CN105169474A - 一种中性pH下自组装成水凝胶的多肽材料及其应用 - Google Patents

一种中性pH下自组装成水凝胶的多肽材料及其应用 Download PDF

Info

Publication number
CN105169474A
CN105169474A CN201510521915.1A CN201510521915A CN105169474A CN 105169474 A CN105169474 A CN 105169474A CN 201510521915 A CN201510521915 A CN 201510521915A CN 105169474 A CN105169474 A CN 105169474A
Authority
CN
China
Prior art keywords
hydrogel
neutral
polypeptide material
self
asp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510521915.1A
Other languages
English (en)
Other versions
CN105169474B (zh
Inventor
何留民
孙雨乔
吴武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Xin Sheng Medical Materials Co Ltd
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN201510521915.1A priority Critical patent/CN105169474B/zh
Publication of CN105169474A publication Critical patent/CN105169474A/zh
Application granted granted Critical
Publication of CN105169474B publication Critical patent/CN105169474B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明提供了一种中性pH下自组装成水凝胶的多肽材料,所述多肽材料包括在RADA16-I序列上分别连接多个酸性氨基酸和多个碱性氨基酸,以此形成两种带相反电荷的短肽,混合后自组装形成所述水凝胶的多肽材料。本发明提供了一种可在常温中性pH条件,即在人体生理条件自组装形成三维多孔纳米纤维水凝胶。利用本发明技术制备的材料具有更好的生物相容性,可实现原位负载细胞/活性分子以及体内原位注射,在细胞三维培养、组织工程生物支架材料和药物载体领域具有非常广阔的应用前景和临床应用价值。

