CN105183258A - 电容式传感器的传感单元以及传感单元组 - Google Patents

电容式传感器的传感单元以及传感单元组 Download PDF

Info

Publication number
CN105183258A
CN105183258A CN201510608569.0A CN201510608569A CN105183258A CN 105183258 A CN105183258 A CN 105183258A CN 201510608569 A CN201510608569 A CN 201510608569A CN 105183258 A CN105183258 A CN 105183258A
Authority
CN
China
Prior art keywords
electrode
sensing
signal
transistor
sensing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201510608569.0A
Other languages
English (en)
Inventor
刘雪春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Sunwave Technology Co Ltd
Original Assignee
Shenzhen Sunwave Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Sunwave Technology Co Ltd filed Critical Shenzhen Sunwave Technology Co Ltd
Priority to CN201510608569.0A priority Critical patent/CN105183258A/zh
Publication of CN105183258A publication Critical patent/CN105183258A/zh
Priority to PCT/CN2016/094473 priority patent/WO2017050046A1/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electronic Switches (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明公开了一种电容式传感器的传感单元和传感单元组。所述传感单元包括感测电极和传感电路。感测电极能够以电容方式耦合到目标物体,用于加载参考信号。传感电路包括第一开关单元和第三晶体管。第三晶体管包括第三控制电极、第五传输电极、和第六传输电极。第五传输电极通过第一开关单元连接第一信号线;第六传输电极与第二信号线连接;第三控制电极与感测电极为二电极,第三控制电极连接感测电极,或者,第三控制电极与感测电极为同一电极;所述第一开关单元控制是否在第三晶体管与第一信号线之间传输电流信号。所述第三晶体管用于响应感测电极上因目标物体的接近或触摸而引起参考信号的变化,而对应于第六传输电极上形成第二交流信号。

