
(2)使用周围像素中的一个或两个像素来生成缺陷像素所需的额外亮度,可以切换补偿中的有效像素的位置,以使局部伪影最小化。
在显示器的使用寿命内,一些软缺陷可能造成有常开(一直发亮)像素,这对用户来说往往是非常困扰的。面板的实时测量可以识别出新产生的常开像素,随后可以通过监控线来施加额外电压以熄灭OLED,这使OLED变成暗像素。而且,可使用上述补偿方法来减小暗像素的可视影响。
计算机、软件和网络领域的技术人员应当理解的是,可以通过诸如图1中的控制器112等处理器或如下的其它设备执行提取阵列中的像素的基线测量的方法,所述其它设备可以是通过使用一个或多个通用计算机***、微处理器、数字信号处理器、微控制器、专用集成电路(ASIC)、可编程逻辑电路(PLD)、现场可编程逻辑器件(FPLD)以及现场可编程逻辑门阵列(FPGA)等便利地实现的并是根据如本文中说明和图示的教导而被编程的设备。
另外,两个以上的计算***或装置可以替代本文中所说明的任一个控制器。因此,如所期望的,也可以实现诸如冗余(redundancy)和复制(replication)等分布式处理的原则和优点,以提高本文中所说明的控制器的鲁棒性(robustness)和性能。
可通过机器可读指令来执行示例性基线数据确定方法的操作。在这些示例中,机器可读指令包括由(a)处理器、(b)控制器和/或(c)一个或多个其它适合的处理装置执行的算法。所述算法可具体体现在存储在诸如闪存、CD-ROM、软盘、硬盘驱动器、数字化视频(通用)光盘(DVD)或其它存储设备等实体媒介上的软件中,然而本领域普通技术人员容易理解的是,可替代地,全部算法和/或部分算法可由设备而不是处理器来执行,并且/或者以众所周知的方式在固件或专用硬件中具体实现(例如,可由特定用途集成电路(ASIC)、可编程逻辑器件(PLD)、现场可编程逻辑器件(FPLD)、现场可编程门阵列(FPGA)和离散逻辑等来实现)。例如,可通过软件、硬件和/或固件来实现基线数据确定方法的任一或所有组件。而且,可手动地执行一些或所有的代表的机器可读指令。
图19图示了用于在面板1210的制造的一个或多个阶段(例如,TFT背板、完全装配的面板或完全完成和密封的面板)检测OLED显示面板1210的***。显示面板1210通过测量电子设备1211和探针卡1212连接至计算机1214,以提供在每个处理步骤对面板进行测试和验证的能力。例如,在完成TFT背板之后,探针卡***可用于单独地测量TFT背板的性能。如果TFT背板是可接受的,那么随后将面板1210转到下一个步骤,该骤可以是OLED沉积阶段。在完成OLED沉积之后,在密封前可为了适当的沉积对面板1210进行测量。在密封之后,可在面板1210被送至装配工序之前再次对其进行测量。
如在图20中所能看到的,图示的显示面板1210具有沿着面板的四个边缘中的三个边缘形成的探针焊盘1220。探针焊盘还可优选地在OLED沉积阶段之前被形成在面板内部。探针焊盘1220用于经由焊接区(bondingpad)1230将测试信号提供至显示面板1210上的大量像素电路,其中焊接区1230形成在通向像素电路的各种信号线的外端。
图21图示了探针焊盘1220通过多路复用器(MUX)1240与焊接区1230的连接,从而减小所需的探针焊盘的数量,这允许焊盘间距增大。为确保连接至探针焊盘1220的其它信号被正确地偏置,MUX1240需要能够将每个探针焊盘1220连接至每组信号的公共信号(Vcom)(例如,源信号和栅极信号等)。