Description

一种中性pH下自组装成水凝胶的多肽材料及其应用
技术领域
本发明属于材料制备领域,更具体地,涉及一种中性pH下自组装成水凝胶的多肽材料及其应用。
背景技术
三维多孔纳米支架能够模仿天然细胞外基质结构,为细胞生长提供支持,广泛应用于生物医学、组织工程学等研究领域。几乎所有的组织细胞在体内都是在三维条件下生长,细胞被包裹在由胶原纤维作为主要成分组成的纳米纤维水凝胶之中,此外,细胞外基质中还含有大量的不溶性基质蛋白和可溶性生长因子。但目前研究中细胞培养技术中所采用的大多都是二维培养,即细胞在培养板或者培养皿上进行培养,这与体内生长环境相差较大,影响细胞生长,甚至会引起细胞基因或者功能变化。如何体外构建具有模仿天然细胞外基质结构和功能的人工支架材料,为细胞提供三维生长环境一直是生物、医学以及材料工程领域基础研究和产品开发的热点。
自组装短肽RADA16-I是4个重复的精氨酸-丙氨酸-天冬氨酸-丙氨酸序列,即(精氨酸-丙氨酸-天冬氨酸-丙氨酸)4,当其水溶液调节至pH=7时会形成由纳米纤维网络构成的水凝胶,与天然细胞外基质结构很相似,作为组织工程支架、药物载体和止血材料在生物医学工程领域有广泛的应用,是自组装短肽水凝胶材料的典型代表。但是一个显著的缺点是该材料水溶液具有明显的酸性(pH=3~4),不能与细胞悬液和活性分子直接混合原位成凝胶,即很难实现细胞包埋在RADA16-I水凝胶中进行三维生长。
目前关于细胞培养的报道仍是采用先制备水凝胶然后在其表面种植细胞的二维培养模式,不能实现真正的三维细胞培养。而将该材料直接注射体内修复损伤和用于止血时较低的pH会对宿主组织造成损害。自1993年首次报道该材料以来,人们对RADA16-I进行了大量的研究,但是对于其酸性的缺点仍不能有效解决。
发明内容
本发明根据目前自组装水凝胶材料中的不足,提供了一种中性pH下自组装成水凝胶的多肽材料。
本发明的另一目的在于提供上述多肽材料的制备方法和应用。
本发明的技术目的通过以下技术方案实现:
本发明提供了一种中性pH下自组装成水凝胶的多肽材料,包括在RADA16-I序列上分别连接多个酸性氨基酸和多个碱性氨基酸,以此形成两种带相反电荷的短肽,混合后自组装形成所述水凝胶的多肽材料。
本发明是以低分子量自组装短肽为基础的水凝胶,为细胞三维生长提供空间,用于构建组织工程支架。本材料可在常温中性pH条件下形成纳米纤维水凝胶,模仿了天然细胞外基质结构,具有良好的理化性能和生物相容性,支持细胞三维生长,满足组织工程支架的要求,而且可负载活性分子药物,例如生长因子、短肽药物。可广泛应用于软骨、血管、神经、皮肤等人工器官的再生和损伤的修复。
优选地,所述两种带相反电荷的短肽序列分别为
序列1:(精氨酸-丙氨酸-天冬氨酸-丙氨酸)4-精氨酸-异亮氨酸-赖氨酸-缬氨酸-丙氨酸-缬氨酸;
序列2:(精氨酸-丙氨酸-天冬氨酸-丙氨酸)4-谷氨酸-谷氨酸-酪氨酸-异亮氨酸-甘氨酸-丝氨酸-精氨酸。
优选地,所述两种带相反电荷的短肽序列分别为
序列3:(精氨酸-丙氨酸-天冬氨酸-丙氨酸)4-(赖氨酸)n
序列4:(精氨酸-丙氨酸-天冬氨酸-丙氨酸)4-谷氨酸-谷氨酸-天冬氨酸-天冬氨酸-天冬氨酸;
其中,n为1~10内任意一个自然数。
申请人发现,在(精氨酸-丙氨酸-天冬氨酸-丙氨酸)4上接枝赖氨酸,并且与序列4进行混合,赖氨酸的接枝数量可以为1~10中任意一个自然数,这样形成的两对短肽混合后均可以实现中性pH下自组装的能力。
优选地,将所述两种带相反电荷的短肽分别配置成5~15mg/mL的水溶液,按照1:1的体积比混合,调节pH至中性,即得所述多肽材料。
本发明采用的技术方案是:在短肽(精氨酸-丙氨酸-天冬氨酸-丙氨酸)4序列上通过化学共价键连接多个酸性氨基酸为主的序列,例如如天冬氨酸和谷氨酸,或者连接多个碱性氨基酸为主的序列,例如赖氨酸、精氨酸和组氨酸。最终得到在中性pH条件下分别带有净正电荷和净负电荷的两条短肽序列,溶于水后调整其pH至7,两者混合后形成三维纳米多孔水凝胶。该水凝胶保持中性pH值,三维结构稳定。
本发明两对短肽序列的合成是采用了现有的接枝方向获得,由于目前未有成型的理论支持何种改性(即接枝序列和接枝位置)能够获得真正在中性条件下合成的自组装多肽水凝胶,不同的序列排列方式不同,电荷分布也不同,同时结构内部自组装方式均会影响最终的接枝效果,因此,上述接枝物的具体接枝位点和接枝序列排布,对最终效果影响非常大。
与现有多肽自组装水凝胶相比,本发明在生理条件下(pH为7-7.4)即可形成三维多孔水凝胶,由直径约20nm的纳米纤维网络构成,凝胶网络结构稳定,可为细胞三维培养提供支撑作用。将含有功能性氨基酸序列引入,能够促进细胞生长、粘附,同时也可负载活性分子药物,如生长因子、短肽药物,获得控制释放。也可注射使用,操作简便,是非常理想的生物材料。