Description

电容式传感器的传感单元以及传感单元组
技术领域
本发明涉及电容式传感技术领域,尤其涉及一种电容式传感器的传感单元以及传感单元组。
背景技术
随着社会的发展,越来越多的电子设备(如:手机、平板电脑、穿戴式设备、以及智能家居等各种智能产品)一般都会设置一种或多种传感装置。所述传感装置包括如感测用户触摸操作的触摸传感装置、感测人体生物信息的生物信息传感装置等等。目前,生物信息传感装置等多采用电容式传感装置来执行感测操作。
电容式传感装置一般包括电容式传感器和控制电路。所述电容式传感器包括多个传感单元(sensor)。所述多个传感单元接收控制电路的驱动信号,并在用户触摸所述多个传感单元时对应输出感测信号给所述控制电路,以获得相应的感测信息。
然,各传感单元独立检测,分别输出单一感测信号,所述单一感测信号(如:电压和/或电量)一般强度较弱。另外,电压、电量等感测信号在被传输的过程中易受电容式传感装置中寄生电容的影响,较不稳定,从而导致电容式传感装置的感测存在不精确或者出现误判的情况,影响用户体验。
发明内容
有鉴于此,本发明提供了一种输出感测信号较稳定的电容式传感器的传感单元和传感单元组。
本发明提供了一种电容式传感器的传感单元,所述电容式传感器包括第一信号线和第二信号线,所述传感单元包括:
感测电极,能够以电容方式耦合到目标物体,用于加载参考信号;和
传感电路,包括:
第一开关单元;和
第三晶体管,包括第三控制电极、第五传输电极、和第六传输电极,其中,第五传输电极通过第一开关单元连接第一信号线;第六传输电极用于与第二信号线连接;第三控制电极与感测电极为二电极,第三控制电极连接感测电极,或者,第三控制电极与感测电极为同一电极;所述第一开关单元用于控制是否在第三晶体管与第一信号线之间传输电流信号;
所述第三晶体管用于响应感测电极上因目标物体的接近或触摸而引起参考信号的变化,而对应于第六传输电极上形成第二交流信号。
优选地,所述第二交流信号为电流信号。
优选地,所述第三晶体管对感测电极上因目标物体的接近或触摸所引起的参考信号的变化量进行转换以及放大,对应产生所述第二交流信号。
优选地,所述第三晶体管用于与相邻传感单元的第三晶体管组成差分对管。
优选地,所述第五传输电极用于通过第一信号线与一电流源连接。
优选地,所述电容式传感器进一步包括第一扫描线,所述第一开关单元包括:
第一晶体管,包括第一控制电极、第一传输电极、和第二传输电极,其中,第一控制电极用于与第一扫描线连接;第一传输电极用于与第一信号线连接;第二传输电极连接第五传输电极。
优选地,所述电容式传感器进一步包括第二扫描线,所述第一开关单元进一步包括:
第二晶体管,包括第二控制电极、第三传输电极、和第四传输电极,其中,第二控制电极用于与第二扫描线连接;第三传输电极与第二传输电极连接;第四传输电极与第五传输电极连接。
优选地,所述传感单元进一步包括第二开关单元,与所述感测电极连接,用于控制是否传输参考信号给感测电极。
优选地,所述电容式传感器进一步包括第三扫描线和参考信号线,所述第二开关单元包括:
第五晶体管,包括第五控制电极、第九传输电极、和第十传输电极,其中,第五控制电极用于与一第三扫描线连接;第九传输电极用于连接一参考信号线;第十传输电极连接第三控制电极;第三控制电极用于通过第五晶体管接收来自参考信号线上的参考信号。
优选地,所述电容式传感器进一步包括第四扫描线,所述传感电路进一步包括:
第七晶体管,包括第七控制电极、第十三传输电极、和第十四传输电极,其中,第七控制电极用于连接第四扫描线;第十三传输电极连接第十传输电极;第十四传输电极连接感测电极;第十三传输电极和第十四传输电极短接。
优选地,所述电容式传感器进一步包括用于承载传感单元的基板,当所述感测电极与所述第三控制电极为二电极时,所述传感电路设置在所述感测电极与所述基板之间,且所述传感电路的结构中设置接触孔,所述感测电极通过所述接触孔与所述第三控制电极连接;当所述感测电极与所述第三控制电极为同一电极时,所述第三控制电极相较于第五传输电极与第六传输电极邻近所述基板设置。
优选地,当第三控制电极与所述感测电极为二电极时,所述第三控制电极直接连接所述感测电极,或者,所述第三控制电极通过电阻连接所述感测电极。
优选地,所述电容式传感器的传感单元为指纹传感器的传感单元。
优选地,所述第三晶体管对感测电极上因目标物体的接近或触摸所引起的参考信号的变化量进行转换以及放大,以产生放大的第二交流信号。
本发明还提供一种电容式传感器的传感单元组,包括相邻设置的二传感单元,所述二传感单元为上述中任意一项所述的传感单元,其中,所述第一传感单元的第三晶体管用于与所述第二传感单元的第三晶体管组成差分对管。
由于所述传感单元包括所述第三晶体管,所述第三晶体管用于响应感测电极上因目标物体的接近或触摸所引起参考信号的变化,而对应于第六传输电极上形成第二交流信号,因此,所述传感单元输出的感测信号较稳定。相应地,所述传感单元组所输出二感测信号为差分信号,所述二感测信号比较稳定。
尽管公开了多个实施例,包括其变化,但是通过示出并描述了本发明公开的说明性实施例的下列详细描述,本发明公开的其他实施例将对所属领域的技术人员显而易见。将认识到,本发明公开能够在各种显而易见的方面修改,所有修改都不会偏离本发明的精神和范围。相应地,附图和详细描述本质上应被视为说明性的,而不是限制性的。
附图说明
通过参照附图详细描述其示例实施方式,本发明的特征及优点将变得更加明显。
图1为本发明电容式传感装置的第一实施方式的示意图。
图2为图1所示电容式传感装置的电路结构示意图。
图3为图2所示电容式传感器的部分电路结构示意图。
图4为图2所示电容式传感装置的部分电路结构示意图。
图5与图6为图3所示传感电路的其它变更实施方式的示意图。
图7为图1所示电容式传感器的示意图。
图8至图11中主要示出电容式传感器的一传感单元的第三晶体管与感测电极的剖面结构示意图。
图12为图2所示的电容式传感装置的工作时序图。
图13为图1所示电容式传感器的部分方框示意图。
图14为本发明电容式传感装置的第二实施方式的示意图。
图15为图14所示一行方向上相邻二传感单元的电路结构示意图。
图16为图14的电容式传感装置的部分电路结构示意图。
图17为图14所示电容式传感器的方框结构示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。为了方便或清楚,可能夸大、省略或示意地示出在附图中所示的每层的厚度和大小、以及示意地示出相关元件的数量。另外,元件的大小不完全反映实际大小,以及相关元件的数量不完全反应实际数量。在图中相同的附图标记表示相同或类似的结构。
此外,所描述的特征、结构可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本发明的实施方式的充分理解。然而,本领域技术人员应意识到,没有所述特定细节中的一个或更多,或者采用其它的结构、组元等,也可以实践本发明的技术方案。在其它情况下,不详细示出或描述公知结构或者操作以避免模糊本发明。
在本发明的描述中,需要理解的是:“多个”包括两个和两个以上,除非另有明确具体的限定。“连接”可为电连接、机械连接、耦接、直接连接、以及间接连接等多种实施方式,除非本发明下述特别说明,否则并不做特别限制。另外,各元件名称以及信号名称中出现的“第一”、“第二”等词语并不是限定元件或信号出现的先后顺序,而是为方便元件命名,清楚区分各元件,使得描述更简洁。
进一步需要说明的是:本发明提供的电容式传感装置适用于生物信息传感装置,尤其指纹传感装置。然,本发明并不限于此,所述电容式传感装置也可适用其它合适类型的传感装置,如触摸传感装置。所述生物信息传感装置用于感测目标物体的预定生物信息。所述目标物体如为用户的手指,也可为用户身体的其它部分、如手掌、脚趾、耳朵等,甚至也可为其它合适类型的物体,而并不局限为人体。所述预定生物信息如为指纹、掌纹、耳纹等。
所述电容式传感装置包括电容式传感器(sensors)和控制电路。所述控制电路连接电容式传感器,用于控制所述电容式传感器执行感测操作。
优选地,所述电容式传感器包括感测电极和差分对管。所述感测电极能够以电容方式耦合到目标物体,用于加载参考信号。所述差分对管与所述感测电极相关联,用于响应感测电极上因目标物体的接近或触摸所引起参考信号的变化,而对应产生差分信号。
所述控制电路接收所述差分信号,并根据所述差分信号对应获得相应的感测信息。所述感测信息如为目标物体的预定生物信息。类似地,所述控制电路也可根据差分信号获知目标物体接近或触摸了电容式传感装置这一感测信息。
由于本发明的电容式传感器传输给控制电路的感测信号为差分信号,所述差分信号较强,且差分信号在传输给控制电路的过程中受电容式传感装置中的寄生电容的影响较小,因此,所述控制电路根据差分信号获得的感测信息相对较准而能减少误判,从而能够提升用户体验。
优选地,所述差分信号为差分电流信号。
优选地,所述电容式传感器包括多个感测电极和多个差分对管。同一差分对管所产生的差分信号为同幅同频反相的第二交流信号。另外,所述差分对管用于与一电流源连接,所述电流源用于提供一第一恒定直流信号。所述二不同的第二交流电流信号之和与所述电流源提供的第一恒定直流信号相等。
所述差分对管与所述感测电极相关联,其中,所述差分对管或者与所述感测电极为二元件,所述差分对管与所述感测电极连接;又或者,所述差分对管包括所述感测电极,即,所述感测电极为差分对管的一部分。
所述差分对管包括二晶体管,所述二晶体管包括一第三晶体管,所述第三晶体管包括第三控制电极、第五传输电极、和第六传输电极。当所述差分对管与所述感测电极为二元件时,所述第三控制电极与所述感测电极连接;当所述差分对管包括所述感测电极时,所述第三控制电极与所述感测电极为同一电极。
所述电容式传感器包括多个传感单元(sensor)。每一传感单元包括一所述感测电极。另外,优选地,每一传感单元还包括一所述差分对管,或者,相邻的传感单元各自包括一所述差分对管中的一晶体管。
通过选择具有合适跨导的晶体管,当目标物体接近或触摸感测电极时,所述差分对管的晶体管对参考信号的变化量进行转换以及放大,产生二不同的第一交流信号,并对应将二不同的第一交流信号分别叠加至相同的第二恒定直流信号上,对应产生所述二不同的第二交流信号给控制电路。其中,所述第二恒定直流信号为第一恒定直流信号的一半。相应地,所述感测信号较强,所述控制电路根据所述感测信号获得的感测结果较准。
对于本发明的电容式传感器:或者每个传感单元输出单一电流信号作为感测信号;或者每个传感单元输出差分信号作为感测信号;或者相邻的传感单元输出差分信号作为感测信号;其中,所述差分信号如为差分电流信号,在下面进一步的描述中可知,所述传感单元输出的差分信号也可为差分电压信号,然,所述差分信号优选差分电流信号;更优选地,组成差分对管的晶体管输出的感测信号为放大的信号;相应地,具有所述电容式传感器的电容式传感装置的感测精度较高。
下面结合附图对电容式传感装置的电路结构的各种实施方式进行描述。
电容式传感装置的电路结构
请参阅图1,图1为本发明电容式传感装置的第一实施方式的示意图。所述电容式传感装置1用于应用在一电子设备(图未示)中,执行感测操作。所述电子设备如为移动电话、平板电脑、电视、遥控装置、智能门锁、穿戴式设备等各种智能设备。所述电容式传感装置1包括控制电路11和电容式传感器13。所述控制电路11与所述电容式传感器13连接。所述控制电路11用于控制电容式传感器13执行感测操作,所述电容式传感器13输出相应的感测信号给所述控制电路11。所述控制电路11进一步根据所述感测信号获得相应的感测信息。
所述电容式传感器13包括基板130、多个传感单元131、和接地线133。所述接地线133和所述多个传感单元131设置在所述基板130的同侧,且所述接地线133环绕各传感单元131设置。需要说明的是,图1中示出的传感单元131的数量仅为示意,实际产品的传感单元131的数量可少于或多于图1中所示的数量。
所述多个传感单元131与所述控制电路11连接,用于执行感测操作,输出感测信号给控制电路11。
在本实施方式中,所述接地线133用于连接所述电子设备的调制地NGND,接收调制信号。所述调制信号包括接地信号和驱动信号,所述驱动信号高于所述接地信号。所述调制信号如为包括接地信号与驱动信号交替变化的周期性方波信号。其中,所述接地信号如为电子设备的设备地的接地信号,所述设备地的接地信号为恒定电压信号,如为0V(伏)。
