CN105226127A - 一种基于全内反射结构的石墨烯光电探测器及其制备方法 - Google Patents

一种基于全内反射结构的石墨烯光电探测器及其制备方法 Download PDF

Info

Publication number
CN105226127A
CN105226127A CN201510654191.8A CN201510654191A CN105226127A CN 105226127 A CN105226127 A CN 105226127A CN 201510654191 A CN201510654191 A CN 201510654191A CN 105226127 A CN105226127 A CN 105226127A
Authority
CN
China
Prior art keywords
graphene
internal reflection
total internal
reflection structure
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510654191.8A
Other languages
English (en)
Inventor
刘智波
辛巍
邢飞
陈旭东
田建国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201510654191.8A priority Critical patent/CN105226127A/zh
Publication of CN105226127A publication Critical patent/CN105226127A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种基于全内反射结构的石墨烯光电探测及其制备方法,该探测器自上而下依次是表面电极、石墨烯层、玻璃片、折射率匹配液、棱镜,入射光通过棱镜在玻璃片与石墨烯层的界面发生全内反射。它的制备方法包括如下步骤:将石墨烯转移至洁净的玻璃上,再在石墨烯层上制作表面电极;通过折射率匹配液将覆盖有石墨烯的玻璃片贴附到棱镜上。本发明通过全内反射结构下的光与石墨烯相互作用,可以实现大面积石墨烯光电探测,在宽的光谱范围内增强石墨烯的光电响应,并保留了石墨烯快的光电响应速度,同时对不同偏振的入射其光电响应着明显的偏振依赖性。

