CN105226643A - 安全约束下电力***运行模拟模型快速生成与求解方法 - Google Patents

安全约束下电力***运行模拟模型快速生成与求解方法 Download PDF

Info

Publication number
CN105226643A
CN105226643A CN201510611268.3A CN201510611268A CN105226643A CN 105226643 A CN105226643 A CN 105226643A CN 201510611268 A CN201510611268 A CN 201510611268A CN 105226643 A CN105226643 A CN 105226643A
Authority
CN
China
Prior art keywords
matrix
node
branch
distribution factor
row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510611268.3A
Other languages
English (en)
Other versions
CN105226643B (zh
Inventor
张宁
康重庆
夏清
杜尔顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201510611268.3A priority Critical patent/CN105226643B/zh
Publication of CN105226643A publication Critical patent/CN105226643A/zh
Priority to US15/248,019 priority patent/US10289765B2/en
Application granted granted Critical
Publication of CN105226643B publication Critical patent/CN105226643B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Data Mining & Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Operations Research (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Computing Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及安全约束的电力***运行模拟模型快速生成与求解方法,属于电力***分析领域。该方法包括:获得在运行模拟时间范围内所有涉及到所有支路及节点信息,计算电力***考虑所有支路的原始节点阻抗矩阵、负荷转移分布因子原始矩阵以及发电机转移分布因子原始矩阵;并根据每日电力***支路状态对其进行修正;根据无安全约束的电力***机组组合优化模型优化求解得到各发电机组各时段出力,再次判断是否有支路过载;通过多次迭代直至没有支路潮流过载,得到考虑安全约束的各机组各时段出力,完成全年考虑安全约束的运行模拟结果。本方法能够提高考虑安全约束的电力***运行模拟的速度,有助于大规模电力***考虑安全约束的运行模拟,有利于提高电力***规划的精细化水平。