所述基板130如为半导体基板等。所述半导体基板如为硅基板等。
在本实施方式中,所述控制电路11设置在所述基板130上,并与所述多个传感单元131设置在所述基板130的同侧。可变更地,在其它实施方式中,所述控制电路11集成在一控制芯片中,所述控制芯片压合在所述基板130上。
在本实施方式中,所述多个传感单元131呈阵列式排布,如矩阵式排布。然,本发明并不限制所述多个传感单元131的具体排布方式,例如,在其它实施方式中,所述多个传感单元131也可呈其它规则方式或非规则方式排布。
请参阅图2,图2为图1所示电容式传感装置1的电路结构示意图。需要说明的是,在图2中,为了图示清楚,仅示出4个传感单元131。所述传感单元131包括感测电极14和传感电路15。所述感测电极14能够以电容方式耦合到目标物体,用于加载参考信号。所述传感电路15用于根据感测电极14因目标物体的接近或触摸所引起参考信号的变化,而对应产生二不同的第二交流信号,并输出所述二不同的第二交流信号给所述控制电路11。
在本实施方式,所述二不同的第二交流信号为差分信号,且为差分电流信号。所述二不同的第二交流信号例如是用以计算目标物体的预定生物信息,所述预定生物信息如为指纹。然,在其它实施方式中,所述二不同的第二交流信号也可为差分电压信号。
所述感测电极14采用金属材料、金属氧化物导电材料、导电复合材料、石墨烯材料、碳纳米管材料中的任意一种制成。
在本实施方式中,所述多个传感单元131的结构相同。然,在其它实施方式中,所述多个传感单元131的结构可不同,例如,感测电极14的形状和大小不同。
请一并参阅图3与图4,图3为图2所示电容式传感器13的部分电路结构示意图。图4为图2所示电容式传感装置1的部分电路结构示意图。以下描述以一传感单元131、且目标物体为手指F为例进行说明,其它传感单元131的结构与工作原理类似,不再赘述。所述传感电路15根据感测电极14上因手指F的接近或触摸所引起参考信号的变化,而对应输出感测信号。在手指F接近或触摸感测电极14时,手指F的指纹脊或指纹谷与感测电极14形成耦合电容Cf,所述耦合电容Cf通过人体阻抗Z电连接至地球大地或所述电子设备的设备地。优选地,所述耦合电容Cf通过人体阻抗Z电连接所述电子设备的设备地。所述设备地通常为电子设备的供电电源的负极。供电电源如为电池。
所述传感电路15包括转换电路151。所述转换电路151用于响应感测电极14因手指F的接近或触摸所引起参考信号的变化,而对应产生二不同的第二交流信号。
在本实施方式中,所述转换电路151转换感测电极14因手指F的接近或触摸所引起参考信号的变化量为二不同的第一交流信号,并叠加所述二不同的第一交流信号分别至一相同的第二恒定直流信号上,对应产生所述二不同的第二交流信号。其中,二不同的第一交流信号为差分电流信号。
优选地,所述转换电路151包括差分对管D。所述差分对管D响应感测电极14因手指F的接近或触摸所引起参考信号的变化,而对应产生二不同的第二交流信号。
所述差分对管D包括第三晶体管T3与第四晶体管T4。所述第三晶体管T3包括第三控制电极C3、第五传输电极S5、和第六传输电极S6。所述第六传输电极S6用于传输一第二交流信号。在本实施方式中,所述第三控制电极C3与所述感测电极14为二电极,所述第三控制电极C3直接连接所述感测电极14。然,在其它实施方式中,见图5,所述第三控制电极C3也可通过限流元件L连接所述感测电极14,所述限流元件L包括电阻R,起到防ESD的作用。另外,所述第三控制电极C3与所述感测电极14也可为同一电极。
所述第四晶体管T4包括第四控制电极C4、第七传输电极S7、和第八传输电极S8。所述第七传输电极S7连接所述第五传输电极S5。所述第七传输电极S7与所述第五传输电极S5进一步用于与一电流源111连接。所述电流源111用于提供第一恒定直流信号,所述第一恒定直流信号为第二恒定直流信号的二倍,如第一恒定直流信号的大小为I,则第二恒定直流信号的大小为(I/2)。优选地,定义一节点N位于所述第七传输电极S7和所述第五传输电极S5之间,所述差分对管D通过所述节点N连接所述电流源111。所述第八传输电极S8用于传输另一第二交流信号。
第三控制电极C3用于加载第一参考信号,第四控制电极C4用于加载第二参考信号。相应地,当第三控制电极C3与所述感测电极14为同一电极时,或者第三控制电极C3直接连接所述感测电极14时,所述感测电极14所加载的参考信号也为第一参考信号。需要说明的是,当第三控制电极C3通过限流元件L与感测电极14连接时,所述感测电极14所加载的参考信号与所述第三控制电极C3所加载的第一参考信号不同。
优选地,所述第三控制电极C3所接收的第一参考信号与所述第四控制电极C4所接收的第二参考信号相同,即,所述差分对管D接收共模信号输入。然,所述第三控制电极C3所接收的第一参考信号与所述第四控制电极C4所接收的第二参考信号也可相差一定差值,如0.05V(伏)、0.1V(伏)等,第一参考信号与第二参考信号仍视为相同。在传感单元131每次被激活执行感测的过程中,所述第三控制电极C3与所述第四控制电极C4分别用于按预定时间间隔(如周期性)对应加载第一参考信号与第二参考信号。定义第三控制电极C3与所述第四控制电极C4接收第一参考信号与第二参考信号的时段为充电时段,在每相邻两充电时段之间的时段包括感测时段。在感测时段,第一参考信号被停止传输给第三控制电极C3,第二参考信号被停止传输所述第四控制电极C4,所述感测单元131执行感测。
在本实施方式中,所述第一参考信号与第二参考信号为经调制的电压信号。
在感测时段,由于第三控制电极C3与第四控制电极C4与接地线133之间均存在寄生电容,当未有手指接近或触摸感测电极14时,所述第一参考信号与所述第二参考信号相对所述接地线133上的信号保持相对不变;当有手指接近或触摸感测电极14时,所述第一参考信号相对所述接地线133上的信号发生改变,所述第二参考信号相对所述接地线133上的信号保持相对不变。
具体地,当手指接近或触摸感测电极14时,所述第三晶体管T3转换感测电极14上的参考信号的变化量为第一交流信号i,并加载所述第一交流信号i于一第二恒定直流信号上,从而于第六传输电极S6上形成第二交流信号(I/2)+i。相应地,由差分对管D的元件性质,所述第四晶体管T4转换感测电极14上的参考信号的变化量为第一交流信号(-i),并加载所述第一交流信号(-i)于一第二恒定直流信号上,从而于第八传输电极S8上形成第二交流信号(I/2)-i。所述二第二交流信号(I/2)+i、(I/2)-i之和与所述第一恒定直流信号的大小I相等。也即,所述差分对管D响应第一参考信号R1的变化而对应产生从电流源111到第六传输电极S6和第八传输电极S8的第二交流信号输出。
需要说明的是,通过选择具有合适跨导的差分对管D,所述第一交流信号可以被不同程度的放大,因此,相对于参考信号的变化量或者电量的变化量来讲,第一交流信号更强。相应地,所述控制电路11根据第二交流信号中所携带的第一交流信号来对应获知手指的指纹图像信息则更加准确。尤其对于差分对管D,所述控制电路11对接收到的二不同第二交流信号进行相减运算,可以得到二倍的第一交流信号,进一步提高了信号的强度。
优选地,所述传感电路15进一步包括第一开关单元K1。所述第一开关单元K1连接于所述节点N与所述电流源111之间,用于控制是否在所述差分对管D与所述电流源111之间进行电流传输。
所述第一开关单元K1包括第一晶体管T1。所述第一晶体管T1包括第一控制电极C1、第一传输电极S1、和第二传输电极S2。所述第一控制电极C1用于响应一扫描信号对应控制第一传输电极S1与第二传输电极S2之间是否导通。第一传输电极S1用于连接所述电流源111。第二传输电极S2用于连接所述节点N。
优选地,所述第一开关单元K1进一步包括第二晶体管T2。所述第二晶体管T2包括第二控制电极C2、第三传输电极S3、和第四传输电极S4。所述第二控制电极C2用于响应一扫描信号对应控制第三传输电极S3与第四传输电极S4之间是否导通。第三传输电极S3用于连接第二传输电极S2。第四传输电极S4用于连接所述节点N。第二晶体管T2与第一晶体管T1形成二级开关。在本实施方式中,形成二级开关可更有利于控制电路11来灵活控制哪一或哪些传感单元131被激活,另外,后面也会说明,根据与所述二级开关相连接的扫描线之间位置关系可以确定传感单元131的位置。可变更地,在其它实施方式中,所述第一开关单元K1也可仅包括第一晶体管T1。进一步地,所述第一开关单元K1并非限定包括第一晶体管T1与第二晶体管T2,也可包括其它合适类型的开关元件。更进一步地,所述第一开关单元K1也可设置在控制电路11中,而非传感单元131中,甚至,所述第一开关单元K1也可被省略,对应地,在感测电极14与控制电路11之间设置类似的第一开关单元K1也是可以的。
更优选地,所述传感电路15进一步包括第二开关单元K2。所述第二开关单元K2用于控制是否传输第一参考信号给第三控制电极C3、以及控制是否传输第二参考信号给第四控制电极C4。由于差分对管D与感测电极14相关联,因此,第二控制单元K2对应控制是否传输参考信号给所述感测电极14。
优选地,所述第二开关单元K2包括第五晶体管T5和第六晶体管T6。
所述第五晶体管T5包括第五控制电极C5、第九传输电极S9、和第十传输电极S10。其中,第五控制电极C5用于响应一扫描信号而对应控制第九传输电极S9与第十传输电极S10是否导通。第九传输电极S9用于接收第一参考信号。第十传输电极S10连接第三控制电极C3。
所述第六晶体管T6包括第六控制电极C6、第十一传输电极S11、和第十二传输电极S12。其中,第六控制电极C6用于响应一扫描信号而对应控制第十一传输电极S11与第十二传输电极S12是否导通。第十一传输电极用于接收第二参考信号。第十二传输电极S12连接第四控制电极C4。
可变更地,在其它实施方式中,所述第二开关单元K2也可设置在控制电路11中,而非传感单元131中。另外,第二开关单元K2并非限定包括第五晶体管T5和第六晶体管T6,也可为包括其它合适类型的开关元件。
更优选地,所述传感电路15进一步包括第一补偿单元M1和第二补偿单元M2。所述第一补偿单元M1设置在第十传输电极S10与第三控制电极C3之间,用于补偿第五晶体管T5关闭时第十传输电极S10与第三控制电极C3之间的电压。所述第二补偿单元M2设置在第十二传输电极S12与第四控制电极C4之间,用于补偿第六晶体管T6关闭时第十二传输电极S12与第四控制电极C4之间的电压。
优选地,所述第一补偿单元M1包括第七晶体管T7。所述第七晶体管T7包括第七控制电极C7、第十三传输电极S13、和第十四传输电极S14。其中,第七控制电极C7用于响应一扫描信号而控制第十三传输电极S13和第十四传输电极S14是否导通。第十三传输电极S13连接第十传输电极S10。第十四传输电极S14连接第三控制电极C3。第十三传输电极S13和第十四传输电极S14短接。
所述第二补偿单元M2包括第八晶体管T8。所述第八晶体管T8包括第八控制电极C8、第十五传输电极S15、和第十六传输电极S16。其中,第八控制电极C8用于响应一扫描信号而控制第十五传输电极S15和第十六传输电极S16是否导通。第十五传输电极S15连接第十二传输电极S12。第十六传输电极S16连接第四控制电极C4。第十五传输电极S15和第十六传输电极S16短接。
第七晶体管T7用于和第五晶体管T5交替导通,导通的第七晶体管T7在第五晶体管T5截止时补偿第三控制电极C3与第十传输电极S10之间的电压;第八晶体管T8用于和第六晶体管T6交替导通,导通的第八晶体管T8在第六晶体管T6截止时补偿第四控制电极C4与第十二传输电极S12之间的电压。
需要说明的是,此处描述第七晶体管T7与第八晶体管T8导通与否,是指第七控制电极C7与第八控制电极C8分别响应扫描信号而对应分别控制第七晶体管T7与第八晶体管T8导通,而非第七晶体管T7的第十三传输电极S13和第十四传输电极S14短接而在第十三传输电极S13和第十四传输电极S14之间导通、非第八晶体管T8的第十五传输电极S15和第十六传输电极S16短接而在第十五传输电极S15和第十六传输电极S16之间导通。