Description

一种基于全内反射结构的石墨烯光电探测器及其制备方法
技术领域
本发明涉及一种石基于全内反射结构的石墨烯光电探测器及其制备方法,特别涉及一种大面积、宽带、快速响应的石墨烯光电探测器,属于光电检测领域。
背景技术
光电探测器是一种将光信号转变成电信号的器件,在军事和国民经济的各个领域有广泛用途。相比于传统的半导体光电材料,石墨烯在光电探测应用中具有独特的优势:(1)宽光谱的光吸收和光响应范围,从可见、红外、到远红外,甚至太赫兹都有着吸收,单层石墨烯仅吸收约2.3%的可见光和红外光,这个值并不依赖入射光波长和材料本身,对层数较少的石墨烯,每层也近似吸收2.3%的光;(2)超快的响应速度。由于石墨烯内所有导带载流子之间存在着超快且超高效的关联,在石墨烯内快速制造出光电压是可能的。石墨烯光生电子的发生和复合弛豫时间一般在飞秒至皮秒量级,理论上石墨烯光电响应的速度可以达到500GHz。
为了充分利用石墨烯独特的光学特性,人们已经开始探索新型结构来增强石墨烯同光的相互作用:(1)石墨烯与金属微结构相结合,利用金属微结构的表面等离子激元(SPP)所产生的局域场增强效应提高了石墨烯的表面拉曼信号和光电流;(2)将石墨烯集成到光学微腔中,通过光学微腔对光场的共振作用增强石墨烯与光的相互作用,获得了更好的光电探测效果;(3)石墨烯与波导结构的结合,利用波导中倏逝场与石墨烯相互距离的增加来增强两者的相互作用,例如将可门控吸收的石墨烯覆盖在硅波导上实现了宽带光调制[9],或将石墨烯覆盖在硅基光子晶体芯片上,增强其非线性光学效应;(4)将石墨烯置于全内反射结构的棱镜上,利用光在棱镜表面形成的倏逝场与石墨烯相互作用,这种结构将具有明显的偏振依赖性,其中石墨烯对s偏振光的吸收将远大于2.3%,并可以实现光的偏振控制、折射率传感和对石墨烯自身结构的表征。其中,前三种方法结构比较复杂,不适合大面石墨烯的应用,最后一种方法虽然石墨烯与光相互作用的增强要小一些,但结构简单,更适合大面积石墨烯的应用。
发明内容
本发明的目的是提供一种基于全内反射结构的石墨烯光电探测器及其制备方法,本发明光电探测器件具有大面积、高响应、宽带的特性,以及高效的光电探测效率,相比于普通照射结构的石墨烯探测器,光电响应增强7倍以上。
本发明所提供的基于全内反射结构的石墨烯光电探测器,自上而下依次是表面电极、石墨烯层、玻璃片、折射率匹配液、棱镜,利用棱镜将入射光入射到石墨烯上,当入射光入射角度大于全内反射临界角时在玻璃片和石墨烯界面处发生全内反射。在全内反射结构下,石墨烯对光的吸收具有显著的增强和偏振依赖性,从而增强石墨烯光电探测器的光电响应,并具有明显的偏振依赖性。
本发明所提供的基于全内反射结构的石墨烯光电探测器制备方法,包括以下步骤:
(1)将石墨烯转移至洁净的玻璃上;
(2)再在石墨烯层上制作表面电极;
(3)通过折射率匹配液将覆盖有石墨烯的玻璃片贴附到棱镜上。
所述的石墨烯为化学气相沉积制备的石墨烯、氧化还原制备的石墨烯、或机械剥离法制备的石墨烯。
折射率匹配液是用于将棱镜和玻璃片相贴合,并优化两者贴合时由于折射率变化带来的光传播变化。全内反临界角取决于玻璃片的折射率和石墨烯上层环境的折射率的共同作用。
光在全内反射情况下,将会沿反射面传播一定距离,称为古斯汉欣位移,通常该位移在光波长量级。如果我们将石墨烯置于该反射面上,在全内反射下光与石墨烯的作用距离将得以增加,同时这种结构下的作用将依赖于光的偏振。当光在全内反射条件时,由于古斯汉欣位移的影响,石墨烯对于s和p入射偏振光具有不同的吸收。其中单层石墨烯对于s偏振吸收理论上可以大于10%,由于该结构操作简单,而且石墨烯对s偏振的吸收可以有效的增强,远大于一般情况下的2.3%,这是提高石墨烯-光相互作用的一种有效方法。因此,基于全内反射结构的石墨烯光电探测器的响应依赖于入射角的变化和入射光偏振的变化。
本发明的有益效果是:
(1)本发明通过全内反射这种特殊的石墨烯与光作用方式,增强了石墨烯与光的相互作用,其制备的石墨烯光电探测器具有增强的光电响应,相对于普通照射结构下的石墨烯光电探测器,光电流普遍高出4-7倍以上;
(2)本发明制备的全内反射结构石墨烯光电探测器,可以实现大面积的光电探测;
(3)本发明可以应用于可见至红外范围内的宽带光电探测;
(4)本发明可以应用于快速高频光电检测领域,理论上响应带宽可达到500GHz。
附图说明
图1为本发明的基于全内反射结构的石墨烯光电探测器结构示意图。
图2为全内反射不同入射角度下两种偏振光的吸收变化。左图为石墨烯上层为空气介质,右图为石墨烯上层覆盖PDMS介质。
图3为CVD单层石墨烯转移到石英片上,以及制备出齿状电极结构。
图4为两种偏振光在不同入射光功率和电极间偏压条件下光电流和光电响应的变化。
图5为两种偏振光的吸收和光电响应随波长的变化关系。
具体实施方式
下面结合附图和实施例对本发明的进行详细的描述。实施例给出了详细的实施方式和具体的操作过程,但本发明并不限于以下实施例。
实施例1
CVD单层石墨烯全内反射结构下光电探测器的制备,包括以下步骤:
1、CVD单层石墨烯转移到石英片上:
(1)利用玻璃片将有石墨烯薄膜的铜箔处理平整;
(2)将PET-硅胶层贴附到铜箔上;
(3)将PET-硅胶/石墨烯/铜箔放入浓度为1mol/L的FeCl3水溶液中,浸泡1小时,彻底除掉金属铜,留下PET-硅胶/石墨烯结构;
(4)利用10%盐酸溶液浸泡半小时,去离子水对PET-硅胶/石墨烯结构进行清洗,用氮气吹干;
(5)将PET-硅胶/石墨烯结构紧贴到石英片上;
(6)待紧贴后,将PET-硅胶层揭起,就得到了石英片基底的石墨烯,石墨烯面积为1cm*0.5cm。
2、表面电极制作。利用光刻方法在石墨烯表面制备金电极:首先在石墨烯表面旋涂负性光刻胶,厚度约5微米;其次,利用制备好的电极掩膜版进行曝光处理,然后显影;磁控检测100nm厚的金膜;对光刻胶进行去除,制备成齿状的金电极,如图3。
3、将附有石墨烯的石英片通过折射匹配液贴合到棱镜上。
使用本发明基于全内反射结构的石墨烯光电探测器时,在齿状电极上连接需要检测的器件即可。
本发明基于全内反射结构的石墨烯光电探测器的效果检测试验:
1、对于TE和TM模式的入射偏振光,探测面积在1cm*0.5cm范围内,对光的吸收依赖于入射角度和偏振模式,其中对于TE模式的吸收要强于TM模式的吸收。此外,当石墨烯上层贴附上PDMS(折射率1.41)后,临界角增大至75度,相应的吸收也均有所提高,见图2。
2、本发明基于全内反射结构的石墨烯光电探测器对于入射532nm的激光的响应,见图4,随着电极间偏压的增加,光电响应逐渐增强。对于1V的偏压,当入射光功率从1到12mW变化时,对TM模式光产生了2.1mA/W的响应,对TE模式光产生了12.48mA/W的响应。
3、本发明基于全内反射结构的石墨烯光电探测器从350nm到1550nm宽的光谱范围内表现出了增强的光吸收和光电响应,如图5所示,在宽的光谱范围内,TE模式的光有着比TM模式更强的吸收和光电响应。