Description

安全约束下电力***运行模拟模型快速生成与求解方法
技术领域
本发明属于电力***分析领域,特别涉及考虑安全约束的电力***运行模拟中的模型快速生成与求解方法。
背景技术
近年来,随着电力***规模的不断增加,风电、太阳能等间歇性能源的加入,大规模跨流域多级水电站的建设,核电、抽蓄、燃机等多种类型电源的接入以及电网远距离交直流混合输电的格局等因素都极大地增加了电网运行的复杂度。传统的电力***规划中往往通过生产模拟技术来安排类型机组在负荷曲线上的运行位置,进而评价未来电力规划的适应性与经济性。但随着电力***电源结构日益多样化、电网结构日益复杂,电力***运行中涉及到的***调峰、机组启停、线路断面潮流安全等多方面的限制因素,传统的电力***生产模拟技术往往难以考虑到实际运行当中的各项限制因素。因此,产生了电力***运行模拟这一新技术,即针对当前电力规划,采用机组组合模型对电力***未来运行进行长时间、考虑运行层面的各项约束的模拟,进而精细化的评估当前电力规划方案在未来运行中的适应性、经济性、环保性等指标。
目前,不考虑***安全约束的电力***运行模拟技术已比较成熟,并在国际上已有一些软件实现的产品。丹麦的Riso实验室研发了电力***运行模拟软件Wilmar(WEBERChristoph,MEIBOMPeter,BARTHRüdiger,etal.WILMAR:AStochasticProgrammingTooltoAnalyzetheLarge-ScaleIntegrationofWindEnergy.In:KALLRATHJosef,PARDALOSPanosM,REBENNACKSteffen,etal.,OptimizationintheEnergyIndustry,EnergySystems:SpringerBerlinHeidelberg,2009.p437-458),该软件实现的电力***运行模拟方法采用逐小时的运行模拟的方式评价***运行成本,被应用于风电接入规划以及抽水蓄能机组的规划中。但该方法仅能考虑电源侧的模拟,并没有对电力网络进行建模,因而无法考虑电力***线路潮流以及断面潮流等安全运行约束。通用电气公司(GE)研发了MAPS软件能够实现多区域互联电力***考虑线路约束时序运行模拟(http://www.geenergyconsulting.com/practice-area/software-products/maps.)。牛津大学研发了Switch软件中也实现了类似的功能(FRIPPMatthias.Switch:APlanningToolforPowerSystemswithLargeSharesofIntermittentRenewableEnergy.EnvironmentalScience&Technology,2014,46(11):6371-6378.)。虽然MAPS与Switch中能够考虑多区域的电力***中的潮流传输极限,但其仅能将电力***分为几个或几十个地区,建立不同地区之间的网流模型,并无法建立详细的电力网络潮流模型,运行模拟结果仅能分析各地区电源结构与布局的合理性与经济性,无法分析电网规划的安全性、合理性与经济性。
电力***运行模拟中考虑***安全约束为计算和建模带来极大的挑战,其原因在于电力网络的规模较大,精细化考虑电力***安全约束需要对电力***各节点和支路进行建模。以中等规模的省级网为例,一般包含发电机组约100~200台,节点1000~2000个,支路2000~5000条。不考虑安全约束的运行模拟中每日机组组合模型决策变量个数将在1万个以上,约束数也将达到2万个以上。包含安全约束后,约束条件个数将增加10万个以上。大规模的优化模型的建模和求解的计算和存储开销极大,考虑安全约束的运行模拟模型规模,对于个人电脑或高性能工作站,采用商业软件进行求解单日的机组组合模型,其建模时间约在几十秒的数量级上,求解时间也会在几百秒的数量级上,全年逐日的运行模拟的模拟总时间将超过几十小时的时间量级上,难以满足规划工作的实际需求。庞大的计算与存储开销限制了考虑安全约束的电力***运行模拟技术在实际大规模电力***中的应用。
综上所述,需要在电力***运行模拟技术的基础上,提出安全约束的模型快速生成以及考虑安全约束的机组组合快速计算技术,进而提升考虑安全约束的电力***运行模拟的计算效率,使其能够应用于大规模实际电力***。与本发明相关的背景技术包括:
1)考虑安全约束的电力***运行模拟技术:其含义是,根据电力***电网规划方案及电源装机规划,结合***负荷预测、一次能源情况形成电力***运行边界条件,选定一定的调度目标,在发电机运行约束、***线路与断面潮流安全约束等约束下模拟***一段时间的运行过程,根据***运行模拟结果评估***规划方案或***运行方式。电力***运行模拟的核心是逐日或逐周求解***的机组组合模型,其形式为一混合整数规划模型,如下式所示:
minf(X,I)
s.t.CPT+DIT≤b
F ‾ ≤ G G P T - G D L T ≤ F ‾
P ‾ T ≤ P T ≤ P ‾ T
上式中,P,I为上述优化模型的决策变量,P为各类型机组各时段出力组成的向量,其元素为连续变量,I为表示各类型机组状态的变量组成的向量,其元素为0-1变量,上标T表示向量或矩阵的转置。目标函数f(P,I)为***运行总成本最低,总成本包括机组燃料成本、***启停成本以及网损成本等。约束条件CPT+DIT≤b表示***运行约束以及发电机组的运行约束,***运行约束包括负荷平衡约束、备用平衡约束,发电机组运行约束包括机组出力约束、出力变化速率约束、机组启停状态约束、电量约束等;其中C表示上述各约束中机组出力对应决策变量P前面的系数矩阵,D表示上述各约束中机组状态对应决策变量I前面的系数矩阵,b表示上述各约束中右端常数项向量。约束条件约束表示电力线路与变压器潮流安全约束,其中GG为发电机转移分布因子,L为***各节点负荷组成的向量,F分别为支路的潮流上下限;约束条件为P的上下限约束,T为转置符号。电力***运行模拟的详细模型详见NingZhang,ChongqingKang,DanielS.Kirschen,QingXia,WeiminXi,JunhuiHuang,QianZhang.Planningpumpedstoragecapacityforwindpowerintegration.IEEETransactionsonSustainableEnergy,2013,4(2):393-401.