可变更地,在其它实施方式中,所述第一补偿单元M1与第二补偿单元M2可被省略。另外,所述第一补偿单元M1与第二补偿单元M2并非限定分别包括第七晶体管T7与第八晶体管T8,也可包括其它合适类型的开关元件。
为了避免漏电流,对于传感电路15中的部分或全部晶体管,以第一晶体管T1为例,可进一步包括与各晶体管相串联的晶体管,如图6所示。
所述传感电路15中的第一至第八晶体管T1~T8采用薄膜晶体管、双极性三极管、和金属氧化物半导体场效应管中的任意一种、或任意几种的组合。
所述薄膜晶体管包括N型薄膜晶体管、P型薄膜晶体管中的任意一种、或二种的组合。
所述薄膜晶体管包括非晶硅薄膜晶体管、低温多晶硅薄膜晶体管、高温多晶硅薄膜晶体管、金属氧化物薄膜晶体管中的任意一种、或任意几种的组合。
当传感电路15中的一晶体管采用薄膜晶体管时,所述薄膜晶体管的栅极用作控制电极,源极与漏极分别用作传输电极;当传感电路15中的一晶体管采用双极性三极管时,所述双极性三极管的基极用作控制电极,集电极与发射极分别用作传输电极;当传感电路15中的一晶体管采用金属氧化物半导体场效应管时,所述金属氧化物半导体场效应管的栅极用作控制电极,源极与漏极分别用作传输电极。
请再一并参阅图2和图3,所述电容式传感器13进一步包括多个扫描线群组G1、多个信号线群组G2、和多条参考信号线R。其中,所述扫描线群组G1用于传输扫描线信号给所述多个传感单元131。所述信号线群组G2用于在所述多个传感单元131与所述控制电路11之间传输电流信号。所述多条参考信号线R用于传输第一参考信号和第二参考信号给所述多个传感单元131。
一信号线群组G2连接至少二传感单元131。一扫描线群组G1连接至少二传感单元131。优选地,在本实施方式中,每一信号线群组G2连接一列传感单元131。不同列传感单元131连接不同信号线群组G2。相邻二列传感单元131之间设置一信号线群组G2。
所述信号线群组G2包括第一信号线G21、第二信号线G22、和第三信号线G23。对于每一信号线群组G2:所述第一信号线G21、第二信号线G22、和第三信号线G23沿列方向延伸,且所述第一信号线G21、第二信号线G22、和第三信号线G23沿行方向依次排布。进一步地,同一列的传感单元131的第一晶体管T1的第一传输电极S1连接同一第一信号线G21。同一列的传感单元131的第三晶体管T3的第六传输电极S6连接同一第二信号线G22。同一列的传感单元131的第四晶体管的第八传输电极S8连接同一第三信号线G23。所述第一信号线G21进一步用于与电流源111连接,传输所述第一恒定直流信号。所述第二信号线G22与所述第三信号线G23进一步用于与一处理电路113连接。所述第二信号线G22与所述第三信号G23在所述传感单元131与所述处理电路113之间并行传输电流信号。当有手指接近或触摸感测电极14而引起参考信号的变化时,所述第二信号线G22与所述第三信号G23在所述传感单元131与所述处理电路113之间并行传输第二交流信号;当未有手指接近或触摸感测电极14时,所述第二信号线G22与所述第三信号G23在所述传感单元131与所述处理电路113之间并行传输第二恒定直流信号。
所述扫描线群组G1包括第一扫描线G11、第二扫描线G12、第三扫描线G13、和第四扫描线G14。第一扫描线G11与第二扫描线G12绝缘交叉排布。在本实施方式中,所述第二扫描线G12、第三扫描线G13、和第四扫描线G14均沿行方向延伸,所述第一扫描线G11沿列方向延伸。具体地,同一列的传感单元131的第一晶体管T1的第一控制电极C1连接同一第一扫描线G11。同一行的传感单元131的第二晶体管T2的第二控制电极C2连接同一第二扫描线G12。同一行的传感单元131的第五晶体管T5的第五控制电极C5连接同一第三扫描线G13。同一行的传感单元131的第七晶体管T7的第七控制电极C7连接同一第四扫描线G14。同一行的传感单元131的第八晶体管T8的第八控制电极C8连接同一第四扫描线G14。
优选地,同一行的传感单元131的第五晶体管T5的第五控制电极C5与第六晶体管T6的第六控制电极C6短接并连接至同一第三扫描线G13。同一行的传感单元131的第七晶体管T7的第七控制电极C7与第八晶体管T8的第八控制电极C8短接并连接至同一第四扫描线G14。
所述第一扫描线G11、第二扫描线G12、第三扫描线G13、和第四扫描线G14进一步与一扫描驱动电路115连接,接收来自所述扫描驱动电路115的扫描信号。
可变更地,在其它实施方式中,同一行的传感单元131的第一晶体管T1的第一控制电极C1连接第二扫描线G12,同一列的传感单元131的第二晶体管T2的第二控制电极C2连接第一扫描线G11。又或者,第一扫描线G11与第二扫描线G12的位置互换,同一行的传感单元131的第一晶体管T1的第一控制电极C1连接第一扫描线G11,同一列的传感单元131的第二晶体管T2的第二控制电极C2连接第二扫描线G12。
由于第一扫描线G11与第二扫描线G12绝缘交叉设置,因此,根据第一扫描线G11与第二扫描线G12的位置关系,所述控制电路11即可获知各传感单元131的位置。另外,通过设置二级开关,所述控制电路11也有利于对所述多个传感单元131进行分块扫描。
所述多条参考信号线R沿行方向延伸。所述第九传输电极S9连接一参考信号线R。所述第十传输电极S10连接一参考信号线R。优选地,同一行传感单元131的第九传输电极S9与第十传输电极S10相短接并连接至同一参考信号线R,相应地,第三控制电极C3接收的第一参考信号与第四控制电极C4接收的第二参考信号相同。相对地,当同一行传感单元131的第九传输电极S9与第十传输电极S10连接不同参考信号线R时,第三控制电极C3接收的第一参考信号与第四控制电极C4接收的第二参考信号可选择略微不同,但二者仍视为相同。所述多条参考信号线R进一步用于与一参考信号产生电路117连接,接收来自所述参考信号产生电路117的第一参考信号与第二参考信号。
在本实施方式中,同一行的传感单元131连接一扫描线群组G1中的第二扫描线G12、第三扫描线G13、和第四扫描线G14、以及参考信号线R。相邻二行传感单元131之间设置一扫描线群组G1中的第二扫描线G12、第三扫描线G13、和第四扫描线G14、以及参考信号线R。
请参阅图7,图7为手指F触摸图1所示电容式传感器13的示意图。请同时一并参阅图1与图2,所述感测电极14设置在比所述传感电路15更接近手指F的位置。在本实施方式中,所述传感电路15设置在所述感测电极14与所述基板130之间,且所述传感电路15的结构中设置接触孔(见下述),所述感测电极15通过所述接触孔与所述第三控制电极C3连接。优选地,所述感测电极14与接地线133相配合基本完全覆盖传感电路15、扫描线群组G1、参考信号线R、以及信号线群组G2,从而避免当目标物体触摸传感电路15、扫描线群组G1、参考信号线R、或信号线群组G2时而引起对感测信号的干扰。另外,所述各传感单元131的感测电极14优选为同层共面。
请参阅图8至图11,图8至图11中主要示出电容式传感器13的一传感单元131的第三晶体管T3与感测电极14的剖面结构示意图。其中,图8示出的第三晶体管T3为低温多晶硅薄膜晶体管。所述低温多晶硅薄膜晶体管为单顶栅薄膜晶体管。所述传感电路15包括在基板130上形成第一绝缘层141,形成在第一绝缘层141上的有源沟道142和143、源极144、和漏极145,形成在有源沟道142和143、源极144、和漏极145上的第二绝缘层146,形成在第二绝缘层146上的栅极147,形成在栅极147上的第三绝缘层148,贯穿第三绝缘层148直至栅极147上方的接触孔(未标示),和形成在所述第三绝缘层148上方的感测电极14。所述感测电极14通过所述接触孔与所述栅极147连接。其中,第三晶体管T3包括有源沟道142和143、源极144、漏极145、第二绝缘层146、和栅极147。
图9示出的第三晶体管T3为底栅型薄膜晶体管。所述传感电路15包括在基板130上形成第一绝缘层141,形成在第一绝缘层141上的栅极147以及与栅极147连接的一引线L,形成在栅极147和第一绝缘层141上的第二绝缘层146,形成在第二绝缘层146上的有源层149,形成在有源层149两侧的源极144和漏极145,和形成在源极144、漏极145以及第二绝缘层146上的第三绝缘层148,贯穿第三绝缘层148和第二绝缘层146的接触孔,和形成在第三绝缘层148上方的感测电极14。其中,所述引线L从栅极147的一侧延伸至所述接触孔的位置,所述感测电极14通过所述接触孔连接所述栅极147。所述第三晶体管T3包括栅极147、第二绝缘层146、有源层149、源极144、和漏极145。所述有源层149如为硅岛层或金属氧化物层(IGZO)。所述引线L与所述栅极147的材料相同,其与所述栅极147为一体结构。
图10示出的第三晶体管T3为倒置的底栅薄膜晶体管。第三晶体管T3的栅极进一步用作感测电极14。只要将图9所示的结构倒置,在基板130上与设置传感单元131的一侧相对的另一侧上形成屏蔽层40,来覆盖除栅极23之外的区域,且无需在第二绝缘层146与第三绝缘层148上形成接触孔,无需形成引线L即可。可变更地,除了在基板130上与设置传感单元131的一侧相对的另一侧上形成屏蔽层40,来覆盖除栅极23之外的区域的方式,也可选择将栅极23的周围边缘延伸来覆盖传感电路15。可见,当所述感测电极14与所述第三控制电极C3为同一电极时,所述第三控制电极C3相较于第五传输电极S5与第六传输电极S6邻近所述基板130设置。
图11示出的第三晶体管T3为双顶栅低温多晶硅薄膜晶体管。与图8所示的传感单元131类似,在第三晶体管T3的一栅极147上的绝缘层148上形成接触孔,来使得感测电极14与栅极147连接即可。此处,对于第三晶体管T3的结构不再赘述。
由上述内容可知,所述电容式传感器13响应感测电极14因目标物体的接近或触摸所引起参考信号的变化而对应产生差分电流信号,并提供差分电流信号给控制电路11,因此,本发明的电容式传感器13输出的感测信号较强且稳定性较高。
可变更地,在其它实施方式中,在第六传输电极S6与第八传输电极S8上分别串联一电阻,并在差分对管D与各电阻之间分别引出两条信号线,从而对应采集差分电压信号作为感测信号也是可以的。
请再参阅图1至图3,对电容式传感装置1的电路结构进行说明如下。
优选地,所述控制电路11包括一接地端110、所述电流源111、所述处理电路113、所述扫描驱动电路115、所述参考信号产生电路117、和时序控制电路119。所述时序控制电路119至少与所述扫描驱动电路115连接,用于控制所述扫描驱动电路115输出各扫描信号的时序。
在本实施方式中,所述接地端110用于连接所述电子设备的调制地NGND,接收所述调制信号。所述接地端110和接地线133传输所述调制信号,从而,相较于所述调制信号处于接地信号,当所述调制信号处于驱动信号时,所述控制电路11传输给电容式传感器13的信号的驱动强度变高,对于电容式传感装置1为指纹传感装置时,进而能够较易感测到指纹图像。
然,在其它实施方式中,所述接地端110和所述接地线133均用于连接所述电子设备的设备地,接收来自设备地的接地信号,所述接地信号为恒定电压信号。相应地,所述第一参考信号与所述第二参考信号为恒定电压信号。
所述电流源111与第一信号线G21连接,用于提供所述第一恒定直流信号。
所述参考信号产生电路117与所述多条参考信号线R连接,用于提供所述第一参考信号与所述第二参考信号。
所述扫描驱动电路115与所述各扫描线群组G1连接,用于提供扫描信号给各条第一扫描线G11、各条第二扫描线G12、各条第三扫描线G13、和各条第四扫描线G14。
所述处理电路113与第二信号线G22和第三信号线G23并行连接,用于接收来自所述多个传感单元131所输出的感测信号,对所述感测信号进行转换以及放大处理之后,再根据处理后的感测信号计算目标物体的相关感测信息。
具体地,当感测信号为第二交流信号、且为电流信号时,所述处理电路113转换第二交流信号为相应的交流电压信号,并对转换后的交流电压信号进行放大,根据放大的交流电压信号计算目标物体的相关感测信息;或者,所述处理电路113对接收到的第二交流信号进行放大,并转换放大后的第二交流信号为相应的交流电压信号,根据放大的交流电压信号计算目标物体的相关感测信息。所述处理电路113进一步对经转换和放大后的交流电压信号进行减法运算,并根据运算后得到的信号获知目标物体的相关感测信息。