Claims (7)

1.一种基于全内反射结构的石墨烯光电探测器,其特征在于自上而下依次是表面电极、石墨烯层、玻璃片、折射率匹配液、棱镜,利用棱镜将入射光入射到石墨烯上,当入射光入射角度大于全内反射临界角时在玻璃片和石墨烯界面处发生全内反射。在全内反射结构下,石墨烯对光的吸收具有显著的增强和偏振依赖性,从而增强石墨烯光电探测器的光电响应,并具有明显的偏振依赖性。
2.根据权利要求1所述基于全内反射结构的石墨烯光电探测器,其特征在于所述的石墨烯为化学气相沉积制备的石墨烯、氧化还原制备的石墨烯、或机械剥离法制备的石墨烯。
3.根据权利要求1所述基于全内反射结构的石墨烯光电探测器,其特征在于所述的表面电极为金、钯、银、钛、铬、镍、铂和铝中的一种或者几种的复合电极。
4.根据权利要求1所述基于全内反射结构的石墨烯光电探测器,其特征在于所述的折射率匹配液是用于将棱镜和玻璃片相贴合,并优化两者贴合时由于折射率变化带来的光传播变化。
5.根据权利要求1所述基于全内反射结构的石墨烯光电探测器,其特征在于所述的全内反临界角取决于玻璃片的折射率和石墨烯上层环境的折射率的共同作用。
6.根据权利要求1所述基于全内反射结构的石墨烯光电探测器,其特征在于所述的光电响应依赖于入射角的变化和入射光偏振的变化。
7.制备如权利要求1-6任一项所述的基于全内反射结构的石墨烯光电探测器的方法,其特征在于包括如下步骤:(1)将石墨烯转移至洁净的玻璃上;(2)再在石墨烯层上制作表面电极;(3)通过折射率匹配液将覆盖有石墨烯的玻璃片贴附到棱镜上。
CN201510654191.8A 2015-10-12 2015-10-12 一种基于全内反射结构的石墨烯光电探测器及其制备方法 Pending CN105226127A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510654191.8A CN105226127A (zh) 2015-10-12 2015-10-12 一种基于全内反射结构的石墨烯光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510654191.8A CN105226127A (zh) 2015-10-12 2015-10-12 一种基于全内反射结构的石墨烯光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN105226127A true CN105226127A (zh) 2016-01-06