本发明所述的中性pH下自组装成水凝胶的多肽材料,并且使用过程都是中性的,不会对细胞核宿主组织产生危害,能够用于真正的三维培养细胞,方法为将细胞悬液分别与所述两种带相反电荷的短肽进行混合,然后将两者混合,得到包埋细胞的水凝胶/细胞复合体,并加入培养基进行培养。
进一步地,所述的中性pH下自组装成水凝胶的多肽材料在运用于软骨、血管、神经或皮肤的再生和损伤修复中,具有极大的应用前景。
与现有技术相比,本发明具有以下有益效果:
本发明提供了一种可在常温中性pH条件,即在人体生理条件自组装形成三维多孔纳米纤维水凝胶。利用本发明技术制备的材料具有更好的生物相容性,可实现原位负载细胞/活性分子以及体内原位注射,在细胞三维培养、组织工程生物支架材料和药物载体领域具有非常广阔的应用前景和临床应用价值。
附图说明
图1为两种修饰改性后的短肽(P1、P2),混合后形成的水凝胶材料(P1+P2),向水凝胶扩散的细胞培养基未改变颜色,说明形成的水凝胶呈中性pH;原子力显微镜显示纳米纤维形貌,说明所形成的水凝胶是由纳米纤维构成的网络。
图2为三种材料的流变性能对比图,P1,P2为改性短肽,P1+P2为两者混合物。G’为储能模量,G”为损耗模量。P1和P2混合后G’大大升高,说明形成了稳定的水凝胶。
图3为神经干细胞球在不同纳米纤维水凝胶中三维生长形貌。A为本发明专利制备的纳米纤维水凝胶;B为RADA16-I纳米纤维水凝胶;从图中可以看出神经干细胞球在本发明专利制备的纳米纤维水凝胶中可以三维生长,并长出较长的轴突,而在RADA16-I水凝胶中则没有任何轴突长出。
图4为利用活死细胞检测试剂盒检测神经干细胞在不同三维支架中的存活,绿色代表活细胞,红色代表死细胞。A为本发明专利制备的纳米纤维水凝胶;B为RADA16-I纳米纤维水凝胶;从图中可以看出神经干细胞在本发明专利制备的纳米纤维水凝胶中大量存活,存活率达到100%,并可以三维生长,并长出较长的轴突,而在RADA16-I水凝胶中则大量死亡,层圆球状,没有任何轴突长出。
具体实施方式
下面通过实施例对本发明进行具体描述,有必要在此指出的是本实施例只用于对本发明进行进一步说明,但不能理解为对本发明保护范围的限制,该领域的技术熟练人员可以根据上述本发明的内容作出一些非本质的改进和调整。
除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1:水凝胶的多肽材料制备:
序列1(P1):(精氨酸-丙氨酸-天冬氨酸-丙氨酸)4-精氨酸-异亮氨酸-赖氨酸-缬氨酸-丙氨酸-缬氨酸溶于超纯水后,配置成浓度为5~15ml/mL的溶液,用NaOH调节其pH值至7,可得到带正电荷的短肽水溶液。
序列2(P2):(精氨酸-丙氨酸-天冬氨酸-丙氨酸)4-谷氨酸-谷氨酸-酪氨酸-异亮氨酸-甘氨酸-丝氨酸-精氨酸溶于超纯水后,,配置成浓度为5~15ml/mL的溶液,用NaOH调节其pH值至7,可得到带负电荷的短肽水溶液。
之后将两者溶液以1:1的体积比混合,静置后迅速形成凝胶,形状稳定后即可投入使用(见图1)。
如图1所示,两者混合后形成水凝胶,流动性失去。
原子力显微镜显示纳米纤维形貌,由直径约20nm的纳米纤维网络构成,说明所形成的水凝胶是由纳米纤维构成的网络,且凝胶网络结构稳定,可为细胞三维培养提供支撑作用。
实施例2:水凝胶的多肽材料制备:
制备方法同实施例1,
序列3(P1’):(精氨酸-丙氨酸-天冬氨酸-丙氨酸)4-(赖氨酸)1-10;n为1~10内任意一个自然数均可。
序列4(P2’):(精氨酸-丙氨酸-天冬氨酸-丙氨酸)4-谷氨酸-谷氨酸-天冬氨酸-天冬氨酸-天冬氨酸。
实施例3:三维细胞培养
以超纯水为溶剂,配成浓度为5-15mg/mL的P1及P2溶液,将细胞悬液分别与调整至中性pH的P1和P2混合,得到均匀的细胞/短肽混合物,用NaOH溶液调节其pH至中性,之后以1:1混合得到包埋有细胞的三维水凝胶,静置后迅速形成凝胶,加入细胞培养基进行培养。
实施例3中包埋细胞为神经干细胞球,如图3和4所示,可以看出神经干细胞球在本发明专利制备的纳米纤维水凝胶中可以三维生长,达到了100%的存活率,并长出较长的轴突,而在RADA16-I水凝胶中则没有任何轴突长出。
实施例4:三维细胞培养
以超纯水为溶剂,配成浓度为5-15mg/mL的P1’及P2’溶液,将细胞悬液分别与调整至中性pH的P1和P2混合,得到均匀的细胞/短肽混合物,用NaOH溶液调节其pH至中性,之后以1:1混合得到包埋有细胞的三维水凝胶,静置后迅速形成凝胶,加入细胞培养基进行培养。
实施例4包埋细胞为为神经干细胞球,其检测后的现象同实施例3的结果相同,与RADA16-I水凝胶相比,本发明提供的纳米纤维水凝胶中可以三维生长,达到了100%的存活率,并长出较长的轴突,而在RADA16-I水凝胶中则没有任何轴突长出。
实施例:5:体内原位注射成凝胶
在体内缺损部位依次注射P1和P2,即可形成凝胶。凝胶成中性,不会对周围组织造成伤害。
在体内缺损部位依次注射P1’和P2’,即可形成凝胶。凝胶成中性,不会对周围组织造成伤害。

Claims (8)

1.一种中性pH下自组装成水凝胶的多肽材料,其特征在于,包括在RADA16-I序列上分别连接多个酸性氨基酸和多个碱性氨基酸,以此形成两种带相反电荷的短肽,混合后自组装形成所述水凝胶的多肽材料。
2.根据权利要求1所述的中性pH下自组装成水凝胶的多肽材料,其特征在于,所述两种带相反电荷的短肽序列分别为
序列1:(精氨酸-丙氨酸-天冬氨酸-丙氨酸)4-精氨酸-异亮氨酸-赖氨酸-缬氨酸-丙氨酸-缬氨酸;
序列2:(精氨酸-丙氨酸-天冬氨酸-丙氨酸)4-谷氨酸-谷氨酸-酪氨酸-异亮氨酸-甘氨酸-丝氨酸-精氨酸。
3.根据权利要求1所述的中性pH下自组装成水凝胶的多肽材料,其特征在于,所述两种带相反电荷的短肽序列分别为
序列3:(精氨酸-丙氨酸-天冬氨酸-丙氨酸)4-(赖氨酸)n
序列4:(精氨酸-丙氨酸-天冬氨酸-丙氨酸)4-谷氨酸-谷氨酸-天冬氨酸-天冬氨酸-天冬氨酸;
其中,n为1~10内任意一个自然数。
4.根据权利要求2或3所述的中性pH下自组装成水凝胶的多肽材料,其特征在于,将所述两种带相反电荷的短肽分别配置成5~15mg/mL的水溶液,按照1:1的体积比混合,调节pH至中性,即得所述多肽材料。
5.一种权利要求1至4任意一项权利要求所述的中性pH下自组装成水凝胶的多肽材料在组织工程生物支架材料制备中的应用。
6.一种权利要求1至4任意一项权利要求所述的中性pH下自组装成水凝胶的多肽材料在细胞三维培养中的应用。
7.根据权利要求6所述的应用,其特征在于,将细胞悬液分别与所述两种带相反电荷的短肽进行混合,然后将两者混合,得到包埋细胞的水凝胶/细胞复合体,并加入培养基进行培养。
8.一种权利要求1至4任意一项权利要求所述的中性pH下自组装成水凝胶的多肽材料在软骨、血管、神经或皮肤的再生和损伤修复中的应用。
CN201510521915.1A 2015-08-24 2015-08-24 一种中性pH下自组装成水凝胶的多肽材料及其应用 Active CN105169474B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510521915.1A CN105169474B (zh) 2015-08-24 2015-08-24 一种中性pH下自组装成水凝胶的多肽材料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510521915.1A CN105169474B (zh) 2015-08-24 2015-08-24 一种中性pH下自组装成水凝胶的多肽材料及其应用

Publications (2)

Publication Number Publication Date
CN105169474A true CN105169474A (zh) 2015-12-23
CN105169474B CN105169474B (zh) 2017-04-26

Family

ID=54892214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510521915.1A Active CN105169474B (zh) 2015-08-24 2015-08-24 一种中性pH下自组装成水凝胶的多肽材料及其应用

Country Status (1)

Country Link
CN (1) CN105169474B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106397545A (zh) * 2016-09-30 2017-02-15 暨南大学 一种水凝胶材料及其制备方法和应用
CN106492268A (zh) * 2016-12-07 2017-03-15 中国石油大学(华东) 一种短肽/二氧化硅/透明质酸复合水凝胶的制备方法
CN106821964A (zh) * 2017-02-09 2017-06-13 江苏食品药品职业技术学院 pH调控的短链多肽水凝胶及其制备和应用方法
CN107029287A (zh) * 2016-02-04 2017-08-11 郑敦武 一种纳米自组装水凝胶在人工硬脑膜材料中的用途
CN107029301A (zh) * 2016-02-04 2017-08-11 郑敦武 一种纳米自组装水凝胶在颅神经手术防粘连材料中的用途
CN107029300A (zh) * 2016-02-04 2017-08-11 郑敦武 一种纳米自组装水凝胶在手术防粘连材料中的用途
CN107041967A (zh) * 2016-11-29 2017-08-15 暨南大学 一种功能性自组装纳米多肽水凝胶材料及其在制备止血材料中的应用
CN108517006A (zh) * 2018-05-10 2018-09-11 暨南大学 一种常温常压条件下改善碳纳米管在水中分散性的多肽材料及其应用
CN109136165A (zh) * 2018-10-16 2019-01-04 罗忠礼 一种自组装短肽在皮肤组织创伤中快速修复的应用
CN110330568A (zh) * 2019-07-23 2019-10-15 西南交通大学 功能化和活性自组装多肽、水凝胶、制备方法、应用和生物支架
CN110423268A (zh) * 2019-04-25 2019-11-08 张胜有 可自组装成水凝胶的多肽、水凝胶及其应用
CN110615829A (zh) * 2019-09-29 2019-12-27 天津科技大学 一种自组装抗菌肽水凝胶
CN113633823A (zh) * 2021-07-19 2021-11-12 西安交通大学医学院第一附属医院 功能性自组装纳米多肽水凝胶、制备方法、用途和制剂
CN114025846A (zh) * 2019-05-17 2022-02-08 学校法人大阪医科药科大学 用于治疗关节疾病的药物组合物及其制备方法
CN114377202A (zh) * 2021-12-16 2022-04-22 方向前 适用于软骨再生的功能化自组装miRNA/多肽复合水凝胶及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090297579A1 (en) * 2006-06-01 2009-12-03 Massachusetts Institute Of Technology Control of Cells and Cell Multipotentiality in Three Dimensional Matrices
CN102115498A (zh) * 2009-12-31 2011-07-06 华中科技大学同济医学院附属协和医院 含有连接蛋白核心序列的两亲性多肽及其应用
CN103656618A (zh) * 2013-10-25 2014-03-26 广东药学院 治疗皮肤创伤的多肽纳米纤维凝胶制剂、制备方法及应用
CN104356402A (zh) * 2014-10-10 2015-02-18 孙念峰 功能性自组装纳米多肽水凝胶

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090297579A1 (en) * 2006-06-01 2009-12-03 Massachusetts Institute Of Technology Control of Cells and Cell Multipotentiality in Three Dimensional Matrices
CN102115498A (zh) * 2009-12-31 2011-07-06 华中科技大学同济医学院附属协和医院 含有连接蛋白核心序列的两亲性多肽及其应用
CN103656618A (zh) * 2013-10-25 2014-03-26 广东药学院 治疗皮肤创伤的多肽纳米纤维凝胶制剂、制备方法及应用
CN104356402A (zh) * 2014-10-10 2015-02-18 孙念峰 功能性自组装纳米多肽水凝胶

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107029287A (zh) * 2016-02-04 2017-08-11 郑敦武 一种纳米自组装水凝胶在人工硬脑膜材料中的用途
CN107029301A (zh) * 2016-02-04 2017-08-11 郑敦武 一种纳米自组装水凝胶在颅神经手术防粘连材料中的用途
CN107029300A (zh) * 2016-02-04 2017-08-11 郑敦武 一种纳米自组装水凝胶在手术防粘连材料中的用途
CN106397545A (zh) * 2016-09-30 2017-02-15 暨南大学 一种水凝胶材料及其制备方法和应用
CN106397545B (zh) * 2016-09-30 2019-06-21 暨南大学 一种水凝胶材料及其制备方法和应用
CN107041967A (zh) * 2016-11-29 2017-08-15 暨南大学 一种功能性自组装纳米多肽水凝胶材料及其在制备止血材料中的应用
CN106492268A (zh) * 2016-12-07 2017-03-15 中国石油大学(华东) 一种短肽/二氧化硅/透明质酸复合水凝胶的制备方法
CN106492268B (zh) * 2016-12-07 2019-04-19 中国石油大学(华东) 一种短肽/二氧化硅/透明质酸复合水凝胶的制备方法
CN106821964A (zh) * 2017-02-09 2017-06-13 江苏食品药品职业技术学院 pH调控的短链多肽水凝胶及其制备和应用方法
CN108517006B (zh) * 2018-05-10 2021-05-28 暨南大学 一种常温常压条件下改善碳纳米管在水中分散性的多肽材料及其应用
CN108517006A (zh) * 2018-05-10 2018-09-11 暨南大学 一种常温常压条件下改善碳纳米管在水中分散性的多肽材料及其应用
CN109136165A (zh) * 2018-10-16 2019-01-04 罗忠礼 一种自组装短肽在皮肤组织创伤中快速修复的应用
CN110423268A (zh) * 2019-04-25 2019-11-08 张胜有 可自组装成水凝胶的多肽、水凝胶及其应用
CN114025846A (zh) * 2019-05-17 2022-02-08 学校法人大阪医科药科大学 用于治疗关节疾病的药物组合物及其制备方法
CN110330568A (zh) * 2019-07-23 2019-10-15 西南交通大学 功能化和活性自组装多肽、水凝胶、制备方法、应用和生物支架
CN110615829A (zh) * 2019-09-29 2019-12-27 天津科技大学 一种自组装抗菌肽水凝胶
CN110615829B (zh) * 2019-09-29 2022-07-19 深圳市三浦天然化妆品有限公司 一种自组装抗菌肽水凝胶
CN113633823A (zh) * 2021-07-19 2021-11-12 西安交通大学医学院第一附属医院 功能性自组装纳米多肽水凝胶、制备方法、用途和制剂
CN114377202A (zh) * 2021-12-16 2022-04-22 方向前 适用于软骨再生的功能化自组装miRNA/多肽复合水凝胶及其制备方法

Also Published As

Publication number Publication date
CN105169474B (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
CN105169474A (zh) 一种中性pH下自组装成水凝胶的多肽材料及其应用
Navaei et al. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs
KR102421923B1 (ko) 생물의학적 적용을 위한 제어가능한 자기-어닐링 마이크로겔 입자
Gelain et al. Designer self‐assembling peptide scaffolds for 3‐D tissue cell cultures and regenerative medicine
US8512693B2 (en) Self-assembling membranes and related methods thereof
AU2020101687A4 (en) Preparation Method for Dextran-Hyaluronic Acid Hydrogel for Three-Dimensional Cell Culture and Application Thereof
CN102558304B (zh) 自组装多肽及其在促进肿瘤细胞形成多细胞球体中的应用
Zhang et al. Recent advances in protein hydrogels: From design, structural and functional regulations to healthcare applications
CN106474560B (zh) 一种用于3d生物打印的水凝胶材料及其制备方法与应用
CN106397545B (zh) 一种水凝胶材料及其制备方法和应用
CN103143059B (zh) 一种具有多级孔径结构的纳米复合骨缺损修复支架
CN107715170B (zh) 一种3d聚吡咯壳聚糖明胶复合电导材料及其制备方法
Bandyopadhyay et al. Easy and affordable method for rapid prototyping of tissue models in vitro using three-dimensional bioprinting
Yeh et al. A novel cell support membrane for skin tissue engineering: Gelatin film cross-linked with 2-chloro-1-methylpyridinium iodide
Li et al. Effects of concentration variation on the physical properties of alginate-based substrates and cell behavior in culture
Mañas-Torres et al. Injectable magnetic-responsive short-peptide supramolecular hydrogels: ex vivo and in vivo evaluation
KR20200034663A (ko) 세포 배양을 위한 하이드로겔 및 생체의학 적용
CN112999418B (zh) 医用水凝胶组合物、医用水凝胶及其制备方法
WO2023109801A1 (zh) 一种可用于亲脂性药物递送的超分子水凝胶及其制备方法和用途
Kalhori et al. Cardiovascular 3D bioprinting: A review on cardiac tissue development
ES2455441B1 (es) Hidrogel útil como soporte inyectable para aplicación en terapia celular y como sistema de liberación controlada de fármacos
CN112646202A (zh) 一种功能化双网络水凝胶及其制备方法和应用
WO2012094208A1 (en) Nanowired three dimensional tissue scaffolds
CN106390206B (zh) 一种多肽水凝胶、其制备方法及应用
Park et al. Neuronal differentiation of PC12 cells cultured on growth factor-loaded nanoparticles coated on PLGA microspheres

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190122

Address after: 510700 Guangzhou Hi-tech Industrial Development Zone, Guangdong Province, Room 806, 8th floor, Building B3, No. 11 Kaiyuan Avenue, Science City, Guangzhou

Patentee after: Guangzhou Xin Sheng medical materials Co., Ltd.

Address before: 510632 Whampoa Avenue, Guangzhou, Guangzhou, Guangdong Province, No. 601

Patentee before: Jinan University