由于对于像指纹传感装置而言,所述传感单元131较多,一次扫描一行传感单元131需要较多的处理电路113和电流源111,因此,对于如指纹传感装置类型的电容式传感装置1而言,发明人发现采用分时复用处理电路电路113和电流源111的方式会比较好,相应地,所述控制电路11进一步包括第三开关单元K3(见图2),所述第三开关设置于电流源111、处理电路113和所述多个传感单元131之间,用于切换所述处理电路113、电流源111和传感单元131之间的连接。如此,采用二级开关、并结合第一扫描线G11、第二扫描线G12与传感单元21之间的连接以及设置关系,会有利于所述控制电路11对所述电容式传感器13进行分块扫描。相应地,如,无需对应每一列传感单元131设置一电流源111,通过第三开关单元K3的控制切换,同一行的传感单元131分时复用所述电流源111。类似地,对于处理电路113也同样适用。其中,第三开关单元K3包括多个控制开关K31。所述第三开关单元K3与时序控制电路119连接,时序控制电路119用于控制第三开关单元K3中的多个控制开关K31的关闭与否。然,在其它实施方式中,所述控制电路11可进一步包括一控制单元来代替时序控制电路119控制第三开关单元K3工作。
当然,如果处理电路113和电流源111较多,或者,传感单元131的数量较少,无需对每一行的传感单元131分至少两次扫描的时候,所述第一开关单元K1包括一晶体管、所述扫描线群组G1包括第一扫描线G11与第二扫描线G12中之一者即可。
请一并参阅图12,图12为图2所示的电容式传感装置1的工作时序图。为了清楚区分各信号,图12中对各信号均做了相应标示,如电流源111提供的第一恒定直流信号采用I1标示,第二信号线G22与第三信号线G23输出的电流信号分别采用I2与I3进行标示等等。需要再次说明的是,在其它实施方式中,所述电容式传感装置1在工作的过程中,所述接地线133、所述接地端110可以一直连接设备地,然,在本实施方式中,优选地,所述接地线133接收调制信号M,第一参考信号R1与第二参考信号R2为经调制信号M调制的信号,从而,所述第一参考信号R1与所述第二参考信号R2随所述调制信号M的升高而升高、随所述调制信号M的降低而降低。由于所述调制信号M包括高于接地信号G的驱动信号W,因此,所述感测电极14加载的参考信号(即,第一参考信号R1)在所述调制信号M处于驱动信号W时被相对抬高,从而提高了驱动能力,进而,当所述电容式装置1例如为指纹传感装置时,其被设置在电子设备的保护盖板(coverlens)下面的时候,也可以较易感测到用户的指纹图像。
然,本发明并非限定接地线133、接地端110接收调制信号M,可变更地,在其它实施方式中,电容式传感器13和控制电路11均包括如电源端,所述电源端与所述接地线133(接地端110)之间的电压差为电容式传感器13(控制电路11)的供电电源,所述电源端用于接收调制信号M。另外,所述调制信号M也并非限定包括接地信号G与驱动信号W,在其它实施方式中,所述调制信号M也可包括负电压与正电压构成的方波信号,或者是接地信号与负电压构成的方波信号(此时,驱动信号为地电压,低于接地信号),或者是多个电压构成的阶梯方波信号等等,优选地,当控制电路15预采用正电平驱动感测电极14时,优选调制信号M的驱动信号W为正电平,相对地,当控制电路15预采用负电平驱动感测电极14时,优选调制信号M的驱动信号W为负电平。另外,调制信号M除了采用方波信号之外也可采用正弦波等其它合适波形信号。
由于图2所示的传感单元131的数量较少,为了体现分块扫描,请一并参阅图13,图13为图1所示电容式传感器13的部分方框示意图。图13所示的多个传感单元131被分成了4个区域,分别为B1、B2、B3、和B4。所述控制电路11对所述4个区域B1、B2、B3、和B4依次进行扫描。然,本发明并不限于前述扫描方式,也可为其它扫描方式,如改变各区域B1、B2、B3、和B4的扫描顺序、对于扫描区域的划分也可多种多样等等。
另外,在下面的原理描述中,是以各区域B1、B2、B3、和B4的每一行传感单元131执行扫描的时间为T、所述时间T包括二充电时段t1和t3、以及二感测时段t2和t4为例进行说明。然,所述电容式传感装置1在实际工作的过程中,各区域B1、B2、B3、和B4的每一行传感单元131执行扫描的时间T包括多于二充电时段t1和t3的多个充电时段和多于二感测时段t2和t4的多个感测时段。
所述电容式传感装置1的工作原理如下:
在扫描时间T内,电流源111和处理电路113通过第三开关单元K3与区域B1中的传感单元131连接。电流源111提供第一恒定直流信号I1,大小为I。
在扫描时间T内,所述接地端110和接地线133接收调制信号M。优选地,所述调制信号M在感测时段t2和t4包括驱动信号W,在充电时段t1和t3均为接地信号G。
在扫描时间T内,所述参考信号产生电路117提供第一参考信号R1、第二参考信号R2分别给与第九传输电极S9连接的参考信号线R、和与第十一传输电极S11连接的参考信号线R。其中,第一参考信号R1、第二参考信号R2随调制信号M的变化而变化,被调制信号M调制。
在扫描时间T内,所述扫描驱动电路115提供第一扫描信号Y1的第一电平H1给与区域B1中第一行传感单元131相连接的第一扫描线G11和第二扫描线G12。其中,所述第一扫描信号Y1随调制信号M的变化而变化,被调制信号M调制。相应地,位于区域B1中第一行传感单元131的第一晶体管T1与第二晶体管T2被导通,所述传感单元131被激活。
在充电时段t1,所述扫描驱动电路115提供第二扫描信号Y2的第一电平H1给与区域B1中第一行传感单元131相连接的第三扫描线G13。同时,所述扫描驱动电路115提供第三扫描信号Y3的第二电平H2给与区域B1中第一行传感单元131相连接的第四扫描线G13。相应地,与第三扫描线G13相连接的区域B1中第一行传感单元131的第五晶体管T5、第六晶体管T6被导通,与第四扫描线G14相连接的区域B1中第一行传感单元131的第七晶体管T7、第八晶体管T8被截止,从而,第一参考信号R1通过导通的第五晶体管T5和截止的第七晶体管T7中相短接的第十三传输电极S13、第十四传输电极S14被传输至第三控制电极C3,对感测电极14和第三控制电极C3进行充电;第二参考信号R2通过导通的第六晶体管T6和截止的第八晶体管T8中相短接的第十五传输电极S15、第十六传输电极S16被传输至第四控制电极C4,对第四控制电极C4进行充电。设第六传输电极S6输出的信号为I2,第八传输电极S8输出的信号为I3,对应地,在此充电时段t1,所述信号I2与I3均为第二恒定直流信号,大小为I/2。
在感测时段t2,所述扫描驱动电路115提供第二扫描信号Y2的第二电平H2给与区域B1中第一行传感单元131相连接的第三扫描线G13。同时,所述扫描驱动电路115提供第三扫描信号Y3的第一电平H1给与区域B1中第一行传感单元131相连接的第四扫描线G13。相应地,与第三扫描线G13相连接的区域B1中第一行传感单元131的第五晶体管T5、第六晶体管T6被截止,与第四扫描线G14相连接的区域B1中第一行传感单元131的第七晶体管T7、第八晶体管T8被导通,从而,所述感测电极14可以用于执行感测操作,另外,导通的第七晶体管T7对第十传输电极S10与第三控制电极C3之间的电压进行补偿,导通的第八晶体管T8对第十二传输电极S12与第四控制电极C4之间的电压进行补偿。
可以看出,在此感测时段t2,第一扫描信号Y1、第二扫描信号Y2、第三扫描信号Y3、第一参考信号R1、和第二参考信号R2均被调制信号M的驱动信号W抬高,且,第一参考信号R1相对调制信号M未发生改变。相应地,第六传输电极S6输出的信号I2与第八传输电极S8输出的信号I3保持不变。第二信号线G22与第三信号线G23对应传输第二恒定直流信号I2与I3给处理电路113。所述处理电路113根据所述第二恒定直流信号I2获知未有目标物体接近或触摸此感测电极14。
需要说明的是,如果未设置第七晶体管T7,当第五晶体管T5截止时,第十传输电极S10处的载流子(电子或空穴,根据第五晶体管T5的类型而定)会对第三控制电极C3的电压有影响,相对地,当设置第七晶体管T7时,导通的第七晶体管T7会在第五晶体管T5截止时吸收所述载流子或释放与所述载流子电性相反的载流子(具体根据第五晶体管T5的类型选择),从而保持第三控制电极C3处的电压相对调制信号M保持不变。类似地,设置第八晶体管T8,以保持第四控制电极C4处的电压相对调制信号M保持不变。
在充电时段t3,与充电时段t1的充电原理类似或相同,第一参考信号R1被再次提供给第三控制电极C3,对第三控制电极C3充电;第二参考信号R2被再次提供给第四控制电极C4,对第四控制电极C4充电。在此充电时段t3,所述信号I2与I3均为第二恒定直流信号,大小为I/2。
在感测时段t4,与感测时段t2的工作原理类似或相同,只不过,第一参考信号R1相对调制信号M发生改变,相应地,所述差分对管D对应于第六传输电极S6和第八传输电极S8形成二不同的第二交流信号(I/2)+i、(I/2)-i,并分别通过第二信号线G22和第三信号线G23并行传输给处理电路113。所述处理电路113根据所述第二交流信号(I/2)+i、(I/2)-i获知有目标物体接近或触摸此感测电极14。
如上所述,区域B1中的第一行传感单元131被扫描完成。接下来,可以采用逐行扫描或隔行扫描的方式对区域B1中的其它行的传感单元131进行如上类似扫描,从而完成对整个区域B1的扫描。类似地,依次完成对其它区域B2、B3、和B4的扫描,进而完成对整个电容式传感器13的扫描。关于对于区域B1中的其它行传感单元131、和其它区域B2、B3、和B4的传感单元131的具体扫描过程,此处不再赘述。
由于本发明电容式传感装置1的控制电路11接收的是来自电容式传感器13的感测信号为差分电流信号,因此,所述电容式传感装置1的感测精度可以得到提高,从而有利于提升用户体验。
在上面实施方式的工作原理中,以所述时间T包括二充电时段t1和t3、以及二感测时段t2和t4为例进行说明,然,可变更地,在其它实施方式中,所述时间T包括二放电时段t1和t3、以及二感测时段t2和t4,相应地,所述调制信号M的驱动信号为负电平,所述参考信号产生电路117提供给差分对管D的第一参考信号R1与第二参考信号R2对应为负电平,即,对感测电极14、第三控制电极C3、以及第四控制电极C4进行放电,此放电时间段即被定义为放电时段。
请参阅图14,图14为本发明电容式传感装置的第二实施方式的电路结构示意图。电容式传感装置2与电容式传感装置1的区别在于:第一,电容式传感装置2的电容式传感器23的传感单元231的结构略不同于电容式传感装置1的电容式传感器13的传感单元131的结构;第二,电容式传感装置2的控制电路21控制电容式传感器23执行感测的工作原理略不同于电容式传感装置1的控制电路11控制电容式传感器13执行感测的工作原理。下面对电容式传感装置2与电容式传感装置1相区别的结构以及工作原理进行相关说明,然,电容式传感装置2与电容式传感装置1的较相似或相同之处,此处不再赘述,对于本领域的技术人员,其根据前面对电容式传感装置1的结构与工作原理的描述,能够无需创造性劳动自然扩展到所述电容式传感装置2上。
请一并参阅图15与图16,图15为图14所示一列方向上相邻二传感单元231的电路结构示意图。图16为图14的电容式传感装置2的部分电路结构示意图。以下描述以二相邻传感单元231、且目标物体为手指F为例进行说明,其它传感单元231的结构与工作原理类似,不再赘述。所述传感电路25包括转换电路251。所述转换电路251用于响应感测电极24因手指F的接近或触摸所引起参考信号的变化,而对应产生第二交流信号。优选地,所述转换电路251转换感测电极24因手指F的接近或触摸所引起参考信号的变化量为第一交流信号,并叠加所述第一交流信号至一第二恒定直流信号上,对应产生所述第二交流信号。优选地,所述第一交流信号与第二交流信号均为电流信号。然,在其它实施方式中,所述第二交流信号也可为电压信号。
在本实施方式中,所述转换电路251包括第三晶体管N3。所述第三晶体管N3响应感测电极24因手指F的接近或触摸所引起参考信号的变化,而对应产生第二交流信号。优选地,所述第三晶体管N3对感测电极24因目标物体的接近或触摸所引起的参考信号的变化量进行转换以及放大,对应产生所述第二交流信号。