Family

ID=54994962

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510654191.8A Pending CN105226127A (zh) 2015-10-12 2015-10-12 一种基于全内反射结构的石墨烯光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN105226127A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655420A (zh) * 2016-01-12 2016-06-08 浙江大学 石墨烯光吸收特性的玻璃基波导型光电探测器及制备方法
CN106018289A (zh) * 2016-07-01 2016-10-12 西北工业大学 一种利用古斯-汉欣位移测量石墨烯载流子浓度的方法
CN106249439A (zh) * 2016-07-21 2016-12-21 上海理工大学 一种石墨烯型偏振控制器及由其组成的偏振测试***
CN106711246A (zh) * 2017-01-18 2017-05-24 南京信息工程大学 一种用于提高单层石墨烯对可见光吸收效率的光学结构
CN108231942A (zh) * 2016-12-13 2018-06-29 中国科学院理化技术研究所 一种还原氧化石墨烯薄膜光电探测器及其制备方法和应用
CN110174374A (zh) * 2019-06-28 2019-08-27 湖南师范大学 一种红外波段的spr折射率传感器
CN110335900A (zh) * 2019-05-06 2019-10-15 北京工业大学 一种氧化铟锡/垂直石墨烯光电探测器复合结构及其制备方法
US11833815B2 (en) 2019-06-08 2023-12-05 Hewlett-Packard Development Company, L.P. Coatings for optical drop detectors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187062A (ja) * 2009-02-10 2010-08-26 Hitachi Maxell Ltd メタマテリアル
CN102795619A (zh) * 2012-09-04 2012-11-28 南开大学 一种基于物理吸附的石墨烯薄膜转移方法
CN103528961A (zh) * 2013-10-24 2014-01-22 南开大学 一种透明基底上石墨烯层数测量方法
CN104638049A (zh) * 2015-02-11 2015-05-20 合肥工业大学 一种p型石墨烯/n型锗纳米锥阵列肖特基结红外光电探测器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187062A (ja) * 2009-02-10 2010-08-26 Hitachi Maxell Ltd メタマテリアル
CN102795619A (zh) * 2012-09-04 2012-11-28 南开大学 一种基于物理吸附的石墨烯薄膜转移方法
CN103528961A (zh) * 2013-10-24 2014-01-22 南开大学 一种透明基底上石墨烯层数测量方法
CN104638049A (zh) * 2015-02-11 2015-05-20 合肥工业大学 一种p型石墨烯/n型锗纳米锥阵列肖特基结红外光电探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YE QING等: "Polarization-dependent optical adsorption of graphene under total internal reflection", 《APPLIED PHYSICS LETTERS》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655420A (zh) * 2016-01-12 2016-06-08 浙江大学 石墨烯光吸收特性的玻璃基波导型光电探测器及制备方法
CN106018289A (zh) * 2016-07-01 2016-10-12 西北工业大学 一种利用古斯-汉欣位移测量石墨烯载流子浓度的方法
CN106249439A (zh) * 2016-07-21 2016-12-21 上海理工大学 一种石墨烯型偏振控制器及由其组成的偏振测试***
CN108231942A (zh) * 2016-12-13 2018-06-29 中国科学院理化技术研究所 一种还原氧化石墨烯薄膜光电探测器及其制备方法和应用
CN108231942B (zh) * 2016-12-13 2020-04-24 中国科学院理化技术研究所 一种还原氧化石墨烯薄膜光电探测器及其制备方法和应用
CN106711246A (zh) * 2017-01-18 2017-05-24 南京信息工程大学 一种用于提高单层石墨烯对可见光吸收效率的光学结构
CN110335900A (zh) * 2019-05-06 2019-10-15 北京工业大学 一种氧化铟锡/垂直石墨烯光电探测器复合结构及其制备方法
US11833815B2 (en) 2019-06-08 2023-12-05 Hewlett-Packard Development Company, L.P. Coatings for optical drop detectors
CN110174374A (zh) * 2019-06-28 2019-08-27 湖南师范大学 一种红外波段的spr折射率传感器

Similar Documents

Publication Publication Date Title
CN105226127A (zh) 一种基于全内反射结构的石墨烯光电探测器及其制备方法
Ferry et al. Plasmonic nanostructure design for efficient light coupling into solar cells
Wang et al. Extended Drude model for intraband-transition-induced optical nonlinearity
Treharne et al. Optical design and fabrication of fully sputtered CdTe/CdS solar cells
Wen et al. Hot electron harvesting via photoelectric ejection and photothermal heat relaxation in hotspots-enriched plasmonic/photonic disordered nanocomposites
Lin et al. Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths
CN107732017B (zh) 一种等离激元结构衬底及其制备和应用
Steenhoff et al. Paper I: Ultrathin Resonant-Cavity-Enhanced Solar Cells with Amorphous Germanium Absorbers
Meng et al. Fractal superconducting nanowires detect infrared single photons with 84% system detection efficiency, 1.02 polarization sensitivity, and 20.8 ps timing resolution
CN110085688A (zh) 基于石墨烯-氧化镓相结的自供电型光电探测结构、器件及制备方法
WO2010025291A3 (en) Four terminal multi-junction thin film photovoltaic device and method
Zhai et al. Large-scale, broadband absorber based on three-dimensional aluminum nanospike arrays substrate for surface plasmon induced hot electrons photodetection
Ferraro et al. Directional emission of fluorescent dye-doped dielectric nanogratings for lighting applications
CN104834026A (zh) 一种宽波段光透明的连续金属膜结构及其实现方法
Guo et al. Low-voltage protonic/photonic synergic coupled oxide phototransistor
Moulin et al. Investigation of the impact of the rear‐dielectric/silver back reflector design on the optical performance of thin‐film silicon solar cells by means of detached reflectors
Lee et al. Colored dual-functional photovoltaic cells
CN106129167A (zh) 一种石墨烯太赫兹探测器及其制备方法
CN106711246A (zh) 一种用于提高单层石墨烯对可见光吸收效率的光学结构
Xu et al. Self-powered and fast response MoO3/n-Si photodetectors on flexible silicon substrates with light-trapping structures
Zhang et al. Design of light trapping structures for light-absorption enhancement in thin film solar cells
Zhong et al. Simultaneously improving efficiency and transparency of semitransparent organic solar cells by constructing semitransparent microcavity
Ball et al. Gallium-doped zinc oxide: nonlinear reflection and transmission measurements and modeling in the ENZ region
CN205176417U (zh) 一种宽带的中红外调制器
Liu et al. Wide-angle and polarization-insensitive perfect absorber for organic photovoltaic layers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160106