2)发电机转移分布因子矩阵与负荷转移分布因子矩阵:发电机转移分布因子矩阵表示***各发电机出力对各支路潮流的灵敏度,负荷转移分布因子矩阵表示***各发电机出力对各支路潮流的灵敏度,设***共有K条支路,N个节点,M台发电机,发电机转移分布因子GG以及负荷转移分布因子矩阵GD可表示为:
GG矩阵共有K行M列,glm表示第m台机组出力对第l条支路的灵敏度,GD矩阵共有K行N列,gln表示第n个节点负荷对第l条支路的灵敏度。若已知所有机组的出力向量X以及所有节点的负荷L,则可通过GG矩阵与GD矩阵获得线路的潮流:
F=GGPT-GDLT
上式中,F为各支路潮流组成的向量。
3)混合整数规划优化求解技术:该技术能够通过计算机求解混合整数规划优化问题,给出模型的最优解。
发明内容
本发明的目的是解决考虑安全约束的电力***运行模拟中优化模型规模较大进而导致计算效率较低的问题。提出一种安全约束下电力***运行模拟模型快速生成与求解方法,该方法首先生成电力***全拓扑对应的负荷转移分布因子与发电机转移分布因子,对于根据各日***支路开断状态对负荷转移分布因子与发电机转移分布因子进行修正,进而避免每次重新计算,提高了机组组合模型建模效率,同时,在求解机组组合模型时,采用起作用安全约束辨识技术,仅将起作用的安全约束加入机组组合模型中,进而提高了机组组合模型的求解效率。
本发明的基于风险评估的电力***薄弱环节辨识方法,包括:定义输电线路、电缆、变压器以及连接两个母线的输电设备为“支路”;定义电力***中的所有母线为“节点”;
其特征在于,该方法包括以下步骤:
1)获得在运行模拟时间范围内所有涉及到所有支路及节点信息,根据支路与节点的连接关系以及各支路电抗,计算电力***考虑所有支路的原始节点阻抗矩阵、负荷转移分布因子原始矩阵以及发电机转移分布因子原始矩阵;
2)依次开始进行逐日运行模拟计算,获取当前模拟日的支路开断状态,根据支路开断状态,将负荷转移分布因子原始矩阵与发电机转移分布因子原始矩阵进行修正后得到当前模拟日考虑支路开断状态后的负荷转移分布因子矩阵与发电机转移分布因子矩阵;
3)根据无安全约束的电力***机组组合优化模型采用混合整数规划优化求解技术进行求解得到各发电机组各时段出力,对于每一时段,根据发电机各时段出力以及节点负荷,计算各支路潮流,根据各支路潮流以及支路潮流极限判断各支路过载情况;根据过载线路对应的负荷转移分布因子以及发电机转移分布因子矩阵的行,生成机组组合模型中的安全约束,加入无安全约束的电力***机组组合优化模型中利用混合整数规划优化求解技术再次进行求解,得到发电机各时段出力后再次判断是否有支路过载;通过多次迭代直至没有支路潮流过载,得到考虑安全约束的各机组各时段出力,完成当日运行模拟并跳转至下一日进行运行模拟,依次对待模拟日进行运行模拟得到全年考虑安全约束的运行模拟结果。
本发明的技术特点及有益效果:
本发明在现有电力***运行模拟的基础上,建立了考虑安全约束的电力***运行模拟模型快速生成与求解方法,相比于现有方法,该方法能够快速计算运行模拟各日的发电机转移分布因子矩阵、并且能够快速求解考虑安全约束的机组组合模型。应用本方法,使电力***考虑安全约束的运行模拟计算能够用于大规模实际电力***中,进而更科学的评估当前电力规划方案在未来运行中的适应性、经济性、环保性等指标,有利于提高电力***规划的精细化水平,因而具有重要的现实意义和良好的应用前景。
附图说明
图1为本发明中提出的考虑安全约束的电力***运行模拟模型快速生成与求解流程;
具体实施方式
下面结合附图说明本发明提出的安全约束的电力***运行模拟模型快速生成与求解方法;
本方法中定义输电线路、电缆、变压器以及连接两个母线的输电设备为“支路”;定义电力***中的所有母线为“节点”;定义K为***支路数,N为***节点数,M为***发电机数;该方法的实施流程图如图1所示,该方法具体包括以下步骤:
1)获得在运行模拟时间范围内待模拟的电力***中所有支路及节点信息,根据支路与节点的连接关系以及各支路电抗,计算电力***包含所有支路的原始节点阻抗矩阵、负荷转移分布因子原始矩阵以及发电机转移分布因子原始矩阵;其具体过程包括:
1.1)根据各支路电抗参数,形成支路导纳矩阵如式(1):
式中,y为支路导纳矩阵,xl为支路l的阻抗,l=1、2…..K;
1.2)根据所有支路与节点连接关系,形成节点-支路关联矩阵,以及发电机-节点关联矩阵;首先,对各支路形成支路-节点关联矢量Hl,该矢量共有N个元素,对于支路l,在Hl中其起始节点i对应的元素置1,在终止节点j对应元素置-1,如式(2):
H l = [ 0 1 , ... , 1 i , ... , - 1 j , ... , 0 N ] T - - - ( 2 ) ;
利用支路-节点关联矢量Hl形成节点-支路关联矩阵,如式(3):
A=[H1H2…HK](3);
将***中连接发电机组容量最大的节点选定为***的松弛节点将松弛节点对应行删去,得到降阶节点-支路关联矩阵
然后,对各发电机建立关联矢量Rm,该矢量共有N个元素,对于机组m,m=1、2….M,设该机组所在节点为i,在Rm中对应的第i个元素置1,则关联矢量Rm如式(4):
R m = [ 0 1 , ... , 1 i , ... , 0 N ] T - - - ( 4 ) ;
利用发电机-节点关联矢量形成发电机-节点关联矩阵如式(5):
AG=[R1R2…RM](5);
根据选定的***松弛节点将松弛节点对应行删去,得到降阶节点-支路关联矩阵1.3)根据支路导纳矩阵以及节点-支路关联矩阵形成发电机转移分布因子原始矩阵以及负荷转移分布因子原始矩阵,根据式(6)计算原始节点阻抗矩阵X、负荷转移分布因子原始降阶矩阵以及发电机转移分布因子原始降阶矩阵分别如式(7)、(8):