所述第三晶体管N3用于与相邻传感单元231的第三晶体管N3组成差分对管(未标示)。例如,对于一传感单元231的第三晶体管N3:用于与行方向上相邻的传感单元231的第三晶体管N3形成差分对管;或/和,用于与列方向上相邻的传感单元231的第三晶体管N3形成差分对管。
优选地,所述各传感单元231的第三晶体管N3用于分时与行方向和列方向上不同位置的相邻传感单元231的第三晶体管N3分别组成差分对管。即,任意相邻的二传感单元231用于组成一传感单元组233(见图15)。在本实施方式中,同一列的传感单元231共用一电流源211,同一行中相邻的传感单元231的第三晶体管N3在需要组成差分对管时,共用一电流源211(见图14)。
在电容式传感器23执行感测时,与同一电流源211相电连接的二相邻且被激活的传感单元231中的第三晶体管N3形成差分对管,所述二相邻且被激活的传感单元231中的第三晶体管N3的第五传输电极P5电连接同一电流源211。由差分对管的元件性质,对于所述二相邻且被激活的传感单元231:不管是其中一个传感单元231还是两个传感单元231中的感测电极24被目标物体接近或触摸所引起参考信号的变化时,所述二传感单元231中的第三晶体管N3于第六传输电极P6上分别形成第二交流信号,且二第三晶体管N3分别形成的第二交流信号同幅同频反相,为差分信号,二者之和与所述电流源211提供的第一恒定直流信号相等。
优选地,所述各传感单元231的传感电路25进一步包括第一开关单元Q1。所述第一开关单元Q1连接于第五传输电极P5与所述电流源211之间,用于控制是否在所述第五传输电极P5与所述电流源211之间进行电流传输。
所述第一开关单元Q1包括第一晶体管N1。所述第一晶体管N1包括第一控制电极V1、第一传输电极P1、和第二传输电极P2。所述第一控制电极V1用于响应一扫描信号对应控制第一传输电极P1与第二传输电极P2之间是否导通。第一传输电极P1用于连接所述电流源211。第二传输电极P2用于连接所述第五传输电极P5。
优选地,所述第一开关单元Q1进一步包括第二晶体管N2。所述第二晶体管N2包括第二控制电极V2、第三传输电极P3、和第四传输电极P4。所述第二控制电极V2用于响应一扫描信号对应控制第三传输电极P3与第四传输电极P4之间是否导通。第三传输电极P3用于连接第二传输电极P2。
更优选地,所述传感电路25进一步包括第二开关单元Q2。所述第二开关单元Q2用于控制是否传输第一参考信号给第三控制电极V3。第三晶体管N3与感测电极24相关联,因此,第二开关单元Q2对应控制是否传输参考信号给所述感测电极24。
在本实施方式中,所述第三控制电极V3与所述感测电极24为二电极,所述第三控制电极V3直接连接所述感测电极24。在其它实施方式中,所述第三控制电极V3也可通过限流元件连接连接所述感测电极24,所述限流元件包括电阻,起到防ESD的作用。另外,所述第三控制电极V3与所述感测电极24也可为同一电极。
优选地,所述第二开关单元Q2包括第五晶体管N5。所述第五晶体管N5包括第五控制电极V5、第九传输电极P9、和第十传输电极P10。其中,第五控制电极V5用于响应一扫描信号而对应控制第九传输电极P9与第十传输电极P10是否导通。第九传输电极P9用于接收第一参考信号。第十传输电极P10连接第三控制电极V3。
更优选地,所述传感电路25进一步包括第一补偿单元U1。所述第一补偿单元U1设置在第十传输电极P10与第三控制电极V3之间,用于补偿第五晶体管N5关闭时第十传输电极P10与第三控制电极V3之间的电压。
优选地,所述第一补偿单元U1包括第七晶体管N7。所述第七晶体管N7包括第七控制电极V7、第十三传输电极P13、和第十四传输电极P14。其中,第七控制电极V7用于响应一扫描信号而控制第十三传输电极P13和第十四传输电极P14是否导通。第十三传输电极P13连接第十传输电极P10。第十四传输电极P14连接第三控制电极V3。第十三传输电极P13和第十四传输电极P14短接。
第七晶体管N7用于和第五晶体管N5交替导通,导通的第七晶体管N7在第五晶体管N5截止时补偿第三控制电极V3与第十传输电极P10之间的电压。
请再参阅图15与图16,所述电容式传感器23进一步包括多个扫描线群组G3、多个信号线群组G4、和多条参考信号线X。其中,所述扫描线群组G3用于传输扫描线信号给所述多个传感单元231。所述信号线群组G4用于在所述多个传感单元231与所述控制电路21之间传输电流信号。所述多条参考信号线X用于传输第一参考信号给所述多个传感单元231。
所述扫描线群组G3包括第一扫描线G31、第二扫描线G32、第三扫描线G33、和第四扫描线G34。所述信号线群组G4包括第一信号线G41、第二信号线G42、和第三信号线G43。
对于位于同一列的二相邻传感单元231:一传感单元231中的第三晶体管N3的第六传输电极P6用于与第二信号线G42连接,另一传感单元231中的第三晶体管N3的第六传输电极P6用于与第三信号线G43连接;所述二相邻传感单元231的第三晶体管N3的第五传输电极P5通过同一第一信号线G41相连接。
对于每一信号线群组G4:所述第一信号线G41、第二信号线G42、和第三信号线G43沿列方向延伸,且所述第一信号线G41、第二信号线G42、和第三信号线G43沿行方向依次排布。
在本实施方式中,奇数行的传感单元231均连接第二信号线G42,偶数行的传感单元231均连接第三信号线G43。可变更地,在其它实施方式中,奇数行的传感单元231均连接第三信号线G43,偶数行的传感单元231均连接第二信号线G42。
第一扫描线G31与第二扫描线G32绝缘交叉排列。
优选地,同一列的第一晶体管N3的控制电极V3连接至同一第一扫描线G31。同一行的第二晶体管N2的第二控制电极V2连接到同一第二扫描线G32。同一行的第五晶体管N5的第五控制电极V5连接到同一第三扫描线G33。同一行的第七晶体管N7的第七控制电极V7连接到同一第四扫描线G34。同一行的第五晶体管N5的第九传输电极P9连接到同一参考信号线X。
由于电容式传感器23的多个传感单元231响应感测电极24因目标物体的接近或触摸所引起参考信号的变化,而对应产生第二交流信号给控制电路21,因此,电容式传感器23输出的感测信号较强且稳定性较高。
所述电容式传感装置2的工作原理如下。
在本实施方式中,优选地,所述电容式传感装置2采用分块扫描的方式工作。然,在其它实施方式中,也可无需分块扫描,而是每一次完整扫描一行,通过多次扫描,完成对整个电容式传感器23的所有传感单元231的扫描。
请一并参阅图17,图17为电容式传感器23的方框结构示意图。与图13类似,图14所示的多个传感单元231被分成了4个区域,分别为J1、J2、J3、和J4。所述扫描区块J1中的多个传感单元231按行列排列的方式被分别标示为a11~a55,扫描区块J2中与传感单元a55相邻的传感单元被标示为a56,扫描区块J3中与传感单元a55相邻的传感单元被标示为a65。此处,主要以对扫描区块J1内的传感单元231的扫描方式为例进行说明,其它扫描区块J2、J3、和J4内的传感单元231的扫描方式类似,此处不再赘述。另外,扫描驱动电路215驱动第一开关单元Q1与第二开关单元Q2交替导通的工作原理,传感电路25在充电时段提供第一参考信号给第三控制电极V3进行充电,在感测时段停止提供第一参考信号给第三控制电极V3,感测电极24对应在感测时段执行感测的工作原理均与电容式传感装置1的工作原理类似,此处也不再赘述。下面主要对电容式传感装置2与电容式传感装置1的工作原理不同之处进行说明。
首先,需要说明的是,例如,对于电容式传感装置2为指纹传感装置而言,一般地,相邻的指纹脊与指纹谷之间通常设置多个传感单元231。
其次,由于电容式传感装置1的传感单元131均各自包括一差分对管D,因此,所述传感单元131感测得到的第二交流信号为绝对值,控制电路11通过对各个传感单元131输出的感测信号进行比较,则可对应获得指纹图像信息。相对地,由于电容式传感装置2的相邻传感单元231的第三晶体管N3用于组成一差分对管,因此,每一传感单元231感测得到的第二交流信号并非为如上述所述的绝对值。
为了获得指纹图像信息,优选地,需要每一传感单元231的第三晶体管N3与其行方向和列方向均相邻的传感单元231的第三晶体管N3分别形成差分对管,从而,获得多组感测数值,再对获得的相邻感测数值做减法运算得到多组感测差值,所述控制电路21通过对所述多组感测差值进行比较,则可对应获得指纹图像信息。
所述控制电路21对所述扫描区块J1中的多个传感单元231的扫描过程如下:
首先,所述控制电路21先单独对第一行的传感单元231进行第一次扫描,此时,传感单元a11中的第三晶体管N3与传感单元a12中的第三晶体管N3组成差分对管,传感单元a13中的第三晶体管N3与传感单元a14中的第三晶体管N3组成差分对管,所述控制电路21分别获得感测信号Y1、Y2。
所述控制电路21再单独对第一行的传感单元231进行第二次扫描,此时,传感单元a12中的第三晶体管N3与传感单元a13中的第三晶体管N3组成差分对管,传感单元a14中的第三晶体管N3与传感单元a15中的第三晶体管N3组成差分对管,所述控制电路21分别获得感测信号Y3、Y4。
控制电路21对获得的感测信号Y1、Y3、Y2、Y4依次做减法运算,分别获得感测差值△Y1、△Y2、△Y3。
接下来,控制电路21同时对第一行和第二行的传感单元231进行扫描,同一列相邻的二传感单元231,如a11与a21,的第三晶体管N3组成差分对管,所述控制电路21分别获得感测信号Y5、Y6、Y7、Y8、Y9(未标示)。
控制电路21对获得的感测信号Y5、Y6、Y7、Y8、Y9依次做减法运算,分别获得感测差值△Y4、△Y5、△Y6、△Y7(未标示)。
再接下来,控制电路21单独对第二行的传感单元231进行第一次扫描,其中,传感单元a21中的第三晶体管N3与传感单元a22中的第三晶体管N3组成差分对管,传感单元a23中的第三晶体管N3与传感单元a24中的第三晶体管N3组成差分对管,所述控制电路21分别获得感测信号Y10、Y11(未标示)。
所述控制电路21再单独对第二行的传感单元231进行第二次扫描,其中,传感单元a22中的第三晶体管N3与传感单元a23中的第三晶体管N3组成差分对管,传感单元a24中的第三晶体管N3与传感单元a25中的第三晶体管N3组成差分对管,所述控制电路21分别获得感测信号Y12、Y13(未标示)。
控制电路21对获得的感测信号Y10、Y12、Y11、Y13依次做减法运算,分别获得感测差值△Y8、△Y9、△Y10(未标示)。
接下来,控制电路21同时对第二行和第三行的传感单元231进行扫描。
按照如上扫描方式,对扫描区块内J1的其它行的传感单元231进行扫描,类似地,对其它扫描区块J2、J3、J4的传感单元231进行扫描,从而完成对所有传感单元231的扫描,获得多组感测差值△Y1、△Y2,…,所述控制电路21比较获得的多组感测差值来获知指纹图像信息。
需要说明的是,为了感测更精准,对于扫描区块J1边缘的传感单元231的:还需要与其它相邻扫描区域J2、J3的传感单元231的第三晶体管N3组成差分对管,获得感测信号。例如,以传感单元a55为例:传感单元a55中的第三晶体管N3与传感单元a56与a65中的传感单元a55再分别组成差分对管。
上面对控制电路21控制传感单元231执行扫描操作做了一般性的说明,然,本发明电容式传感装置2的扫描方式并不限于以上所述,对于本领域的技术人员而言,其在不付出创造性劳动的基础上,根据本发明上述说明内容所做出的其它变更实施方式均应落入本发明的保护范围。
由于电容式传感装置2的控制电路21接收来自电容式传感器23的感测信号为电流信号,且为差分信号,因此,所述电容式传感装置2的感测精度可以得到提高,从而有利于提升用户体验。
尽管是参考各实施例来描述本发明公开,但是可以理解,这些实施例是说明性的,并且本发明的范围不仅限于它们。许多变化、修改、添加、以及改进都是可能的。更一般而言,根据本发明公开的各实施例是在特定实施例的上下文中描述的。功能可以在本发明公开的各实施例中在过程中以不同的方式分离或组合,或利用不同的术语来描述。这些及其他变化、修改、添加、以及改进可以在如随后的权利要求书所定义的本发明公开的范围内。