图22图示了用于每个探针焊盘1220的具有公共信号控制和两个以上面板信号的MUX1240。图22图示了与一个探针焊盘1220连接的h个面板信号,因而需要用于与探针焊盘1220连接或与公共信号连接的2h个控制信号。面板信号与探针焊盘122的连接由第一开关1241和1242控制,且公共信号Vcom与面板信号的连接由第二开关1243和1244控制。
用于全面板探测的适当焊盘间距通常约为150微米。如表2中的数据所示,用于最常规构造的焊盘间距满足最小焊盘间距要求。然而,还如表2中的数据所示,使用2:1或更大的复用比能够使焊盘间距增大,这将使探针卡更加简单。
表2针对不同显示尺寸和分辨率的焊盘间距
如图23所示,安装在探针卡1212上的电子测量***1213能够测量显示面板1210上的每一个TFT和每一个OLED器件的电特性并识别出缺陷和不均匀。此数据被提供至GUI1214以获得更高的良品率、更快的工艺提升和更低的线监控成本,其中在GUI1214处所述数据能够被用于对每个工艺步骤进行微调。在图23中图示了各种可进行微调的工艺的示例,即,溅射和PECVD模块1250、工序间退火模块1251、图案化模块1252、激光修复模块1253、喷墨印刷模块1254以及蒸发模块1255。最终结果是完整的显示面板1256。
图23中所示的电路从测量电子设备1213获取数据,分析该数据并以各种报告、表和图片的形式显示该数据。在下表中对一些视图进行了说明。
诸如在2013年3月15日提交的名为“SystemsandMethodsforExtrractionofThresholdandMobilityParametersinAMOLEDDisplays(用于AMOLED显示器中的阈值和迁移率参数的提取的***和方法)”的美国专利申请13/835124中说明的提取***,各种不同的电路和算法可用来在显示面板的制造的不同阶段从显示面板提取不同参数的测量值,在此将该美国专利申请的全部内容以引用的方式并入本文。
本检测***可以对很多潜在的缺陷和问题(例如,在溅射和PECVD步骤下,本检测***可被用来识别导致缺陷或问题的可能原因,使得能够立即地对制造工艺进行微调以修正问题)进行识别。这类问题和它们的可能原因的示例如下:
对于通过检测***的单次测量不能够直接识别出的缺陷,第一次测量能够揭示存在问题,并指定将最终识别准确的缺陷的额外测试。一个示例是可以通过下列步骤中的任一步骤进行检测的线路缺陷的识别:
1.测量不同线路的电流:如果电流高于阀值,则像素发生短路。
2.施加脉冲来测量电荷转移:如果电荷转移的量小于阀值,则线路是开路的。
3.对于与直流电流连接的信号(例如,Vdd和Vmonitor),可以检测电流来检测开路缺陷。
也可以对薄膜晶体管(TFT)中的缺陷进行检测。例如,在图24中的像素电路具有被测量为高(当Vdata=高,且还当Vdata=高和Vdd=高)的信号WR的情况下,需要执行额外的测试。表1示出了不同的条件以及结果意味着什么。
为检测与中间退火相关的问题,每个TFT的准确Vt和迁移率可被用来调整中间退火参数,如下:
可以使用缺陷的数目和类型来识别图案化中的问题(颗粒,曝光不足/过度曝光等等),如下:
可使用缺陷位置和缺陷类型来准确地指出适于激光修复(去除材料)或离子束沉积(添加材料)的区域,如下:
还可使用均匀性数据来实时地对每个用于喷墨印刷的印刷头进行连续校准。***知道哪个印刷头被用来打印每个像素,且因此可以对单个印刷头相关的问题进行检测。然后,可立即对被用来打印那些像素的印刷头进行调整,如下:
可以使用每个OLED器件的准确故障模式来对蒸发过程进行调整,如下:
(TFT和OLED检测期间收集的)电特性可被载入到查找表中,并被用于修正所有TFT和OLED不均匀性。
一旦OLED和TFT均被沉积,就能够对额外的缺陷进行识别。第一次测量能够揭示出存在问题,并指定将最终识别准确的缺陷的额外测试。
如果在面板的周边产生测试样品,那么能够提取关于全局工艺参数的更多细节。通常,这是通过从小部分的显示器中截取测试样品并将它们放到单独特性***中来完成的。然而,通过使用本检测***,对于每个面板,这可以是作为面板特性的一部分而被完成的,如下。
·金属线可被制成并进行电阻测试。这能够测试金属沉积步骤和蚀刻。
·能够对待退火的半导体层进行它们的特性和均匀性测试。
·在面板周围的不同位置可以施工结构,以测试对准。
·OLED结构可被用来测试蒸发和喷墨印刷步骤。
光调制显示器(例如,AMLCD)中所使用的常规诊断工具对发射型显示器(例如,AMOLED)并没有用。这主要是由于调制型像素与发射型像素结构之间的显著差异。另外,发射型像素电路更复杂且因此使用常规光学诊断工具无法识别这些细节。
虽然修复和缺陷分析需要多种测试,但为了避免对所有半导体器件的详细扫描所需的时延,进行快速扫描来对有缺点的实体进行识别(在阵列情况下,所述实体为像素和信号线)。如果检测到的缺陷在可接受的预选阀值范围内,则继续制造过程。如果至少一个缺陷种类超过可接受阀值,则执行更详细的扫描来更详细地对该缺陷进行识别,以确定是否能够修复所检测到的缺陷。如果答案是肯定的,则修复缺陷,且然后继续该制造过程。
阀值可以是动态的。例如,如果检测到两个不同的缺陷,那么每个缺陷的阀值可以不同于当仅在面板中检测到一个缺陷时的阈值。
可基于快速扫描的结果来使详细扫描最优化。例如,如果快速扫描没有检测到任何线路缺陷,那么就可以在详细扫描中避免线路测试。
在快速扫描中,测量像素的一个(或多个)电压或一个(或多个)电流。如果像素的测量值在可接受的范围内,则该像素通过快速扫描。如果像素的测量值在可接受的范围外,那么像素被标记为发生故障。
测量的电压或电流优选地受大多数可能缺陷的影响。例如,提供至发光元件的电流和/或位于像素电路与发射元件之间的连接处的电压很适合作为快速扫描的对象。
快速扫描的一个示例是以如下操作开始的:定义在正常像素中遇到的最低电平的参考电流或电压。或者,参考电流或电压可以比在正常像素中遇到的最低电平还低定义差数。然后,将测量出的像素电流或电压与参考电平进行比较。如果测量值大于参考值,则像素通过此测试。如果测量值小于参考值,则像素未通过此测试。测试的结果基于测量参数可以是不同的。例如,如果测量值是驱动TFT电流,那么TFT可以是开路的,而如果测量值是OLED电流,那么OLED可以是短路的。
或者,如果测量值小于参考值,则像素可以通过测试。如果测量值大于参考值,则像素未通过此测试。这里,测试的结果基于测量参数可以是不同的。例如,如果测量值是驱动TFT电流,那么TFT可以是开路的,而如果测量值是OLED电流,那么OLED可以是短路的。
两种测试的组合能够发现更多缺陷。
可通过使用如图24所示的分开的偏置(监控)线或使用如图25所示的共用偏置(监控)线来执行详细扫描。
当使用分开的监控线执行线扫描时,如果列或行中的故障像素的数目大于阀值,那么该行或列被标记为可能的故障线路。识别缺陷列的其它示例如下:
1.如果列或行短路至另一列或行,可以在所有列(或行)具有相同的电压时测量它们(或驱动器)中的两者的电流并测量线路中的至少一者具有不同电压时的电流。在短路的情况下,驱动两条线路所需的电流将更高。
2.如果两个列发生短路,对行中的一个像素进行编程将影响到另一像素的电流/电压(不论以诸如零等不同的电流/电压对所述另一像素进行编程)。在此情况下,测量相邻像素的电流/电压能够识别出短路的列(或行)。
3.可在不同的偏置条件下对流向每条线路的静态电流(电压)进行测量。此静态电流(电压)可以是通过其对驱动器电流的影响而间接地测量的。例如,如果驱动器操作电流随一条线路的偏置条件的变化而显著地变化(或高于阀值),那么这意味着该线路发生短路。
4.对瞬态电流(电压)进行测量。如果测量电流不在阀值范围内,那么该线路可被标记为开路。例如,如果暂态电压(电流)被施加至监控线,它将产生作为寄生电容的函数的瞬态电流(电压)。在知道了寄生电容的范围的情况下,能够计算电流(电压)的范围。如果电流(电压)在该范围之外,那么人们可以将该线路标记为开路。另一种估算信号范围的方法是对整个面板进行测量,且异常值可以被检测到并被标记为开路(如果小于该范围)或短路(如果大于该范围)。
5.线路被充电至某电压。在知道了该线路的寄生电容的范围的情况下,能够估算存储在该线路中的电荷的范围。测量存储在该线路中的线路电荷并将它与所述范围进行比较,这能够指示该线路是短路的、开路的还是正常的。如果该电荷小于所估算的范围,那么该线路是开路的。如果电荷在所述范围内,那么该线路是正常的。如果该电荷没有发生变化,那么该线路是短路的。另一种估算电荷范围的方法是对整个面板进行测量,且异常值可以被检测到并被标记为开路(如果小于该范围)或短路(如果大于该范围)。
当对如图24所示的使用分开的监控线的晶体管T2和T3进行测试时,测试步骤可用于其它常关的偏置开关,所述常关偏置开关在编程周期期间将偏置线连接至信号。这里,所述信号可以是来自Vdd的信号或通过监控线的信号。既可使用静态测试又可使用动态测试,如下:
静态:
1.开关闭合
2.偏置电压为高或偏置为低
3.开关断开
4.偏置电压保持它的电压(如果偏置电压在编程期间为高,则它变低,且反之亦然)
动态:开关变高且在编程之后开关断开(偏置电压=低):
1.开关闭合
2.偏置电压为高或偏置为低
3.开关断开
4.偏置电压发生变化(如果偏置电压在编程期间为高,则它变低,且反之亦然)
如果至少一个测量电流或一个测量电压通常受偏置电压的影响,且在静态情况下,开关性能对于高偏置电压和低偏置电压而言是相同的,那么该开关很可能是开路的。如果情况不是这样,且对于静态和动态操作中的对应情况而言电流或电压不是相同的,那么该开关可能是短路的。
用于驱动晶体管(例如,T1)的详细扫描步骤如下:
测量TFT的至少一个操作点处的电流或电压。
1.如果电流(电压)在所有点处都为高,则T1(驱动TFT)是短路的。
2.如果电流(电压)在所有点处都正常,则T1(驱动TFT)正常。
3.如果电流(电压)没有发生变化并与零操作点类似,且开关测试在工作中,则T1(驱动TFT)是开路的。
4.如果电流是负的(或方向与TFT的方向不同)(或电压为低),则OLED是短路的。
这些结论中的一些结论可以仅利用一个点处的测量而得出。
OLED的详细扫描步骤如下:
测量OLED的至少一个操作点处的电流或电压。
1.如果电流为高(或电压为低)(在OLED方向上),则OLED是短路的。
2.如果电流(电压)正常,则OLED正常。
3.如果电流(电压)没有发生变化并与零操作点类似,且开关测试在工作中,则OLED是开路的。
4.如果电流是正的(或方向与OLED的方向不同)(或电压为高),则TFT是短路的。
当使用如图25所示的共用监控线时,能够施加用于线扫描的上述测试步骤。此外,如果在具有共用的监控线的两个像素之间数据线被短路,那么这两个像素将产生相同的电流(或电压),而这与哪条数据线被用于对这两个像素进行编程无关。这能够被用来识别短路数据线缺陷。如果多个像素共用用于测量的线路且对于一些像素而言不可能以任何开关将该线路与被测元件分离,那么需要不同的方法来测量不同的缺陷。
对于组测试,上面的对驱动TFT和/或OLED的测试中的任一者可用于成组的TFT和/或OLED。唯一的区别在于,结果将显示出装置的集体性能。例如,它可以识别出组中的驱动TFT或OLED中的一者是有缺陷的。
对于甄别测试,下面的示例使用(使用相同的RD和WR信号进行控制的)行中的少量的相邻像素共用的监控线,且它们可以被应用至其它类似的结构。
为测量可使用其它控制信号来关闭的装置(例如,通过Vdata的驱动TFT),一个像素的装置保持有效,且其它像素中的装置关闭。在此情况下,可执行与用于具有分开的线路的像素的测试类似的测试。例如,能够如下完成对像素中的驱动TFT的测量:
1.在与相同的监控线连接的其它像素的驱动TFT关闭时,测量驱动TFT(T1)的在一个(或多个)操作点处的电流(或电压);
2.对连接至相同的监控线的像素的所有驱动TFT重复步骤(1);
3.如果电流(或电压)在正常范围内,则所有驱动TFT都是良好的;
4.如果连接至监控线的像素的测量电流(电压)没有发生变化并与零操作点类似,则该像素的驱动TFT可能是开路的(假设开关TFT测试通过);
5.如果测量电流(电压)为高且它们的电平不会被共用监控线的像素而改变,则该像素的驱动TFT可能被短路。例如,如果T1_1被短路,当测量T1_1的电流时(T1_2关闭),电流将为Ishort。当测量T1_2时,电流将为Ishort+IT1_2。可以看出,仅T1_2的操作点的变化能够影响测量电流;
6.如果所有子像素的电流(电压)都为低但电流在不同的操作点发生轻微变化,则OLED可能被短路。例如,如果与T1_1连接的OLED被短路,则T1_1和T1_2的测量电流将分别为Ishort-IT1_1和Ishort-IT1_2。通过改变TFT的操作点,测量电流将发生变化,但是电流将比正常情况下低得多。
当对作为模拟装置的偏置开关进行测试时,开关的开电压被设定为将开关推入至操作的饱和状态的电压。因此,如果驱动TFT或OLED被短路至固定电压,那么电流(或电压)将无法使测量装置饱和,且将其它像素的电流(或电压)添加到线路中的影响将更大。例如,如果T1_1被短路,则B1_1处的电压将大致为Vdd。当测量T1_1时,由于T3_1处于饱和状态并控制电路,所以电流将为IT3_1。当测量T1_2(节点A_2处的电压可能足够高以使T1_2完全导通)时,电流将为IT3_1+IT3_2。因此,基于这两个测量结果,T1_1可能被短路。相同的操作可用于确定OLED是否被短路。
为减小可能被短路的装置的一个偏置的影响,诸如Vss等与OLED连接的电压可被设定为接近监控线的电压,以使得它对TFT测量的影响最小。可通过将Vdd设定为接近监控线的电压来进行用于TFT短路的类似设定。
可将OLED(或TFT)的影响转移到另一装置(例如,驱动TFT)上。例如:
1.除了一个像素以外,共用偏置线(监控线)的像素中的所有驱动TFT都是关断的。
2.使OLED的电极处的电压能够通过OLED来设定(例如,影响电压的开关是断开的,例如在图2中的像素的情况下,T3_1和T3_2是关断的)。
3.然后,对驱动TFT的电流进行测量。
4.如果OLED是开路的,驱动TFT的电流将接近于零(或在与OLED连接的驱动TFT端子处的电压将为高)。
5.如果OLED正常,则像素电路将在正常范围内。
6.如果OLED被短路,可能需要另一测试(例如,偏置开关以用作模拟装置)。
虽然已经图示和说明了本发明的特定实施例和应用,但应当理解的是,本发明不限于本文中所述的精确的构造和组成,且在不偏离如所附的权利要求所限定的本发明的精神和范围的情况下,本发明的各种修改、改变和变化从前文的说明中是显见的。
本申请要求2014年5月30日提交的美国专利申请14/291231的优先权,在此将该美国专利申请的全部内容以引用的方式并入本文。

Claims (9)

1.一种在基于阵列的半导体器件的制造期间检测所述半导体器件的缺陷的方法,所述方法包括如下步骤:
在制造形成所述半导体器件的多种类型的实体的中间阶段检测形成所述半导体器件的所述实体中的缺陷;
确定检测到的缺陷是否超过了检测出缺陷的所述实体的类型的预选阀值;
如果所述检测到的缺陷没有超过所述预选阀值,则继续所述半导体器件的制造;以及
如果所述检测到的缺陷超过所述预选阀值,则对所述检测到的缺陷的类型进行识别,修复识别出的缺陷并且继续所述半导体器件的制造。
2.如权利要求1所述的方法,其中,所述基于阵列的半导体器件是有源矩阵有机发光器件(AMOLED)显示面板。
3.如权利要求1或2所述的方法,其中,所述多种类型的主体至少包括驱动晶体管、OLED和信号线。
4.如权利要求1所述的方法,其中,所述预选阀值随着所述检测到的缺陷的数目增大而变化。
5.如权利要求1所述的方法,其中,通过根据检测出缺陷的所述实体的类型而定制的测试来对缺陷的所述类型进行识别。
6.如权利要求1所述的方法,其中,通过下述方式在所述实体中检测缺陷:测量单个像素中的电压或电流并将测量值与所述电压或电流的预选阀值进行比较。
7.如权利要求6所述的方法,其中,测量的所述电流是流至所述像素的发光器件的电流。
8.如权利要求6所述的方法,其中,测量的所述电压是在像素电路与所述像素的发光器件的连接处的电压。
9.如权利要求1所述的方法,其中,通过下述方式在所述实体中检测缺陷:基于正常像素中的电流或电压的最低电平预选电流或电压的参考电平,并且将测量的电流或电压与对应的预选的所述参考电平进行比较。
CN201510293521.5A 2014-05-30 2015-06-01 用于amoled显示器的像素电路的缺陷检测及修正 Pending CN105303999A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/291,231 2014-05-30
US14/291,231 US10996258B2 (en) 2009-11-30 2014-05-30 Defect detection and correction of pixel circuits for AMOLED displays

Publications (1)

Publication Number Publication Date
CN105303999A true CN105303999A (zh) 2016-02-03

Family

ID=54481744

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510293521.5A Pending CN105303999A (zh) 2014-05-30 2015-06-01 用于amoled显示器的像素电路的缺陷检测及修正

Country Status (2)

Country Link
CN (1) CN105303999A (zh)
DE (1) DE102015210048A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106251798A (zh) * 2016-08-08 2016-12-21 深圳市华星光电技术有限公司 Oled显示装置驱动电路缺陷检测方法
CN108281102A (zh) * 2018-01-31 2018-07-13 京东方科技集团股份有限公司 Amoled显示装置的检测装置及方法、修复装置及方法、修复***
CN108573666A (zh) * 2018-02-09 2018-09-25 友达光电股份有限公司 像素检测与校正电路、像素电路,以及像素检测与校正方法
CN108932922A (zh) * 2018-07-03 2018-12-04 京东方科技集团股份有限公司 一种修复能力测试装置及方法
CN109272926A (zh) * 2017-07-17 2019-01-25 乐金显示有限公司 电致发光显示器及其驱动方法
CN109727576A (zh) * 2017-10-30 2019-05-07 伊格尼斯创新公司 像素、参考电路以及时序技术
US10615230B2 (en) 2017-11-08 2020-04-07 Teradyne, Inc. Identifying potentially-defective picture elements in an active-matrix display panel
CN113727043A (zh) * 2020-05-25 2021-11-30 爱思开海力士有限公司 图像感测装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020014851A1 (en) * 2000-06-05 2002-02-07 Ya-Hsiang Tai Apparatus and method of testing an organic light emitting diode array
US20020176013A1 (en) * 2001-05-24 2002-11-28 Hiroshi Itoh Image pickup apparatus
US20070152672A1 (en) * 2005-12-20 2007-07-05 I-Shu Lee Organic electroluminescent display panel testing apparatus and method thereof
US20120306939A1 (en) * 2011-06-03 2012-12-06 Jae-Beom Choi Array test device and array test method for organic light emitting display device and method for manufacturing the organic light emitting display device
CN103177685A (zh) * 2011-12-26 2013-06-26 乐金显示有限公司 Oled显示装置及感测像素驱动电路的特性参数的方法
CN103280847A (zh) * 2013-04-22 2013-09-04 京东方科技集团股份有限公司 供电电路和显示装置
CN103336586A (zh) * 2013-05-30 2013-10-02 益海芯电子技术江苏有限公司 光学指示装置异常状态侦测方法
CN103578415A (zh) * 2012-07-25 2014-02-12 三星显示有限公司 用于补偿显示装置的图像的设备和方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020014851A1 (en) * 2000-06-05 2002-02-07 Ya-Hsiang Tai Apparatus and method of testing an organic light emitting diode array
US20020176013A1 (en) * 2001-05-24 2002-11-28 Hiroshi Itoh Image pickup apparatus
US20070152672A1 (en) * 2005-12-20 2007-07-05 I-Shu Lee Organic electroluminescent display panel testing apparatus and method thereof
US20120306939A1 (en) * 2011-06-03 2012-12-06 Jae-Beom Choi Array test device and array test method for organic light emitting display device and method for manufacturing the organic light emitting display device
CN103177685A (zh) * 2011-12-26 2013-06-26 乐金显示有限公司 Oled显示装置及感测像素驱动电路的特性参数的方法
CN103578415A (zh) * 2012-07-25 2014-02-12 三星显示有限公司 用于补偿显示装置的图像的设备和方法
CN103280847A (zh) * 2013-04-22 2013-09-04 京东方科技集团股份有限公司 供电电路和显示装置
CN103336586A (zh) * 2013-05-30 2013-10-02 益海芯电子技术江苏有限公司 光学指示装置异常状态侦测方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106251798A (zh) * 2016-08-08 2016-12-21 深圳市华星光电技术有限公司 Oled显示装置驱动电路缺陷检测方法
CN106251798B (zh) * 2016-08-08 2018-06-01 深圳市华星光电技术有限公司 Oled显示装置驱动电路缺陷检测方法
CN109272926A (zh) * 2017-07-17 2019-01-25 乐金显示有限公司 电致发光显示器及其驱动方法
US10939514B2 (en) 2017-07-17 2021-03-02 Lg Display Co., Ltd. Electroluminescence display and method for driving the same
CN109272926B (zh) * 2017-07-17 2021-08-06 乐金显示有限公司 电致发光显示器及其驱动方法
CN109727576A (zh) * 2017-10-30 2019-05-07 伊格尼斯创新公司 像素、参考电路以及时序技术
CN109727576B (zh) * 2017-10-30 2022-04-05 伊格尼斯创新公司 像素、参考电路以及时序技术
US10615230B2 (en) 2017-11-08 2020-04-07 Teradyne, Inc. Identifying potentially-defective picture elements in an active-matrix display panel
CN108281102A (zh) * 2018-01-31 2018-07-13 京东方科技集团股份有限公司 Amoled显示装置的检测装置及方法、修复装置及方法、修复***
CN108573666A (zh) * 2018-02-09 2018-09-25 友达光电股份有限公司 像素检测与校正电路、像素电路,以及像素检测与校正方法
CN108932922A (zh) * 2018-07-03 2018-12-04 京东方科技集团股份有限公司 一种修复能力测试装置及方法
CN113727043A (zh) * 2020-05-25 2021-11-30 爱思开海力士有限公司 图像感测装置

Also Published As

Publication number Publication date
DE102015210048A1 (de) 2015-12-03

Similar Documents

Publication Publication Date Title
US12033589B2 (en) System and methods for aging compensation in AMOLED displays
US10679533B2 (en) System and methods for aging compensation in AMOLED displays
US10996258B2 (en) Defect detection and correction of pixel circuits for AMOLED displays
US10699613B2 (en) Resetting cycle for aging compensation in AMOLED displays
CN105303999A (zh) 用于amoled显示器的像素电路的缺陷检测及修正
US10796622B2 (en) Display system with compensation techniques and/or shared level resources
CN104885145B (zh) 用于amoled显示器的像素电路
US10319307B2 (en) Display system with compensation techniques and/or shared level resources
CN105393296A (zh) 具有补偿技术和/或共用级资源的显示***
CN108510942B (zh) 有源矩阵显示器和用于其中的阈值电压补偿的方法
CN105225638B (zh) 用于amoled显示器的像素电路
US10867536B2 (en) Inspection system for OLED display panels

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160203

WD01 Invention patent application deemed withdrawn after publication