X = ( A ~ y A ~ T ) - 1 - - - ( 6 )
G ~ D = y A ~ T X - - - ( 7 )
对于松弛节点分别在以及对应的列***一行元素均为0的向量,得到负荷转移分布因子原始矩阵GG以及发电机转移分布因子原始矩阵GD
2)依次开始进行逐日运行模拟计算,获取当前模拟日的支路开断状态,根据支路开断状态,将负荷转移分布因子原始矩阵GG与发电机转移分布因子原始矩阵GD进行修正后得到当前模拟日考虑支路开断状态后的负荷转移分布因子矩阵与发电机转移分布因子矩阵;其具体过程包括:
2.1)定义d为当前模拟日序号,定义当日断开的支路序号的集合为Ω:{b1,b2,...,bB},定义***当前断开的支路为b1,定义b1阻抗为b1起始节点为i,终止节点为j;
2.2)计算b1的中间变量如式(9):
x b 1 ′ = - x b 1 + X i i + X j j - X i j - X j i - - - ( 9 )
上式中,Xii,Xjj,Xij,Xji分别为原始节点阻抗矩阵X的对应元素;
2.3)计算考虑支路b1断开后的节点阻抗矩阵的修正矩阵X′,根据修正矩阵X′以及原始节点阻抗矩阵X计算考虑支路b1断开后的节点阻抗矩阵分别如(10)、(11):
X b 1 = X - X ′ - - - ( 11 ) ;
其中,X的下标表示X在原始节点阻抗矩阵X中元素的行号与列号,例如:Xi1为原始节点阻抗矩阵X第i行第1列元素,Xj1为X第j行第1列元素,Xi2为X第i行第2列元素,Xj2为X第j行第2列元素,XiN为X第i行第N列元素,XiN为X第i行第N列元素。
2.4)根据负荷转移分布因子原始降阶矩阵以及原始节点阻抗矩阵X计算考虑支路b1断开后的负荷转移分布因子的修正矩阵根据修正矩阵以及负荷转移分布因子原始降阶矩阵计算考虑支路b1断开后的负荷转移分布因子降阶矩阵分别如式(12)、(13):
G ~ D , b 1 ′ = G ~ D - G ~ D ′ - - - ( 13 ) ;
其中,g1i为负荷转移分布因子原始降阶矩阵第1行第i列元素,g1j第1行第j列元素,g2i第2行第i列元素,g2j第2行第j列元素,gLi第K行第i列元素,gLj第K行第j列元素;Xi1为原始节点阻抗矩阵X第i行第1列元素,Xj1为X第j行第1列元素,Xi2为X第i行第2列元素,Xj2为X第j行第2列元素,XiN为X第i行第N列元素,XiN为X第i行第N列元素。
2.5)根据考虑支路b1断开后的节点阻抗降阶矩阵计算计算考虑支路b1断开后的发电机转移分布因子降阶矩阵如式(14):
G ~ G , b 1 ′ = G ~ G - G ~ D , b 1 ′ A ~ G - - - ( 14 )
2.6)对于选定的松弛节点分别在以及对应的列***一行元素均为0的向量,得到考虑支路b1断开后负荷转移分布因子矩阵以及发电机转移分布因子矩阵
2.7)将分别作为新的原始节点阻抗矩阵、节点转移分布因子原始降阶矩阵、发电机转移分布因子原始降阶矩阵,计算下一条支路断开后***的节点阻抗矩阵、节点转移分布因子降阶矩阵、发电机转移分布因子降阶矩阵,继续步骤2.2)~2.7)直至处理完d日所有断开的线路,得到第d日的发电机转移分布因子矩阵负荷转移分布因子矩阵生成第d日机组组合的安全约束,如式(15):
F ‾ ≤ G G , b B P T - G D , b B L T ≤ F ‾ - - - ( 15 )
3)根据无安全约束的电力***机组组合优化模型采用混合整数规划优化求解技术进行求解,得到各发电机组各时段出力,对于每一时段,根据发电机各时段出力以及节点负荷,计算各支路潮流,根据各支路潮流以及支路潮流极限判断各支路过载情况;根据过载线路对应的负荷转移分布因子以及发电机转移分布因子矩阵的行,生成机组组合模型中的安全约束,加入无安全约束的电力***机组组合优化模型中利用混合整数规划优化求解技术再次进行求解,得到发电机各时段出力后再次判断是否有支路过载;通过多次迭代得到待模拟日考虑安全约束的各机组各时段出力,完成当日运行模拟并跳转至下一日进行运行模拟,依次对待模拟日进行运行模拟得到全年考虑安全约束的运行模拟结果;其具体过程包括:
3.1)定义***起作用安全约束集合(表示空集),定义计算循环变量s=0,计算第d日不包含安全约束时机组组合模型,得到各机组出力P(0),根据P(0)以及各节点负荷向量L,计算支路潮流如式(16):
F ( 0 ) = G G , b B P ( 0 ) T - G D , b B L T - - - ( 16 )
根据F(0)F以及判断各支路过载情况,记录过载的支路集合为Θ(1),若集合为空集,则跳转至步骤3.3),若集合不为空集,则更新起作用安全约束集合Θ=Θ(1),定义为矩阵的第l行元素,定义为矩阵的第l行元素,定义f l为向量F的第l个元素,定义为向量F的第l行元素,计算第d日包含起作用安全约束机组组合模型,起作用约束表示为式(17):
f l ‾ ≤ g G , b B , l P ( 0 ) T - g D , b B , l L T ≤ f l ‾ , l ∈ Θ - - - ( 17 )
求解包含安全约束集合Θ的机组组合模型,获得第一次迭代中考虑安全约束集合Θ的机组组合模型的最优解P(1)
3.2)s=s+1,进入下一次迭代,对于第s次迭代,根据P(s)以及各节点负荷向量L,计算支路潮流:
F ( s ) = G G , b B P ( s ) T - G D , b B L T
根据F(s)F以及判断各支路过载情况,记录过载的支路集合为Θ(s),若集合为空集,则跳转至步骤3.3),若集合不为空集,则更新起作用安全约束集合Θ=Θ(s-1)∪Θ(s),计算第d日包含起作用安全约束机组组合模型,起作用约束表示为:
f l ‾ ≤ g G , b B , l P ( s ) T - g D , b B , l L T ≤ f l ‾ , l ∈ Θ ( s )
求解包含安全约束集合Θ的机组组合模型,获得P(s+1),重新实施步骤3.2);
3.3)将P(s)作为考虑***安全约束后机组组合的最优解,d=d+1,跳转至步骤2.1)计算第d+1日的运行模拟。

Claims (4)

1.一种安全约束的电力***运行模拟模型快速生成与求解方法,定义输电线路、电缆、变压器以及连接两个母线的输电设备为“支路”;定义电力***中的所有母线为“节点”;定义K为***支路数,N为节点***节点数,M为***发电机数;
其特征在于,该方法包括以下步骤:
1)获得在运行模拟时间范围内所有涉及到所有支路及节点信息,根据支路与节点的连接关系以及各支路电抗,计算电力***考虑所有支路的原始节点阻抗矩阵、负荷转移分布因子原始矩阵以及发电机转移分布因子原始矩阵;
2)依次开始进行逐日运行模拟计算,获取当前模拟日的支路开断状态,根据支路开断状态,将负荷转移分布因子原始矩阵与发电机转移分布因子原始矩阵进行修正后得到当前模拟日考虑支路开断状态后的负荷转移分布因子矩阵与发电机转移分布因子矩阵;
3)根据无安全约束的电力***机组组合优化模型采用混合整数规划优化求解技术进行求解得到各发电机组各时段出力,对于每一时段,根据发电机各时段出力以及节点负荷,计算各支路潮流,根据各支路潮流以及支路潮流极限判断各支路过载情况;根据过载线路对应的负荷转移分布因子以及发电机转移分布因子矩阵的行,生成机组组合模型中的安全约束,加入无安全约束的电力***机组组合优化模型中利用混合整数规划优化求解技术再次进行求解,得到发电机各时段出力后再次判断是否有支路过载;通过多次迭代直至没有支路潮流过载,得到考虑安全约束的各机组各时段出力,完成当日运行模拟并跳转至下一日进行运行模拟,依次对待模拟日进行运行模拟得到全年考虑安全约束的运行模拟结果。
2.如权利要求1所述方法,其特征在于,所述步骤1)具体包括:
1.1)根据各支路电抗参数,形成支路导纳矩阵:
式中,y为支路导纳矩阵,xl为支路l的阻抗,l=1、2…..K;
1.2)根据所有支路与节点连接关系,形成节点-支路关联矩阵,以及发电机-节点关联矩阵;首先,对各支路形成支路-节点关联矢量Hl,该矢量共有N个元素,对于支路l,在Hl中其起始节点i对应的元素置1,在终止节点j对应元素置-1:
H l = [ 0 1 , ... , 1 i , ... , - 1 j , ... , 0 N ] T ;
利用支路-节点关联矢量形成节点-支路关联矩阵:
A=[H1H2…HK];
将***中连接发电机组容量最大的节点选定***的松弛节点,将松弛节点对应行删去,得到降阶节点-支路关联矩阵
然后,对各发电机建立关联矢量Rm,该矢量共有N个元素,对于机组m,m=1、2….M,设该机组所在节点为i,在Rm中对应的第i个元素置1:
R m = [ 0 1 , ... , 1 i , ... , 0 N ] T ;
利用发电机-节点关联矢量形成发电机-节点关联矩阵:
AG=[R1R2…RM];
根据选定的***松弛节点,将松弛节点对应行删去,得到降阶节点-支路关联矩阵
1.3)根据支路导纳矩阵以及节点-支路关联矩阵形成发电机转移分布因子原始矩阵以及负荷转移分布因子原始矩阵,根据下式计算原始节点阻抗矩阵X、负荷转移分布因子原始降阶矩阵以及发电机转移分布因子原始降阶矩阵
X = ( A ~ y A ~ T ) - 1
G ~ D = y A ~ T X
G ~ G = G ~ D A ~ G
对于该松弛节点分别在以及对应的列***一行元素均为0的向量,得到负荷转移分布因子原始矩阵GG以及发电机转移分布因子原始矩阵GD
3.如权利要求1所述方法,其特征在于,所述步骤2)具体包括:
2.1)定义d为当前模拟日序号,定义当日断开的支路序号的集合为Ω:{b1,b2,...,bB},定义***当前断开的支路为b1,定义b1阻抗为b1起始节点为i,终止节点为j;
2.2)计算b1的中间变量
x b 1 ′ = - x b 1 + X i i + X j j - X i j - X j i
上式中,Xii,Xjj,Xij,Xji分别为原始节点阻抗矩阵X的对应元素;
2.3)计算考虑支路b1断开后的节点阻抗矩阵的修正矩阵X′,根据修正矩阵X′以及原始节点阻抗矩阵X计算考虑支路b1断开后的节点阻抗矩阵
X b 1 = X - X ′ ;
其中,X的下标表示X在原始节点阻抗矩阵X中元素的行号与列号,例如:Xi1为原始节点阻抗矩阵X第i行第1列元素,Xj1为X第j行第1列元素,Xi2为X第i行第2列元素,Xj2为X第j行第2列元素,XiN为X第i行第N列元素,XiN为X第i行第N列元素;
2.4)根据负荷转移分布因子原始降阶矩阵以及原始节点阻抗矩阵X计算考虑支路b1断开后的负荷转移分布因子的修正矩阵根据修正矩阵以及负荷转移分布因子原始降阶矩阵计算考虑支路b1断开后的负荷转移分布因子降阶矩阵
G ~ D , b 1 ′ = G ~ D - G ~ D ′ ;
其中,g1i为负荷转移分布因子原始降阶矩阵第1行第i列元素,g1j第1行第j列元素,g2i第2行第i列元素,g2j第2行第j列元素,gLi第K行第i列元素,gLj第K行第j列元素;Xi1为原始节点阻抗矩阵X第i行第1列元素,Xj1为X第j行第1列元素,Xi2为X第i行第2列元素,Xj2为X第j行第2列元素,XiN为X第i行第N列元素,XiN为X第i行第N列元素;
2.5)根据考虑支路b1断开后的节点阻抗降阶矩阵计算计算考虑支路b1断开后的发电机转移分布因子降阶矩阵
G ~ G , b 1 ′ = G ~ G - G ~ D , b 1 ′ A ~ G
2.6)对于选定的松弛节点分别在以及对应的列***一行元素均为0的向量,得到考虑支路b1断开后负荷转移分布因子矩阵以及发电机转移分布因子矩阵
2.7)将分别作为新的原始节点阻抗矩阵、节点转移分布因子原始降阶矩阵、发电机转移分布因子原始降阶矩阵,计算下一条支路断开后***的节点阻抗矩阵、节点转移分布因子降阶矩阵、发电机转移分布因子降阶矩阵,继续步骤2.2)~2.7)直至处理完d日所有断开的线路,得到第d日的发电机转移分布因子矩阵负荷转移分布因子矩阵生成第d日机组组合的安全约束:
F ‾ ≤ G G , b B P T - G D , b B L T ≤ F ‾
其中,P为各类型机组各时段出力组成的向量,为机组组合优化模型的决策变量,分别为支路的潮流上下限,L为***各节点负荷组成的向量。
4.如权利要求1所述方法,其特征在于,所述步骤3)具体包括:
3.1)定义***起作用安全约束集合 表示空集,定义计算循环变量s=0,计算第d日不包含安全约束机组组合模型,得到各机组出力X(0),根据X(0)以及各节点负荷向量L,计算支路潮流:
F ( 0 ) = G G , b B P ( 0 ) T - G D , b B L T
根据F(0)以及判断各支路过载情况,记录过载的支路集合为Θ(1),若集合Θ(1)为空集,则跳转至步骤3.3),若集合Θ(1)不为空集,则更新起作用安全约束集合Θ=Θ(1),定义为矩阵的第l行元素,定义为矩阵的第l行元素,定义为向量的第l个元素,定义为向量的第l行元素,计算第d日包含起作用安全约束机组组合模型,起作用约束表示为:
f l ‾ ≤ g G , b B , l P ( 0 ) T - g D , b B , l L T ≤ f 1 ‾ , l ∈ Θ
求解包含安全约束集合Θ的机组组合模型,获得第一次迭代中考虑安全约束集合Θ的机组组合模型的最优解P(1)
3.2)s=s+1,进入下一次迭代,对于第s次迭代,根据P(s)以及各节点负荷向量L,计算支路潮流:
F ( s ) = G G , b B P ( s ) T - G D , b B L T
根据F(s)以及判断各支路过载情况,记录过载的支路集合为Θ(s),若集合为空集,则跳转至步骤3.3),若集合不为空集,则更新起作用安全约束集合Θ=Θ(s-1)∪Θ(s),计算第d日包含起作用安全约束机组组合模型,起作用约束表示为:
f l ‾ ≤ g G , b B , l P ( s ) T - g D , b B , l L T ≤ f l ‾ , l ∈ Θ ( s )
求解包含安全约束集合Θ的机组组合模型,获得P(s+1),重新实施步骤3.2);
3.3)将P(s)作为考虑***安全约束后机组组合的最优解,d=d+1,跳转至步骤2.1)计算第d+1日的运行模拟。
CN201510611268.3A 2015-09-23 2015-09-23 安全约束下电力***运行模拟模型快速生成与求解方法 Active CN105226643B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510611268.3A CN105226643B (zh) 2015-09-23 2015-09-23 安全约束下电力***运行模拟模型快速生成与求解方法
US15/248,019 US10289765B2 (en) 2015-09-23 2016-08-26 Fast model generating and solving method for security-constrained power system operation simulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510611268.3A CN105226643B (zh) 2015-09-23 2015-09-23 安全约束下电力***运行模拟模型快速生成与求解方法

Publications (2)

Publication Number Publication Date
CN105226643A true CN105226643A (zh) 2016-01-06
CN105226643B CN105226643B (zh) 2017-11-28

Family

ID=54995435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510611268.3A Active CN105226643B (zh) 2015-09-23 2015-09-23 安全约束下电力***运行模拟模型快速生成与求解方法

Country Status (2)

Country Link
US (1) US10289765B2 (zh)
CN (1) CN105226643B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107591841A (zh) * 2017-09-26 2018-01-16 清华大学 适用于新能源大规模接入下的电网演化模拟方法
CN108847661A (zh) * 2018-06-11 2018-11-20 华中科技大学 一种区域电力***全年生产模拟运行方法及***
CN109102146A (zh) * 2018-06-29 2018-12-28 清华大学 基于多参数线性规划的电力***风险评估加速方法
CN109617131A (zh) * 2018-12-07 2019-04-12 国网经济技术研究院有限公司 一种电力***生产成本测算方法及***
CN109711001A (zh) * 2018-12-10 2019-05-03 三峡大学 基于柔性化子***划分和场景属性聚类的水电站多维全数字建模方法
CN109767078A (zh) * 2018-12-19 2019-05-17 西安交通大学 一种基于混合整数规划的多类型电源检修安排方法
CN109830976A (zh) * 2019-02-28 2019-05-31 四川大学 一种交直流混合配电网弹性运行调控方法
CN113935855A (zh) * 2021-10-15 2022-01-14 国网江苏省电力有限公司经济技术研究院 电力现货市场交易管理方法、装置及设备
WO2022094741A1 (zh) * 2020-11-03 2022-05-12 广西大学 一种多时段高维投影机组组合模型的构建方法和装置
CN114926009A (zh) * 2022-05-16 2022-08-19 广西大学 基于改进Transformer神经网络的机组组合两阶段快速求解方法
CN114937994A (zh) * 2022-03-24 2022-08-23 南瑞集团有限公司 一种交直流混联电网的直流闭锁后稳定控制方法及装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109873454B (zh) * 2017-12-05 2023-09-22 中国电力科学研究院有限公司 一种受端电网中机组群电压支撑能力的评估方法和装置
US11894680B2 (en) * 2018-03-16 2024-02-06 Battelle Memorial Instutute Integrated solution techniques for security constrained unit commitment problem
CN108647830B (zh) * 2018-05-16 2021-10-15 清华大学 面向跨区跨省电力交易的省内安全约束边界等值生成方法
CN109446540B (zh) * 2018-08-28 2023-04-14 南方电网科学研究院有限责任公司 一种基于关联矩阵计算的电力***网络重构方法
CN109713730A (zh) * 2018-12-05 2019-05-03 中国电力科学研究院有限公司 一种电网***的最大受电规模的计算方法
CN110571864A (zh) * 2019-09-09 2019-12-13 重庆大学 一种计及风电预测误差时序相关性和机组启停调峰的含风电-光热电力***机组组合方法
CN110707705B (zh) * 2019-10-22 2023-01-17 太原理工大学 一种电-气耦合综合能源***潮流顺序分析模型
CN110781598B (zh) * 2019-10-29 2024-02-09 国家电网有限公司 一种区域综合能源***运行状态计算方法
CN110875601B (zh) * 2019-11-27 2022-10-14 大连理工大学 一种简化结构的电力***多机动态频率响应模型
CN111339632A (zh) * 2019-12-18 2020-06-26 中国电力科学研究院有限公司 一种隔离机电-电磁混合仿真网络拓扑变化的方法和***
CN112484920B (zh) * 2020-11-11 2024-02-23 中国电力科学研究院有限公司 一种用于电力***转动惯量的监测***及方法
CN112436560B (zh) * 2020-11-12 2022-11-18 内蒙古呼和浩特抽水蓄能发电有限责任公司 一种含抽水蓄能机组间相互约束的日前优化调度方法
CN113496354B (zh) * 2021-06-25 2022-03-11 上海交通大学 基于拓扑分析的能源***矩阵化数学建模方法和***
CN113610359A (zh) * 2021-07-20 2021-11-05 国网河北省电力有限公司雄安新区供电公司 基于量化分级指标体系的光伏接入配电网适应性评估方法
CN113887005B (zh) * 2021-09-30 2024-02-06 广东电网有限责任公司广州供电局 一种交直流电力***仿真建模方法、装置
CN114611338B (zh) * 2022-05-11 2022-09-02 国网江西省电力有限公司电力科学研究院 一种储能电站选址定容方法及***
CN114744686B (zh) * 2022-06-09 2022-11-01 阿里巴巴达摩院(杭州)科技有限公司 发电机组识别方法、装置、设备和存储介质
CN115882452B (zh) * 2023-01-04 2023-05-26 温州电力建设有限公司 一种考虑源荷不确定性的新能源消纳能力分析与评估方法
CN118249421A (zh) * 2024-05-27 2024-06-25 广东电网有限责任公司 一种基于节点链接矩阵的多节点***调控方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101982917A (zh) * 2010-10-17 2011-03-02 华中电网有限公司 用于电网调度的可用输电能力的计算方法
US20130024168A1 (en) * 2011-07-19 2013-01-24 Carnegie Mellon University General method for distributed line flow computing with local communications in meshed electric networks
CN103093037A (zh) * 2012-12-27 2013-05-08 东北电网有限公司 基于主从问题交替优化的电力***解列断面搜索方法
CN104809519A (zh) * 2015-04-29 2015-07-29 国家电网公司 一种计及电网拓扑优化的电力***经济调度方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8924033B2 (en) * 2010-05-12 2014-12-30 Alstom Grid Inc. Generalized grid security framework
US9093840B2 (en) * 2010-07-02 2015-07-28 Alstom Technology Ltd. System tools for integrating individual load forecasts into a composite load forecast to present a comprehensive synchronized and harmonized load forecast
US10167850B2 (en) * 2014-09-02 2019-01-01 Siemens Industry, Inc. Systems, methods and apparatus for improved energy management systems with security constrained dynamic dispatch for wind power management
US9876356B2 (en) * 2014-10-02 2018-01-23 Mitsubishi Electric Research Laboratories, Inc. Dynamic and adaptive configurable power distribution system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101982917A (zh) * 2010-10-17 2011-03-02 华中电网有限公司 用于电网调度的可用输电能力的计算方法
US20130024168A1 (en) * 2011-07-19 2013-01-24 Carnegie Mellon University General method for distributed line flow computing with local communications in meshed electric networks
CN103093037A (zh) * 2012-12-27 2013-05-08 东北电网有限公司 基于主从问题交替优化的电力***解列断面搜索方法
CN104809519A (zh) * 2015-04-29 2015-07-29 国家电网公司 一种计及电网拓扑优化的电力***经济调度方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107591841B (zh) * 2017-09-26 2019-11-22 清华大学 适用于新能源大规模接入下的电网演化模拟方法
CN107591841A (zh) * 2017-09-26 2018-01-16 清华大学 适用于新能源大规模接入下的电网演化模拟方法
CN108847661A (zh) * 2018-06-11 2018-11-20 华中科技大学 一种区域电力***全年生产模拟运行方法及***
CN108847661B (zh) * 2018-06-11 2020-05-19 华中科技大学 一种区域电力***全年生产模拟运行方法及***
CN109102146A (zh) * 2018-06-29 2018-12-28 清华大学 基于多参数线性规划的电力***风险评估加速方法
CN109102146B (zh) * 2018-06-29 2021-10-29 清华大学 基于多参数线性规划的电力***风险评估加速方法
CN109617131B (zh) * 2018-12-07 2022-03-04 国网经济技术研究院有限公司 一种电力***生产成本测算方法及***
CN109617131A (zh) * 2018-12-07 2019-04-12 国网经济技术研究院有限公司 一种电力***生产成本测算方法及***
CN109711001A (zh) * 2018-12-10 2019-05-03 三峡大学 基于柔性化子***划分和场景属性聚类的水电站多维全数字建模方法
CN109711001B (zh) * 2018-12-10 2023-03-24 三峡大学 基于柔性化子***划分和场景属性聚类的水电站多维全数字建模方法
CN109767078A (zh) * 2018-12-19 2019-05-17 西安交通大学 一种基于混合整数规划的多类型电源检修安排方法
CN109767078B (zh) * 2018-12-19 2021-07-27 西安交通大学 一种基于混合整数规划的多类型电源检修安排方法
CN109830976A (zh) * 2019-02-28 2019-05-31 四川大学 一种交直流混合配电网弹性运行调控方法
CN109830976B (zh) * 2019-02-28 2023-09-05 四川大学 一种交直流混合配电网弹性运行调控方法
WO2022094741A1 (zh) * 2020-11-03 2022-05-12 广西大学 一种多时段高维投影机组组合模型的构建方法和装置
CN113935855A (zh) * 2021-10-15 2022-01-14 国网江苏省电力有限公司经济技术研究院 电力现货市场交易管理方法、装置及设备
CN114937994A (zh) * 2022-03-24 2022-08-23 南瑞集团有限公司 一种交直流混联电网的直流闭锁后稳定控制方法及装置
WO2023179044A1 (zh) * 2022-03-24 2023-09-28 南瑞集团有限公司 一种交直流混联电网的直流闭锁后稳定控制方法及装置
CN114926009A (zh) * 2022-05-16 2022-08-19 广西大学 基于改进Transformer神经网络的机组组合两阶段快速求解方法