Claims (13)

1.一种电容式传感器的传感单元,所述电容式传感器包括第一信号线和第二信号线,所述传感单元包括:
感测电极,能够以电容方式耦合到目标物体,用于加载参考信号;和
传感电路,包括:
第一开关单元;和
第三晶体管,包括第三控制电极、第五传输电极、和第六传输电极,其中,第五传输电极通过第一开关单元连接第一信号线;第六传输电极用于与第二信号线连接;第三控制电极与感测电极为二电极,第三控制电极连接感测电极,或者,第三控制电极与感测电极为同一电极;所述第一开关单元用于控制是否在第三晶体管与第一信号线之间传输电流信号;
所述第三晶体管用于响应感测电极上因目标物体的接近或触摸而引起参考信号的变化,而对应于第六传输电极上形成第二交流信号。
2.如权利要求1所述的传感单元,其特征在于:所述第三晶体管用于与相邻传感单元的第三晶体管组成差分对管。
3.如权利要求1所述的传感单元,其特征在于:所述第五传输电极用于通过第一信号线与一电流源连接,所述第二交流信号为电流信号。
4.如权利要求1所述的传感单元,其特征在于:所述电容式传感器进一步包括第一扫描线,所述第一开关单元包括:
第一晶体管,包括第一控制电极、第一传输电极、和第二传输电极,其中,第一控制电极用于与第一扫描线连接;第一传输电极用于与第一信号线连接;第二传输电极连接第五传输电极。
5.如权利要求4所述的传感单元,其特征在于:所述电容式传感器进一步包括第二扫描线,所述第一开关单元进一步包括:
第二晶体管,包括第二控制电极、第三传输电极、和第四传输电极,其中,第二控制电极用于与第二扫描线连接;第三传输电极与第二传输电极连接;第四传输电极与第五传输电极连接。
6.如权利要求5所述的传感单元,其特征在于:所述传感单元进一步包括第二开关单元,与所述感测电极连接,用于控制是否传输参考信号给感测电极。
7.如权利要求6所述的传感单元,其特征在于:所述电容式传感器进一步包括第三扫描线和参考信号线,所述第二开关单元包括:
第五晶体管,包括第五控制电极、第九传输电极、和第十传输电极,其中,第五控制电极用于与一第三扫描线连接;第九传输电极用于连接一参考信号线;第十传输电极连接第三控制电极;第三控制电极用于通过第五晶体管接收来自参考信号线上的参考信号。
8.如权利要求7所述的传感单元,其特征在于:所述电容式传感器进一步包括第四扫描线,所述传感电路进一步包括:
第七晶体管,包括第七控制电极、第十三传输电极、和第十四传输电极,其中,第七控制电极用于连接第四扫描线;第十三传输电极连接第十传输电极;第十四传输电极连接感测电极;第十三传输电极和第十四传输电极短接。
9.如权利要求1所述的传感单元,其特征在于:所述电容式传感器进一步包括用于承载传感单元的基板,当所述感测电极与所述第三控制电极为二电极时,所述传感电路设置在所述感测电极与所述基板之间,且所述传感电路的结构中设置接触孔,所述感测电极通过所述接触孔与所述第三控制电极连接;当所述感测电极与所述第三控制电极为同一电极时,所述第三控制电极相较于第五传输电极与第六传输电极邻近所述基板设置。
10.如权利要求1所述的传感单元,其特征在于:当第三控制电极与所述感测电极为二电极时,所述第三控制电极直接连接所述感测电极,或者,所述第三控制电极通过电阻连接所述感测电极。
11.如权利要求1所述的传感单元,其特征在于:所述电容式传感器的传感单元为指纹传感器的传感单元。
12.如权利要求3所述的传感单元,其特征在于:所述第三晶体管对感测电极上因目标物体的接近或触摸所引起的参考信号的变化量进行转换以及放大,产生第一交流信号,并将第一交流信号叠加至第二恒定直流信号,对应形成所述第二交流信号,其中,第二恒定直流信号为所述电流源提供的第一恒定直流信号的一半。
13.一种电容式传感器的传感单元组,包括相邻设置的二传感单元,所述二传感单元为权利要求1-12中任意一项所述的传感单元,其中,所述第一传感单元的第三晶体管用于与所述第二传感单元的第三晶体管组成差分对管。
CN201510608569.0A 2015-09-23 2015-09-23 电容式传感器的传感单元以及传感单元组 Withdrawn CN105183258A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510608569.0A CN105183258A (zh) 2015-09-23 2015-09-23 电容式传感器的传感单元以及传感单元组
PCT/CN2016/094473 WO2017050046A1 (zh) 2015-09-23 2016-08-10 电容式传感器的传感单元以及传感单元组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510608569.0A CN105183258A (zh) 2015-09-23 2015-09-23 电容式传感器的传感单元以及传感单元组

Publications (1)

Publication Number Publication Date
CN105183258A true CN105183258A (zh) 2015-12-23

Family

ID=54905372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510608569.0A Withdrawn CN105183258A (zh) 2015-09-23 2015-09-23 电容式传感器的传感单元以及传感单元组

Country Status (2)

Country Link
CN (1) CN105183258A (zh)
WO (1) WO2017050046A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017050046A1 (zh) * 2015-09-23 2017-03-30 深圳信炜科技有限公司 电容式传感器的传感单元以及传感单元组
WO2018027596A1 (zh) * 2016-08-09 2018-02-15 深圳信炜科技有限公司 传感器、传感装置和电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009021719A1 (de) * 2009-05-18 2010-11-25 Osram Gesellschaft mit beschränkter Haftung Sensorschaltung
US9703425B2 (en) * 2010-09-01 2017-07-11 G2Touch Co., Ltd. Capacitive touch detecting device and method using level shift, and display device using the same
CN105183258A (zh) * 2015-09-23 2015-12-23 深圳信炜科技有限公司 电容式传感器的传感单元以及传感单元组
CN105138207A (zh) * 2015-09-23 2015-12-09 深圳信炜科技有限公司 电容式传感器的传感单元
CN205028267U (zh) * 2015-09-23 2016-02-10 深圳信炜科技有限公司 电容式传感器的传感单元
CN205028269U (zh) * 2015-09-23 2016-02-10 深圳信炜科技有限公司 电容式传感器的传感单元以及传感单元组

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017050046A1 (zh) * 2015-09-23 2017-03-30 深圳信炜科技有限公司 电容式传感器的传感单元以及传感单元组
WO2018027596A1 (zh) * 2016-08-09 2018-02-15 深圳信炜科技有限公司 传感器、传感装置和电子设备

Also Published As

Publication number Publication date
WO2017050046A1 (zh) 2017-03-30

Similar Documents

Publication Publication Date Title
CN105138206A (zh) 电容式传感装置以及电子设备
CN105138181A (zh) 电容式传感器、电容式传感装置和电子设备
CN105159517A (zh) 电容式传感装置和电容式感测***
CN105138203A (zh) 电容式感测***以及电子设备
CN105159518A (zh) 电容式传感装置、封装结构、感测模组、以及电子设备
CN105224155A (zh) 电容式传感器、传感装置、感测***、以及电子设备
CN105988649B (zh) 触控显示装置以及其驱动方法
CN105138207A (zh) 电容式传感器的传感单元
CN104461201A (zh) 触控显示装置和该触控显示装置的驱动方法
CN205028275U (zh) 芯片组以及电子设备
CN105138205A (zh) 电容式传感器、传感装置、感测***、以及电子设备
CN205028269U (zh) 电容式传感器的传感单元以及传感单元组
CN107704145B (zh) 显示面板及其控制方法和显示装置
CN205080536U (zh) 电容式传感器、传感装置、感测***、以及电子设备
CN101140366A (zh) 感测一对象触碰的像素单元、方法及其显示装置
CN205080535U (zh) 电容式传感装置以及电子设备
CN205334405U (zh) 触摸装置、触摸显示装置及电子设备
CN205158325U (zh) 电容式传感装置、封装结构、感测模组、以及电子设备
CN105183258A (zh) 电容式传感器的传感单元以及传感单元组
CN205028267U (zh) 电容式传感器的传感单元
CN205028266U (zh) 电容式传感器、传感装置、感测***、以及电子设备
CN205068351U (zh) 电容式感测***以及电子设备
CN205028270U (zh) 电容式传感器、传感装置、感测***、以及电子设备
CN205080387U (zh) 电子设备
CN105224154A (zh) 电容式传感器、传感装置、感测***、以及电子设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Guangdong province Shenzhen city Nanshan District District 518055 Xili street honghualing Industrial District 2 District 1 Building 5 floor (Xi Bian)

Applicant after: SHENZHEN SUNWAVE TECHNOLOGY CO., LTD.

Address before: 518052 Guangdong city of Shenzhen province Qianhai Shenzhen Hong Kong cooperation zone before Bay Road No. 1 building 201 room A

Applicant before: SHENZHEN SUNWAVE TECHNOLOGY CO., LTD.

COR Change of bibliographic data
WW01 Invention patent application withdrawn after publication

Application publication date: 20151223

WW01 Invention patent application withdrawn after publication