CN105158893B - 基于lcd液晶面板的可编程孔径显微镜***的光场成像方法 - Google Patents

基于lcd液晶面板的可编程孔径显微镜***的光场成像方法 Download PDF

Info

Publication number
CN105158893B
CN105158893B CN201510631816.9A CN201510631816A CN105158893B CN 105158893 B CN105158893 B CN 105158893B CN 201510631816 A CN201510631816 A CN 201510631816A CN 105158893 B CN105158893 B CN 105158893B
Authority
CN
China
Prior art keywords
lcd
light field
pixel
image
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510631816.9A
Other languages
English (en)
Other versions
CN105158893A (zh
Inventor
左超
陈钱
孙佳嵩
冯世杰
顾国华
张玉珍
李加基
胡岩
陶天阳
张良
张佳琳
孔富城
张敏亮
范瑶
林飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201510631816.9A priority Critical patent/CN105158893B/zh
Publication of CN105158893A publication Critical patent/CN105158893A/zh
Application granted granted Critical
Publication of CN105158893B publication Critical patent/CN105158893B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

本发明公开了一种基于LCD液晶面板的可编程孔径显微镜***的光场成像方法,由显微成像***和LCD液晶面板的4f***实现,首先光场子图像采集,确定所需要计算的焦距z,将步采集得到的M幅光场子图像按规则循环平移,然后将所得到的平移后的光场子图像按像素对应相加,即得到了焦距(成像深度)在z处的重构图像。本发明可实现全分辨率光场成像,不存在传统光场成像中空间分辨率与角分辨率的矛盾问题;可灵活实现先拍照,后聚焦,可以不移动样品的载物台,直接通过计算的方式获得不同深度样品图像。

Description

基于LCD液晶面板的可编程孔径显微镜***的光场成像方法
技术领域
本发明属于光学显微成像技术,特别是一种基于LCD液晶面板的可编程孔径显微镜***及其光场成像方法。
背景技术
传统光学显微镜每次只能观察三维样品的一个二维切面图像。通过移动载物台,可以观察样品不同深度的信息。然而,这种机械对焦***往往需要人为操作,耗时复杂。对于许多动态物体或快速变化的场景,获得其所有深度上的图像信息往往难以实现(姜志国,薛斌党,周孝宽.基于光学显微镜的三维成像技术[J].红外与激光工程,2006,35)。
光场成像是近年来新兴的一种计算成像方式。光场是表示光辐射分布的函数,反映了光波动强度与光波分布位置和传播方向之间的映射关系。光场成像通过记录光辐射在传播过程中的四维位置和方向的信息,相比只记录二维的传统成像方式多出2个自由度,因而在图像重建过程中,能够获得更加丰富的图像信息。采用光场成像的显微镜被称为光场显微镜,其需要在显微镜成像***的一次像面处***一个微透镜阵列,每个微透镜记录的光线对应相同位置不同视角的场景图像,从而得到一个四维光场。额外微透镜阵列的引入增加了***的成本。此外,传统的光场显微镜多出的二维角度信息是以牺牲一定的空间分辨率为代价的,二者之间存在一个折衷。现有光场显微镜普遍存在图像空间分辨率不能满足需求的问题,如果加大图像空间分辨率的同时,兼顾轴向分辨率,则会对光电探测器件提出更高要求。这是当前制约光场成像技术的一个瓶颈,如何解决二者之间的矛盾,是光场成像中的一个关键问题(聂云峰,相里斌,周志良.光场成像技术进展[J].中国科学院大学学报,2011,28(5):563-572.)。
发明内容
本发明的目的在于提供一种基于LCD液晶面板的可编程孔径显微镜***的光场成像方法,实现全分辨率光场图像的采集和“数字聚焦”,避免了传统显微镜中需要频繁收到切换载物台距离以实现对焦的复杂操作。
实现本发明目的的技术解决方案为:一种基于LCD液晶面板的可编程孔径显微镜***的光场成像方法,通过显微成像***和LCD液晶面板的4f***采集图像,然后进行数据处理,步骤如下:
步骤一:光场子图像采集,顺次点亮LED阵列中每个像素点或顺次使LCD液晶面板中的每个像素点透光,相机采集相对应的图像,设LCD液晶面板中共包含M个像素,那么共计拍摄M幅图像,将这些图像记作Im(x,y),m=1,2,....,M,称之为光场子图像,其中(x,y)代表图像平面的二维坐标;对于每幅光场子图像,其都对应了一个光场视角(θxmym),m代表光场视角对应像素的个数;
步骤二:确定所需要计算的焦距,即成像深度z,将步骤一中采集得到的M幅光场子图像按规则循环平移;
步骤三:将步骤二所得到的平移后的光场子图像m=1,2,....,M按像素对应相加,即得到了焦距(成像深度)在z处的重构图像
本发明与现有技术相比,其显著优点:(1)可实现全分辨率光场成像,不存在传统光场成像中空间分辨率与角分辨率的矛盾问题。(2)可灵活实现先拍照,后聚焦,可以不移动样品的载物台,直接通过计算的方式获得不同深度样品图像,即利用LCD液晶面板实现空间光调制器的功能,从而实现显微镜***孔径平面光强分布的灵活可控。通过使LCD液晶面板中的每个像素点透光,相机采集相对应的图像,采集光场子图像。然后确定所需要计算的焦距(成像深度),将光场子图像循环平移后叠加,即得到了所对应成像深度处的重构图像。(3)运算简单,易于实时执行。由于这三大优点,该显微成像方法可望在植物学、动物学、细胞生物学、半导体、材料科学、纳米技术、生命科学、医学诊断等众多领域得到广泛应用。
下面结合附图对本发明作进一步详细描述。
附图说明
图1是本发明基于LCD液晶面板的可编程孔径显微镜***原理图。
图2是LCD液晶面板中每个像素点的坐标系示意图。
图3是基于LCD液晶面板可编程孔径显微镜采集到的100幅光场子图像。
图4是采用本发明方法的对苍蝇口器标本进行光场重聚焦的重构图像,聚焦深度z=-32μm。
图5是直接移动载物台对苍蝇口器标本进行拍摄的图像,聚焦深度z=-32μm。
图6是采用本发明方法的对苍蝇口器标本进行光场重聚焦的重构图像,聚焦深度z=63μm。
图7是直接移动载物台对苍蝇口器标本进行拍摄的图像,聚焦深度z=63μm。
具体实施方式
结合图1,本发明基于LCD液晶面板的可编程孔径显微镜***其基于两部分构成,一部分为显微成像***1,另一部分是一个包含LCD液晶面板的4f***2,这两部分在图1中分别由虚线框标出。所述的显微成像***1可直接采用现有的显微镜***,也可以自行构建,其主要包括集光镜3、聚光镜孔径光阑4、聚光镜5、待测样品6、显微物镜7、反射镜8、与镜筒透镜9。其中集光镜3将照明光汇聚到聚光镜孔径光阑4,聚光镜孔径光阑大小可调,控制照明的通光孔径,通光聚光镜孔径光阑4发散后又被聚光镜5收集后照射样品,透射过样品的光被显微物镜7收集,并经过镜筒透镜9放大后成像在显微镜相机端口的图像平面10。
所述的包含LCD液晶面板的4f***2是***的核心部分,包括第一透镜L111、第二透镜L213、LCD液晶面板12以及单色CCD相机14(采用The Imaging Source DMK 41AU02,1280×960,4.65μm pixel size,15fps)。第一透镜L111、第二透镜L213的焦距f=f1=f2。第一透镜L111和第二透镜L213构成一个标准的4f成像***,即:第一透镜L111到显微镜图像平面10的端口的距离为f1,第二透镜L211到CCD相机14成像平面的端口的距离为f2,两透镜之间的距离是f1+f2。LCD液晶面板12放置于4f***的傅里叶平面,即第一透镜L111和第二透镜L213之间,距离第一透镜L111的距离为f1,距离第二透镜L213的距离为f2。
以具体例子予以说明,第一透镜L111、第二透镜L213的焦距f=f1=f2=150mm。则第一透镜L111和第二透镜L213构成一个标准的4f成像***,即:第一透镜L111到显微镜图像平面10的端口的距离为f1=150mm,第二透镜L211到CCD相机14成像平面的端口的距离为f2=150mm,两透镜之间的距离是f1+f2=300mm。LCD液晶面板12放置于4f***的傅里叶平面,即第一透镜L111和第二透镜L213之间,距离第一透镜L111的距离为f1=150mm,距离第二透镜L213的距离为f2=150mm。L1和L2的焦距可以是相同的,但是实际上它们可以选用不同的焦距,这里为了方便起见以f=f1=f2=150mm说明。
LCD液晶面板12是作为一种透射型空间光调制器来使用的,其可以是基于TN型的灰度液晶面板。面板尺寸,像素分辨率与像素尺寸不是本发明的技术要点,但面板尺寸要能尽可能覆盖第二透镜L213前焦面的所有有效区域,像素分辨率与像素尺寸越小越好。目前典型值为面板尺寸2-4.3寸,像素分辨率10×10至480×272,像素尺寸从20微米至10毫米不等。
为了实现LCD液晶面板12中每个像素点明暗控制,需采用相配套的硬件电路。由于LCD液晶面板本身响应很快,硬件电路还可实现不同空间分布的图案的快速切换,实现在时间上快速变化的灰度图案。注意,这里硬件电路的具体实现方案并非本专利的技术要点,已经有许多成熟技术,主控制器可以采用(但不限于)单片机、ARM、或者可编程逻辑器件等,这里不予赘述。具体实现方法可参考:(苏维嘉,张澎.基于FPGA的TFT-LCD控制器的设计和实现[J].液晶与显示,2010,25(1):75-78.)。
在介绍基于LCD液晶面板的可编程孔径显微镜的光场成像方法前,我们必须LCD液晶面板中每个像素点的位置进行标记。结合图2,建立坐标系。其中矩形区域代表LCD液晶面板的有效区域,坐标原点位于其中央。对于任意一个像素点P,其位置坐标为(Px,Py),我们定义该点所对应的光场视角为(θxy),其中
这里的下标x、y分别代表光场视角在x与y坐标轴上的对应分量。对于基于LCD液晶面板而言,f代表第一透镜L111的焦距。由此公式可见,约靠近LCD液晶面板边缘的像素,其所对应的光场视角(θxy)越大。
本发明基于LCD液晶面板的可编程孔径显微镜***的光场成像方法,其实现步骤如下:
步骤一:光场子图像采集。顺次点亮LED阵列中每个像素点,或顺次使LCD液晶面板中的每个像素点透光,相机采集相对应的图像。设整个LED阵列/LCD液晶面板中共包含M个像素,那么共计拍摄M幅图像。我们将这些图像记作Im(x,y),m=1,2,....,M,称之为光场子图像,其中(x,y)代表图像平面的二维坐标。对于每幅光场子图像,其都对应了一个光场视角(θxmym)。m代表光场视角对应像素的个数。
步骤二:确定所需要计算的焦距(成像深度)z,将步骤一中采集得到的M幅光场子图像循环平移。具体包含如下两步:
第一步:对于每幅光场子图像Im(x,y),m=1,2,....,M,计算平移像素数
Δxm=ztanθxm
Δym=ztanθym
其中Δxm为图像水平方向的平移像素数,Δym为图像水平方向的平移像素数。
第二步:将每幅光场子图像Im(x,y),m=1,2,....,M按照第一步计算得到平移像素数Δxm,Δym,分别在水平/垂直两个方向进行循环平移,得到平移后的光场子图像m=1,2,....,M。公式为:
式中傅里叶变换与反变换分别被记作(u,v)代表相对于(x,y)的频域坐标;是传输函数,其形式为
式中j为虚数单位。
步骤三:将步骤二所得到的平移后的光场子图像m=1,2,....,M按像素对应相加,即得到了焦距(成像深度)在z处的重构图像
为了表明本发明的实际使用效果,采用一实例来说明。在实例中,我们采用基于LCD液晶面板可编程孔径显微镜来采集光场子图像。样品为苍蝇口器的切片标本。图3是基于LCD液晶面板可编程孔径显微镜采集到的光场子图像,共计M=100幅。图4是采用本发明方法的对苍蝇口器标本进行光场重聚焦的重构图像,聚焦深度z=-32μm。图5是直接移动载物台对苍蝇口器标本进行拍摄的图像,聚焦深度z=-32μm。图6是聚焦深度z=63μm的重构图像。图7是直接移动载物台在z=63μm所拍摄到的图像。对比可见本发明可直接通过计算的方式准确重构出不同深度样品图像,且实际效果与移动载物台所拍摄的结果吻合的很好。

Claims (3)

1.一种基于LCD液晶面板的可编程孔径显微镜***的光场成像方法,其特征在于步骤如下:
步骤一:光场子图像采集,顺次使LCD液晶面板中的每个像素点透光,相机采集相对应的图像,设LCD液晶面板中共包含M个像素,那么共计拍摄M幅图像,将这些图像记作Im(x,y),m=1,2,....,M,称之为光场子图像,其中(x,y)代表图像平面的二维坐标;对于每幅光场子图像,其都对应了一个光场视角(θxmym),m代表光场视角对应像素的个数;
步骤二:确定所需要计算的焦距,即成像深度z,将步骤一中采集得到的M幅光场子图像按规则循环平移;
步骤三:将步骤二所得到的平移后的光场子图像I′m(x,y),m=1,2,....,M按像素对应相加,即得到了焦距在z处的重构图像
2.根据权利要求1所述的基于LCD液晶面板的可编程孔径显微镜***的光场成像方法,其特征在于在成像之前,对LCD液晶面板中每个像素点的位置进行标记,首先建立坐标系,该坐标原点位于LCD液晶面板中央,对于任意一个像素点P,其位置坐标为(Px,Py),定义该点所对应的光场视角为(θxy),其中
x,y分别代表光场视角在x与y坐标轴上的对应分量,基于LCD液晶面板的可编程孔径显微镜***由两部分构成,一部分为显微成像***(1),另一部分是一个包含LCD液晶面板的4f***(2),对于基于LCD液晶面板而言,f代表第一透镜L1(11)的焦距。
3.根据权利要求1所述的基于LCD液晶面板的可编程孔径显微镜***的光场成像方法,其特征在于步骤二的具体实现步骤为:
第一步:对于每幅光场子图像Im(x,y),m=1,2,....,M,计算平移像素数
Δxm=ztanθxm
Δym=ztanθym
其中Δxm为图像水平方向的平移像素数,Δym为图像垂直方向的平移像素数;
第二步:将每幅光场子图像Im(x,y),m=1,2,....,M按照第一步计算得到平移像素数Δxm、Δym,该平移像素数Δxm、Δym分别在水平和垂直两个方向进行循环平移,得到平移后的光场子图像I′m(x,y),m=1,2,....,M,公式为:
式中傅里叶变换与反变换分别被记作(u,v)代表相对于(x,y)的频域坐标;是传输函数,其形式为
式中j为虚数单位。
CN201510631816.9A 2015-09-29 2015-09-29 基于lcd液晶面板的可编程孔径显微镜***的光场成像方法 Active CN105158893B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510631816.9A CN105158893B (zh) 2015-09-29 2015-09-29 基于lcd液晶面板的可编程孔径显微镜***的光场成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510631816.9A CN105158893B (zh) 2015-09-29 2015-09-29 基于lcd液晶面板的可编程孔径显微镜***的光场成像方法

Publications (2)

Publication Number Publication Date
CN105158893A CN105158893A (zh) 2015-12-16
CN105158893B true CN105158893B (zh) 2017-09-15

Family

ID=54799801

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510631816.9A Active CN105158893B (zh) 2015-09-29 2015-09-29 基于lcd液晶面板的可编程孔径显微镜***的光场成像方法

Country Status (1)

Country Link
CN (1) CN105158893B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107300760A (zh) * 2016-04-15 2017-10-27 南京理工大学 一种偏光显微成像装置及方法
CN106097343B (zh) * 2016-06-14 2018-11-16 西安理工大学 光场成像设备轴向分辨率测定装置与方法
CN107065159B (zh) * 2017-03-24 2019-10-18 南京理工大学 一种基于大照明数值孔径的大视场高分辨率显微成像装置及迭代重构方法
CN107144551B (zh) * 2017-04-12 2020-01-24 上海戴泽光电科技有限公司 基于sCMOS的共聚焦超分辨成像***和方法
CN107884919A (zh) * 2017-09-30 2018-04-06 南京理工大学 基于fpga的可编程led阵列控制***
CN108594418B (zh) * 2018-03-29 2021-02-05 暨南大学 一种基于阵列单像素探测器的光场显微成像***及其方法
CN109187418B (zh) * 2018-10-12 2021-10-26 贵州民族大学 太赫兹成像仪
CN111343376B (zh) * 2018-12-19 2021-09-10 南京理工大学 一种基于透射式双缝孔径编码成像***及其超分辨方法
CN111031264B (zh) * 2019-11-29 2021-10-08 南京理工大学 一种基于透射式红外孔径编码成像***及其超分辨方法
CN115542527B (zh) * 2022-09-06 2023-06-02 深圳市人工智能与机器人研究院 一种微纳机器人定位追踪方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833487A (zh) * 2012-08-08 2012-12-19 中国科学院自动化研究所 面向视觉计算的光场成像装置和方法
CN103237161A (zh) * 2013-04-10 2013-08-07 中国科学院自动化研究所 基于数字编码控制的光场成像装置及方法
CN104345438A (zh) * 2014-10-29 2015-02-11 南京理工大学 基于电控变焦透镜的光强传输相位显微***及其方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2591594Y (zh) * 2002-12-31 2003-12-10 天津市九维光电科技有限公司 可变干涉滤光片分光小型显微成像光谱仪
US9219866B2 (en) * 2013-01-07 2015-12-22 Ricoh Co., Ltd. Dynamic adjustment of multimode lightfield imaging system using exposure condition and filter position
CN104344793A (zh) * 2014-10-29 2015-02-11 南京理工大学 单帧光强传输定量相位显微***及其方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833487A (zh) * 2012-08-08 2012-12-19 中国科学院自动化研究所 面向视觉计算的光场成像装置和方法
CN103237161A (zh) * 2013-04-10 2013-08-07 中国科学院自动化研究所 基于数字编码控制的光场成像装置及方法
CN104345438A (zh) * 2014-10-29 2015-02-11 南京理工大学 基于电控变焦透镜的光强传输相位显微***及其方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
光场成像技术进展;聂云峰等;《中国科学院研究生院学报》;20110930;第28卷(第5期);第563-572页 *
基于光场成像的三维测量方法的研究;王宇等;《仪器仪表学报》;20150630;第36卷(第6期);第1311-1318页 *

Also Published As

Publication number Publication date
CN105158893A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
CN105158893B (zh) 基于lcd液晶面板的可编程孔径显微镜***的光场成像方法
CN107065159B (zh) 一种基于大照明数值孔径的大视场高分辨率显微成像装置及迭代重构方法
CN106872034B (zh) 快速三维多光谱显微成像***
CN109541791A (zh) 基于亚像素平移的高分辨率光场显微成像***及方法
CN104885187B (zh) 傅立叶重叠关联成像***、设备和方法
CN207516234U (zh) 一种光学投影层析成像的装置
CN109597195A (zh) 基于晶格光照的超分辨三维光场显微成像***及方法
CN107111118A (zh) 用于厚样本的epi照明傅立叶重叠关联成像
JP2016534389A (ja) 開口走査フーリエタイコグラフィ撮像
EP2633267A2 (en) Scanning projective lensless microscope system
JP2015055626A (ja) 3次元印刷システムおよび3次元印刷方法
CN111464722A (zh) 一种基于曲面复眼阵列的大角度光场成像装置及方法
CN103744172A (zh) 一种具备空间光调制照明的共聚焦显微成像方法
CN109270670A (zh) Led阵列光源、无透镜显微镜及图像处理方法
JP2015192238A (ja) 画像データ生成装置および画像データ生成方法
CN107678154A (zh) 一种超分辨率显微ct成像***
CN106908942A (zh) 基于微透镜阵列的高分辨并行显微成像仪
CN207923076U (zh) 基于片层光照明的旋转扫描式三维成像***
CN109983766A (zh) 图像处理装置、显微镜***、图像处理方法、及程序
CN207992548U (zh) 一种光场显微转换模块
CN208766385U (zh) 基于多角度照明以及傅立叶域编码调制的层叠成像***
CN107678151A (zh) 基于干涉阵列光场的共聚焦并行显微成像仪
CN203672334U (zh) 一种三维成像及三维扫描显微镜
KR102330797B1 (ko) 픽셀 빔을 나타내는 데이터를 생성하기 위한 장치 및 방법
CN105352926A (zh) 一种随机扫描的***

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant