CN105293642A - 一种处理高盐工业废水的多电极多隔膜电解槽 - Google Patents

一种处理高盐工业废水的多电极多隔膜电解槽 Download PDF

Info

Publication number
CN105293642A
CN105293642A CN201510845453.9A CN201510845453A CN105293642A CN 105293642 A CN105293642 A CN 105293642A CN 201510845453 A CN201510845453 A CN 201510845453A CN 105293642 A CN105293642 A CN 105293642A
Authority
CN
China
Prior art keywords
exchange membrane
room
electrode
waste water
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510845453.9A
Other languages
English (en)
Inventor
陈日耀
李政
施恒寿
李忠贵
轲陈静
周沂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUZHOU YIHUA CHEMICALS CO LTD
Fujian Chuangyuan Environment Protection Co Ltd
Fujian Normal University
Original Assignee
FUZHOU YIHUA CHEMICALS CO LTD
Fujian Chuangyuan Environment Protection Co Ltd
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUZHOU YIHUA CHEMICALS CO LTD, Fujian Chuangyuan Environment Protection Co Ltd, Fujian Normal University filed Critical FUZHOU YIHUA CHEMICALS CO LTD
Priority to CN201510845453.9A priority Critical patent/CN105293642A/zh
Publication of CN105293642A publication Critical patent/CN105293642A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明涉及一种工业废水多电极多隔膜电解槽。电解槽为长方体槽状结构,电解槽设置有铁阳极、惰性阳极、惰性阴极、阳离子交换膜1、阴离子交换膜1、阳离子交换膜2、双极膜、阴离子交换膜2和阳离子交换膜3并利用膜分割为阳极室、酸室1、盐室1、碱室1、酸室2、盐室2;设置的直流稳压电源供电电源通电后实现双极膜阴、阳膜层间水解离和各阴、阳离子在电解槽中的定向迁移,进一步沉降后即可排放。本发明将Fenton技术和双极膜技术集成在一个处理装置中,设备紧凑,在去除盐分的同时,降低废水的COD;去除盐分回收利用,从而降低处理成本;采用两个阳极保证有足够量的Fe2+生成的同时,适当提高处理装置在电渗析时的电流密度。

Description

一种处理高盐工业废水的多电极多隔膜电解槽
技术领域
本专利涉及一种工业废水的处理技术领域,具体涉及一种利用Fenton法结合双极膜技术,在去除高盐的同时降低废水COD的工业废水多电极多隔膜电解槽。
背景技术
随着我国工业的发展,工业废水的排放量日益增加,其中很大一部分是高盐工业废水。该类废水往往含有较高浓度的可溶性无机盐,如Cl-,SO4 2-,Na+,Ca2+以及难降解或有毒的有机物,且其产生量呈急剧增长的趋势,如不加处理直接排放,会对生态环境造成诸多危害。高盐工业废水主要有2个来源:1)海水直接用于工业生产和生活后排放的废水,如在工业上,海水已被用作锅炉冷却水。而在城市生活中,海水可以替代淡水作为冲厕水,此类废水的含盐量一般为2.5×104~3.5×104mg/L(质量浓度,下同);2)某些工业行业生产过程中排放的废水,如皂素废水、石油开采废水以及印染、造纸、制药、化工、奶制品加工和农药行业排放的废水、含盐量一般在15%~25%左右。
高盐工业废水具有较高盐度,对微生物有毒害和抑制作用,还会造成活性污泥易于上浮流失,使生化处理***难以正常运行,所以此类废水很难直接用生物法来处理。目前,工业上,高盐工业废水处理的主要方法有:1)利用高效耐盐菌进行处理;2)加水稀释排放;3)焚烧炉焚烧处理。高效耐盐菌环境适应性有一定限度,培养困难,操作条件复杂,一般企业难以做到,而且无法去除盐分。大部分企业采用加水稀释排放,这既浪费了大量水资源(将清水变成废水),增加废水的排放量,又不能从总量上控制排入环境中的盐量,显然是不符合环保的要求。采用焚烧炉进行焚烧处理,焚烧温度高达1100℃左右,焚烧炉尾气须进行处理,盐分容易集结在炉壁,需进行冲洗,冲洗下来的废水盐分极高,仍然不能直接排放,还需处理。整个处理过程复杂,投资大,能耗极大,对设备耐腐蚀性能要求高。因此,高盐工业废水的处理已成为国内环保行业急需解决的难题。
膜处理技术已在电镀、印染、食品、造纸、制革等污水的处理中得到广泛的应用。双极膜(BPM)是一种新型离子交换复合膜,通常由阴离子交换层、阳离子交换层复合而成。也可以在阴膜层、阳膜层之间加入第三层物质促进水的解离,形成阴离子交换层、阳离子交换层、中间反应层构成的三层结构。在直流电场的作用下,双极膜可以将水解离,在阳膜层、阴膜层两侧分别产生H+和OH-。自20世纪80年代开发成功以来发展迅速,国外已有多个双极膜制备方面的专利。因双极膜具有操作简单、效率高、污染排放少等诸多优点,已在资源回收、污染控制与化学工程等诸多领域得到广泛应用。
电Fenton技术是将电化学法和Fenton技术相结合的协同处理技术。其基本原理是O2在阴极还原为H2O2(或阳极直接滴加H2O2)并与Fe2+(可牺牲铁阳极生成)发生反应生成OH自由基,OH自由基具有极强的氧化能力(氧化电位仅次于氟,高达2.80V)。此外,羟基自由基具有很高的电负性或亲电性(电子亲和能力达569.3kJ),很强的加成反应特性,可无选择将水中大多数有机物氧化为CO2和H2O或者小分子有机物,特别适用于生物难降解或一般化学氧化难以奏效的有机废水的氧化处理。
本专利采用Fenton法结合双极膜技术处理高盐工业废水,在降低废水的COD和盐分的同时,将废水中的盐分转化为相应的酸、碱加以回收利用,实现废水盐分的资源化利用。
发明内容
本发明的目的在于设计一种能够处理高盐工业废水的电解槽,该电解槽利用Fenton法结合双极膜技术,在去除工业废水中高盐的同时,降低废水COD。同时将废水中盐分转化为相应的酸、碱予以回收,实现废水盐分的资源化利用。
为实现本发明的目的而采用的技术方案是:电解槽为长方体槽状结构,电解槽的左端头设置有铁阳极和惰性阳极,电解槽的右端头设置有1个惰性阴极;电解槽内从左到右依次由阳离子交换膜1、阴离子交换膜1、阳离子交换膜2、双极膜、阴离子交换膜2和阳离子交换膜3进行分隔,分割后铁阳极和惰性阳极所处的空间为阳极室;阳离子交换膜1和阴离子交换膜1之间为酸室1、阴离子交换膜1和阳离子交换膜2之间为盐室1;阳离子交换膜2和双极膜之间为碱室1;双极膜和阴离子交换膜2之间为酸室2;阴离子交换膜2和阳离子交换膜3之间为盐室2;阴极所处的空间为碱室2,此时碱室2也称为阴极室。高盐工业废水通过水泵分别引入电解槽的两个盐室,即盐室1和盐室2;在阳极室的上方设置有H2O2贮液槽,贮液槽与阳极室之间通过滴液管相连,并通过滴液管将贮液槽中的H2O2滴加到阳极室内;电解槽设置有两个直流稳压电源供电电源,其中直流稳压电源1的正极与阳极室中的铁阳极相连,负极与阴极室中的阴极电极相连,并对其供电;直流稳压电源2的正极与阳极室中的惰性阳极相连,负极与阴极室中的阴极电极相连,并对其供电。直流稳压电源通电后,在阳极和阴极之间形成直流电场,使得在直流电场作用下实现双极膜阴、阳膜层间水解离(生成氢离子和氢氧根离子,在阴、阳两极间电势差的驱动下,分别向阴、阳两极迁移,与迁移来的阴、阳离子形成酸、碱。)和各阴、阳离子在电解槽中的定向迁移,阳极室处理后的废水经调节pH值至中性,进一步沉降后即可排放。
所述的双极膜,阴膜层朝向碱室1,阳膜层朝向酸室2。
所述的电解槽铁阳极可采用平板状、柱状或网状。
所述的电解槽惰性阳极和阴极或为钛电极、或为钛合金电极、或为石墨电极,其构型或为平板状,或为柱状,或为多孔状。
高盐废水的第一次处理:
将高盐工业废水注入盐室1和盐室2中,通电4~6.5h,在直流电场的作用下,盐室1中的高盐废水的阴、阳离子分别通过阴离子交换膜1和阳离子交换膜2进入酸室1和碱室1中,与阳极室通过阳离子交换膜1迁移来的H+和双极膜解离水生成的OH-结合,分别在酸室1和碱室1中生成相应的酸、碱。
盐室2中的高盐废水的阴、阳离子分别通过阴离子交换膜2和阳离子交换膜3进入酸室2和碱室2中,与双极膜解离水生成的H+和阴极反应生成的OH-结合,分别在酸室2和碱室2中生成相应的酸、碱。从而去除高盐废水中的盐分,生成的酸、碱可加以回收利用,实现废水盐分资源化利用的目的。
在上述第一次处理过程中,阴离子交换膜和阳离子交换膜在直流电场作用下,分别允许阴离子和阳离子通过,这种选择性通过使得废水中的阴、阳离子得以分离开来,分别进入酸室和碱室,从而形成酸和碱,实现将废水中盐分去除的目的。
高盐废水的第二次处理
去除盐分后,盐室1和盐室2中的废水,调节pH值至3~5之间后泵入阳极室,在Fenton试剂的作用下,依据高盐废水的浓度通电4~6.5h进行降解和絮凝,处理后的废水经调节pH值至中性,进一步沉降后即可排放。
在第二次处理过程中,由于铁阳极通电后失去电子生成Fe2+,与H2O2贮液槽滴加的H2O2发生反应生成OH自由基,氧化降解废水中有机污染物,从而使COD降低。Fenton试剂在阳极室处理过程中会产生铁水络合物,对降解产物进行吸附包裹沉降,具有良好的絮凝功能,进一步降低废水COD。
在如上所述的第二次处理过程中,第二批次高盐废水可同时注入盐室1和盐室2中进行第二批次高盐废水的第一次处理,即上一批次高盐废水的第二次处理可同时与下一批次高盐废水的第一次处理同时进行。
电解槽采用两个阳极(一为铁阳极、一为惰性电极)分别通过两个直流稳压电源与阴极室惰性电极相连,以期在保证有足够量的Fe2+生成的同时,适当提高处理装置电渗析时的电流密度。
本发明酸室、碱室需注入一定浓度的稀酸或稀碱,以降低体系的溶液阻抗;通入的酸、碱为废水盐分相应的酸和碱,其浓度为0.1~1.5mol/L。
本发明所述的直流稳压电源工作电压控制在为11±1.5V。
本发明具有如下有益效果:
1、将Fenton技术和双极膜技术集成在一个处理装置中,设备紧凑,在去除盐分的同时,降低废水的COD。
2、去除盐分,生成相应的酸、碱,并加以回收利用,达到废物资源化利用的目的,从而降低处理成本。
3、采用两个阳极(一为铁电极、一为惰性电极)分别通过两个直流稳压电源与阴极室两惰性电极相连,以期在保证有足够量的Fe2+生成的同时,适当提高处理装置在电渗析时的电流密度。
附图说明
图1是本发明所述的一种处理高盐工业废水的多电极多隔膜电解槽结构示意图。
具体实施方式
为了对本发明更好的理解,现结合附图对本发明做进一步的说明。
图1中;1是阳离子交换膜1;2是阴离子交换膜1;3是阳离子交换膜2;4是双极膜;5是阴离子交换膜2;6是阳离子交换膜3;7是阴极;8是铁阳极;9是惰性阳极;10是双氧水贮液槽;11是双氧水流量计;12是直流稳压电源1;Ⅰ是阳极室,铁阳极和惰性阳极位于其中;Ⅱ是酸室1;Ⅲ是盐室1;Ⅳ是碱室1;Ⅴ是酸室2;Ⅵ是盐室2;Ⅶ是碱室2。Ⅶ是碱室2也是阴极室。
实施例1
本实施例使用的电解槽结构如图1所示。
电解槽为长方体槽状结构,电解槽的左端头设置有柱状的铁阳极(8),惰性阳极(9)采用钛电极,为网状;电解槽的右端头设置有两个相同的惰性阴极(7),为柱状的钛电极。
本实施例中电解槽中阳离子交换膜1(1)、阳离子交换膜2(3)、阳离子交换膜3(6)均采用nafion阳离子交换膜;阴离子交换膜1(2)、阴离子交换膜2(5)均采用壳聚糖阴离子交换膜;双极膜(4)采用BP-1型双极膜。
阳极室上方连有H2O2贮液槽,贮液槽导管将H2O2滴加到阳极室内。
所述的铁阳极(8)通过直流稳压电源(12)连接导线与阴极室中的钛阴极(7)相连形成独立的电流通路;
所述的钛阳极(9)通过直流稳压电源(12)连接导线与阴极室中的钛阴极(7)相连形成独立的电流通路;
所述直流稳压电源(12),其正极连接铁阳极(8)或惰性阳极(9),负极连接阴极电极(7);直流稳压电源(12)采用的电压为11V。
高盐废水盐分的第一次处理:
将高盐工业废水(含硫酸钠:90g/L,COD:10000mg/L)引入如图1所示装置的盐室1(Ⅲ)和盐室2(Ⅵ)中,阳极室加入pH值为4.4的硫酸溶液,接通直流稳压电源(12),通电处理5小时后,用12mol/L硫酸调节盐室1(Ⅲ)和盐室2(Ⅵ)中的工业废水至pH为4.4后,引入到阳极室,同时启动双氧水流量计(11),控制双氧水流速为3mL/min,同时将第二批废水泵入盐室1(Ⅲ)和盐室2(Ⅵ)中。处理5小时后,将阳极室中的废水通过硫酸或氢氧化钠调节pH至7,自然沉降30分钟后排放。如此不断循环处理并将酸室和碱室中的酸、碱进行回收利用。
上述处理过程是酸室1(Ⅱ)和酸室2(Ⅴ)加入硫酸,其浓度均为入0.5mol/L;碱室1(Ⅳ)和碱室2(Ⅶ)加入氢氧化钠,其浓度均为入0.5mol/L。
本实施例使用的高盐工业废水为模拟工业废水。
高盐工业废水经该装置处理后,COD为33.5mg/L,废水硫酸钠浓度降为0.95g/L。
实例2
本实施例使用的电解槽结构与实施例1相同。电解槽的左端头设置有柱状的铁阳极(8),惰性阳极(9)采用钛电极,柱状;电解槽的右端头设置的惰性阴极(7),为网状的钛电极。
电解槽中阳离子交换膜1(1)、阳离子交换膜2(3)、阳离子交换膜3(6)均采用nafion阳离子交换膜;阴离子交换膜1(2)、阴离子交换膜2(5)均采用壳聚糖阴离子交换膜;双极膜(4)采用BP-1型双极膜。直流稳压电源(12)与各电极的连接方式与实施例1相同,采用的电压为12.5V。
高盐废水盐分的第一次处理:
将高盐工业废水(含硫酸钠:100g/L,COD:10000mg/L)引入如图1所示装置的盐室1(Ⅲ)和盐室2(Ⅵ)中,阳极室加入pH值为4.6的硫酸溶液,接通直流稳压电源(12),通电处理5.5小时后,用12mol/L硫酸调节盐室1(Ⅲ)和盐室2(Ⅵ)中的工业废水至pH为4.6后,引入阳极室,同时启动双氧水流量计(11),控制双氧水流速为3.5mL/min,同时将第二批废水泵入盐室1(Ⅲ)和盐室2(Ⅵ)中。处理5.5小时后,将阳极室中的废水通过硫酸或氢氧化钠调节pH至7,自然沉降30分钟后排放。如此不断循环处理并将酸室和碱室中的酸、碱进行回收利用。
上述处理过程是酸室1(Ⅱ)、酸室2(Ⅴ)加入硫酸,其浓度均为入0.8mol/L;碱室1(Ⅳ)和碱室2(Ⅶ)加入氢氧化钠,其浓度为入0.8mol/L。
本实施例使用的高盐工业废水为模拟工业废水。
高盐工业废水经该装置处理后,COD为26.8mg/L,废水硫酸钠浓度降为0.82g/L。
实例3
本实施例使用的电解槽与实施例1相同。电解槽为长方体槽状结构,电解槽的左端头设置有网状的铁阳极(8),惰性阳极(9)采用钛电极,为网状;电解槽的右端头设置有两个相同的惰性阴极(7),为柱状的石墨电极。
电解槽中阳离子交换膜1(1)、阳离子交换膜2(3)、阳离子交换膜3(6)均采用nafion阳离子交换膜;阴离子交换膜1(2)、阴离子交换膜2(5)均采用自制的壳聚糖阴离子交换膜;双极膜(4)采用BP-1型双极膜。
铁阳极(8)通过直流稳压电源(12)电路与阴极室中的石墨阴极(7)相连形成独立的电流通路;
钛阳极(9)通过直流稳压电源(12)与阴极室中的石墨阴极(7)相连形成独立的电流通路;
直流稳压电源(12),其正极连接铁阳极(8)或钛阳极(9),负极连接石墨(7);直流稳压电源(12)与各电极的连接方式与实施例1相同,采用的电压为9.5V。
高盐废水盐分的第一次处理:
将高盐工业废水(含硫酸钠:110g/L,COD:10000mg/L)引入如图1所示装置的盐室1(Ⅲ)和盐室2(Ⅵ)中,阳极室加入pH值为4.8的硫酸溶液,接通直流稳压电源(12),通电处理6小时后,用12mol/L硫酸调节盐室1(Ⅲ)和盐室2(Ⅵ)中的工业废水至pH为4.8后,引入阳极室,同时启动双氧水流量计(11),控制双氧水流速为4mL/min,同时将第二批废水泵入盐室1(Ⅲ)和盐室2(Ⅵ)中。处理6小时后,将阳极室中的废水通过硫酸或氢氧化钠调节pH至7,自然沉降25分钟后排放。
将酸室和碱室中的酸、碱进行回收利用(部分可用作调节处理***pH值用)。
上述处理过程是酸室1(Ⅱ)、碱室1(Ⅳ);酸室2(Ⅴ)和碱室2(Ⅶ)分别加入硫酸和氢氧化钠,其浓度均为入1.0mol/L。
本实施例使用的高盐工业废水为模拟工业废水。
高盐工业废水经该装置处理后,COD为21.6mg/L,废水硫酸钠浓度降为0.64g/L。

Claims (5)

1.一种处理高盐工业废水的多电极多隔膜电解槽,该电解槽利用Fenton法结合双极膜技术,将废水中高盐转化为酸碱加以回收,同时降低废水COD,其特征是电解槽为长方体槽状结构,电解槽的左端头设置有铁阳极和惰性阳极,电解槽的右端头设置有1个惰性阴极;电解槽内从左到右依次由阳离子交换膜1、阴离子交换膜1、阳离子交换膜2、双极膜、阴离子交换膜2和阳离子交换膜3进行分隔,分割后铁阳极和惰性阳极所处的空间为阳极室;阳离子交换膜1和阴离子交换膜1之间为酸室1;阴离子交换膜1和阳离子交换膜2之间为盐室1;阳离子交换膜2和双极膜之间为碱室1;双极膜和阴离子交换膜2之间为酸室2;阴离子交换膜2和阳离子交换膜3之间为盐室2;阴极所处的空间为碱室2;电解槽设置有两个直流稳压电源供电电源,其中直流稳压电源1的正极与阳极室中的铁阳极相连,负极与阴极室中的阴极电极相连;直流稳压电源2的正极与阳极室中的惰性阳极相连,负极与阴极室中的阴极电极相连。
2.根据权利要求1所述一种处理高盐工业废水的多电极多隔膜电解槽,其特征是所述的阳极室上方还连有H2O2贮液槽,贮液槽与阳极室之间通过滴液管相连。
3.根据权利要求1所述一种处理高盐工业废水的多电极多隔膜电解槽,其特征是所述的双极膜,阴膜层朝向碱室1,阳膜层朝向酸室2。
4.根据权利要求1所述一种处理高盐工业废水的多电极多隔膜电解槽,其特征是所述的电解槽铁阳极可采用平板状、柱状或网状。
5.根据权利要求1所述一种处理高盐工业废水的多电极多隔膜电解槽,其特征是所述的电解槽惰性阳极和阴极为钛电极、钛合金电极或石墨电极,其构型或为平板状,或为柱状,或为多孔状。
CN201510845453.9A 2015-11-27 2015-11-27 一种处理高盐工业废水的多电极多隔膜电解槽 Pending CN105293642A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510845453.9A CN105293642A (zh) 2015-11-27 2015-11-27 一种处理高盐工业废水的多电极多隔膜电解槽

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510845453.9A CN105293642A (zh) 2015-11-27 2015-11-27 一种处理高盐工业废水的多电极多隔膜电解槽

Publications (1)

Publication Number Publication Date
CN105293642A true CN105293642A (zh) 2016-02-03

Family

ID=55191586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510845453.9A Pending CN105293642A (zh) 2015-11-27 2015-11-27 一种处理高盐工业废水的多电极多隔膜电解槽

Country Status (1)

Country Link
CN (1) CN105293642A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105968002A (zh) * 2016-05-06 2016-09-28 中国环境科学研究院 一种污染物排放量低的丙烯酸酯生产方法
CN110255675A (zh) * 2019-07-03 2019-09-20 福建师范大学泉港石化研究院 一种结合氧化回收废水中铬的双极膜电渗析方法
CN111410344A (zh) * 2020-04-17 2020-07-14 大唐环境产业集团股份有限公司 一种高盐废水双极膜电渗析装置及处理***和方法
CN113979520A (zh) * 2021-11-23 2022-01-28 中国科学院江西稀土研究院 一种电化学耦合功能膜回收废水中氨氮的装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101475276A (zh) * 2008-12-31 2009-07-08 莫一平 氧化铁生产废水的处理方法
CN101875522A (zh) * 2010-06-09 2010-11-03 南京大学 电絮凝-电气浮净化洗浴及洗衣废水的分级回用装置
WO2011050473A1 (en) * 2009-10-30 2011-05-05 Saltworks Technologies Inc. Method and system for desalinating saltwater while generating electricity
CN102452752A (zh) * 2010-10-26 2012-05-16 上海化学工业区中法水务发展有限公司 利用芬顿氧化的废水处理方法
CN104230063A (zh) * 2014-10-08 2014-12-24 上海博丹环境工程技术有限公司 一种厄贝沙坦胺化工段高浓度含盐废水处理方法及其***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101475276A (zh) * 2008-12-31 2009-07-08 莫一平 氧化铁生产废水的处理方法
WO2011050473A1 (en) * 2009-10-30 2011-05-05 Saltworks Technologies Inc. Method and system for desalinating saltwater while generating electricity
CN101875522A (zh) * 2010-06-09 2010-11-03 南京大学 电絮凝-电气浮净化洗浴及洗衣废水的分级回用装置
CN102452752A (zh) * 2010-10-26 2012-05-16 上海化学工业区中法水务发展有限公司 利用芬顿氧化的废水处理方法
CN104230063A (zh) * 2014-10-08 2014-12-24 上海博丹环境工程技术有限公司 一种厄贝沙坦胺化工段高浓度含盐废水处理方法及其***

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105968002A (zh) * 2016-05-06 2016-09-28 中国环境科学研究院 一种污染物排放量低的丙烯酸酯生产方法
CN105968002B (zh) * 2016-05-06 2019-02-26 中国环境科学研究院 一种污染物排放量低的丙烯酸酯生产方法
US10526217B2 (en) 2016-05-06 2020-01-07 Chinese Research Academy Of Environmental Sciences Method for producing acrylic ester with low pollutant discharge
CN110255675A (zh) * 2019-07-03 2019-09-20 福建师范大学泉港石化研究院 一种结合氧化回收废水中铬的双极膜电渗析方法
CN110255675B (zh) * 2019-07-03 2021-08-10 福建师范大学泉港石化研究院 一种结合氧化回收废水中铬的双极膜电渗析方法
CN111410344A (zh) * 2020-04-17 2020-07-14 大唐环境产业集团股份有限公司 一种高盐废水双极膜电渗析装置及处理***和方法
CN113979520A (zh) * 2021-11-23 2022-01-28 中国科学院江西稀土研究院 一种电化学耦合功能膜回收废水中氨氮的装置及方法
CN113979520B (zh) * 2021-11-23 2023-10-27 中国科学院江西稀土研究院 一种电化学耦合功能膜回收废水中氨氮的装置及方法

Similar Documents

Publication Publication Date Title
CN105329988A (zh) Fenton法结合双极膜技术处理高盐工业废水电解槽
CN205151853U (zh) 一种双单元共阴极处理含盐废水同时回收酸碱的电解槽
Li et al. Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment
CN107129011B (zh) 一种电解—离子膜耦合处理高氯盐有机废水的装置及方法
US20110318610A1 (en) Production of hydrogen peroxide
CN110616438B (zh) 一种电化学制备高纯电池级氢氧化锂的装置及其方法
AU2009304585A1 (en) Treatment of solutions or wastewater
CN105293642A (zh) 一种处理高盐工业废水的多电极多隔膜电解槽
CN110902895A (zh) 一种垃圾渗滤液中氨氮去除与回收的电化学膜分离方法
EP3504162A1 (en) Electrochemical system for recovery of components from a waste stream and method there for
Zou et al. Scaling-up of microbial electrosynthesis with multiple electrodes for in situ production of hydrogen peroxide
CN205204884U (zh) 一种处理高盐工业废水的多电极多隔膜电解槽
CN104724795A (zh) 一种处理含镍废水的电化学处理***和电化学方法
CN102839389B (zh) 一种膜法金属氯化物电积精炼生产方法
JPS6039757B2 (ja) 塩酸の電解方法
CN107253782A (zh) 一种铁循环电化学芬顿水处理方法和装置
CN115745097A (zh) 一种高盐有机废水双电芬顿处理装置
CN114804304A (zh) 一种电解法回收污水中磷的方法
CN102910708B (zh) 工业废水电化学联合阳极处理方法
CN106830204B (zh) 一种电化学阴极激发高锰酸盐降解水中污染物的方法及装置
KR101147491B1 (ko) 전기분해수 제조장치
CN205367823U (zh) Fenton法结合双极膜技术处理高盐工业废水电解槽
CN102828205A (zh) 一种新型金属电积精炼工艺
CN204702546U (zh) 一种处理含镍废水的电化学处理***
CN105236631A (zh) 一种基于多电极多隔膜电解槽的高盐工业废水处理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160203