Also Published As

Publication number Publication date
US10289765B2 (en) 2019-05-14
CN105226643B (zh) 2017-11-28
US20170083648A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
CN105226643A (zh) 安全约束下电力***运行模拟模型快速生成与求解方法
Ding et al. Multi-stage distributionally robust stochastic dual dynamic programming to multi-period economic dispatch with virtual energy storage
Rakipour et al. Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response
Xu et al. Hierarchical multi-objective optimal planning model of active distribution network considering distributed generation and demand-side response
Zhou et al. Multi-energy net load forecasting for integrated local energy systems with heterogeneous prosumers
Roy et al. Optimal short-term hydro-thermal scheduling using quasi-oppositional teaching learning based optimization
Torbaghan et al. A market-based transmission planning for HVDC grid—case study of the North Sea
Niknam et al. Multi-objective stochastic distribution feeder reconfiguration problem considering hydrogen and thermal energy production by fuel cell power plants
Chung et al. Decomposed predictor-corrector interior point method for dynamic optimal power flow
Sato et al. Total optimization of energy networks in a smart city by multi-swarm differential evolutionary particle swarm optimization
CN104779611A (zh) 基于集中式和分布式双层优化策略的微电网经济调度方法
CN104751246A (zh) 一种基于随机机会约束的有源配电网规划方法
Sun Energy internet and we-energy
CN103473393A (zh) 一种考虑随机概率的输电裕度控制模型建模方法
Sari et al. New optimized configuration for a hybrid PV/diesel/battery system based on coyote optimization algorithm: A case study for Hotan county
CN105654224A (zh) 一种计及风电不确定性的省级电网月度购电风险管理方法
CN105305488A (zh) 一种考虑新能源并网对输电网利用率影响的评价方法
CN107480885A (zh) 基于非支配排序差分进化算法的分布式电源布点规划方法
Yang et al. Deep learning-based distributed optimal control for wide area energy Internet
CN112701721A (zh) 一种综合能源***的协调规划方法
Bakır et al. A novel optimal power flow model for efficient operation of hybrid power networks
Khodadadi et al. Data-Driven hierarchical energy management in multi-integrated energy systems considering integrated demand response programs and energy storage system participation based on MADRL approach
Jiang et al. Hybrid DE-TLBO algorithm for solving short term hydro-thermal optimal scheduling with incommensurable Objectives
CN112994011A (zh) 考虑电压风险约束的多源电力***日前优化调度方法
Marinova et al. Energy Scheduling for island microgrid applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant