CN105143801A - 以可变能量消耗产生气态压缩氧的方法和设备 - Google Patents

以可变能量消耗产生气态压缩氧的方法和设备 Download PDF

Info

Publication number
CN105143801A
CN105143801A CN201480018663.4A CN201480018663A CN105143801A CN 105143801 A CN105143801 A CN 105143801A CN 201480018663 A CN201480018663 A CN 201480018663A CN 105143801 A CN105143801 A CN 105143801A
Authority
CN
China
Prior art keywords
tributary
heat exchanger
oxygen
pressure
main heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480018663.4A
Other languages
English (en)
Inventor
D·戈卢贝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48142590&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN105143801(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of CN105143801A publication Critical patent/CN105143801A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04418Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system with thermally overlapping high and low pressure columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • F25J3/04957Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipments upstream of the fractionation unit (s), i.e. at the "front-end"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/50Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/54Oxygen production with multiple pressure O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/42Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明涉及在蒸馏塔***中通过低温分离空气可变地产生气态压缩氧的方法和设备,该蒸馏塔***包括高压塔(5)和低压塔(6)。将进料空气以总空气流(1)的形式在主热交换器(3)中冷却。将至少一部分的冷却的进料空气导入高压塔(5)中。将来自低压塔(6)的第一氧流(35)以液态压缩(36),在主热交换器(3)中蒸发或伪蒸发及加热,最终作为气态压缩氧产品获得。将进料空气的第一和第二支流(12)在其进入主热交换器(3)中之前压缩(9、10)至比高压塔(5)的运行压力高出至少4巴的高压。使第一支流在主热交换器(3)中液化或伪液化,随后导入(14)蒸馏塔***中。使第二支流(16)做功膨胀(17),随后导入(4)蒸馏塔***中。在第一运行模式中,将第一总空气量在主热交换器(3)中冷却,将第一涡轮量作为第一支流(16)送去做功膨胀。在第二运行模式中,将来自蒸馏塔***以外的外部来源的第二氧流(46)以液态导入低压塔(6)中,与第一运行模式相比,在主热交换器(3)中冷却更少的总空气(1),将更少的空气送去做功膨胀(17)。

Description

以可变能量消耗产生气态压缩氧的方法和设备
技术领域
本发明涉及根据权利要求1的以可变能量消耗可变地产生气态压缩氧的方法。
背景技术
例如由Hausen/Linden,Tieftemperaturtechnik[低温技术],1985年第二版,第四章(第281~337页)公开了用于低温分离空气的方法和设备。
蒸馏塔***可以构造为双塔***(例如传统的林德双塔***),或者三塔或多塔***。除了用于氮氧分离的塔外,该***还可以包括其他用于产生高纯产品和/或其他空气组分特别是稀有气体的装置,例如氩生产和/或氪氙生产。
在该过程中,以液态压缩的氧产品流与热载体相对地蒸发,并最终作为气态压缩产品获得。这些方法也称作内压缩。其用于产生压缩氧。在超临界压力的情况下,没有发生实际意义上的相变,于是产品流是“伪蒸发”。
处于高压下的热载体与(伪)蒸发的产品流相对地液化(或伪液化,条件是其处于超临界压力下)。热载体经常由一部分的空气形成,在现有情形下为压缩的进料空气的“第二支流”;有时该流也称作节流流,虽然其代替节流阀也可以在液体涡轮(DFE=“稠密流体膨胀器”)中膨胀。
例如由DE830805、DE901542(=US2,712,738/US2,784,572)、DE952908、DE1103363(=US3,083,544)、DE1112997(=US3,214,925)、DE1124529、DE1117616(=US3,280,574)、DE1226616(=US3,216,206)、DE1229561(=US3,222,878)、DE1199293、DE1187248(=US3,371,496)、DE1235347、DE1258882(=US3,426,543)、DE1263037(=US3,401,531)、DE1501722(=US3,416,323)、DE1501723(=US3,500,651)、DE253132(=US4,279,631)、DE2646690、EP93448B1(=US4,555,256)、EP384483B1(=US5,036,672)、EP505812B1(=US5,263,328)、EP716280B1(=US5,644,934)、EP842385B1(=US5,953,937)、EP758733B1(=US5,845,517)、EP895045B1(=US6,038,885)、DE19803437A1、EP949471B1(=US6,185,960B1)、EP955509A1(=US6,196,022B1)、EP1031804A1(=US6,314,755)、DE19909744A1、EP1067345A1(=US6,336,345)、EP1074805A1(=US6,332,337)、DE19954593A1、EP1134525A1(=US6,477,860)、DE10013073A1、EP1139046A1、EP1146301A1、EP1150082A1、EP1213552A1、DE10115258A1、EP1284404A1(=US2003/051504A1)、EP1308680A1(=US6,612,129B2)、DE10213212A1、DE10213211A1、EP1357342A1或DE10238282A1、DE10302389A1、DE10334559A1、DE10334560A1、DE10332863A1、EP1544559A1、EP1585926A1、DE102005029274A1、EP1666824A1、EP1672301A1、DE102005028012A1、WO2007/033838A1、WO2007/104449A1、EP1845324A1、DE102006032731A1、EP1892490A1、DE102007014643A1、EP2015012A2、EP2015013A2、EP2026024A1、WO2009/095188A2或DE102008016355A1公开了内压缩法。
波动的氧需求经常迫使空气分离设备设计成以可变的氧生产进行的可变运行。相反地,通过提供具有不同能量消耗水平的不同运行模式,虽然恒定或基本上恒定地生产,仍然可变地运行空气分离设备,可以是有意义的。
由于不同的因素(尤其是在发电中不断增加的比例的可再生能量),在工业工厂区域中电价波动变得越来越大。受某些季节变动的影响,电价波动幅度也由昼夜循环决定。
在电网中的电力需求低时(例如在夜间),存在电力过剩。但是应当避免该过剩,因此以较低的价格供应。若电网中的电力需求增加(例如在白天),则电价也增加。取决于地区和具体构架条件,某地的电价可以变化5倍或更高。
因此需要配备能够快速且有效地适应负荷的空气分离设备。因为需要持续地保持气态压缩氧的输送,所以短时间关闭该设备一般是不可能的。
早在超过30年前就已知使用交替存储方法以补偿波动的能量供应(Springmann,“Energieeinsparung”[节能],Linde-Symposium,“Luftzerlegungsanlagen”[空分设备],1980年10月15-17日召开的林德股份公司第四次工作会议,文章H)。但是这需要在设备和控制技术方面比较高的花费。此外,由US7,272,954公开了在高电价的情况下将低温液体引入蒸馏塔***中及利用冷压缩机消耗过量的冷量;然而在此情况下也需要额外的在设备方面的花费。
由EP793070A2公开了根据权利要求1的前序部分的方法。
发明内容
本发明的目的是给出前述类型的方法及相应的设备,虽然允许该设备在其能量消耗方面在特别宽的范围内可变地运行并且在此情况下特别高效地工作,但是其需要比较低的在设备上的花费。
该目的是通过权利要求1的特征部分的特征实现的。
在低的能量供应和高的电价的情况下,该设备在第二运行模式中运行。在此情况下,通过供应液态氧,不仅将冷量引入该设备,而且已经完成了分离工作。从外部供应的氧不再需要在该设备中产生。相应地,引入该设备中的总空气量可以减少。冷量的产生也可以减少,在极端情况下可以减少到零。因此涡轮流(第二支流)减少或者甚至完全中断。在此情况下,气态压缩氧产品的量保持不变或者基本上不变。在此,“基本上不变”应当理解为变化小于3%,优选小于2%。
在本发明中,将两个并联连接的增压压缩机(也称作“增压空气压缩机”(BAC))用于空气的第二和第三支流;换而言之,相应的增压压缩机为双线设计。这带来特别大的带宽,其中进料空气的总量及因此该设备的能量消耗都是可变的。相对于构造为具有高的液体生产的设计情形的第一运行模式,通过关闭两个增压压缩机中的一个,而另一个以低负荷(例如0%)运行,第二运行模式中的能量消耗减少到50%。首先压缩总空气流的主空气压缩机在此情况下同样可以是多线或任选单线设计。这两个增压压缩机例如具有2至5级,特别是3至4级。当然,在本发明中,也可以使用三个或更多并联连接的增压压缩机,用于空气的第二和第三支流;于是将增压压缩机设计为三线或更多线结构。在多线增压压缩机的上游或下游,可以使用其他的增压压缩机,其单独或共同地压缩第二和第三支流。
在本发明的范畴内,第一压力(第一支流,所谓的节流流)和第二高压(第二支流,所谓的涡轮流)可以相同或不同。总空气也可以压缩至第一或第二高压;替代性地,总空气压缩至较低的压力,例如至高压塔压力加上线路损失,并且对空气的第一和/或第二支流实施增压压缩。第二支流在其做功膨胀后通常至少部分地、优选全部或基本上全部引入高压塔中。
在此,“总空气流”应当理解为最终引入蒸馏塔***中的空气的量。这以不同的方式以两个、三个或更多个支流的形式发生,其流动通过主热交换器到至少一个子件。
在第二运行模式中供应的液氧(第二氧流)可以在第一运行模式期间(权利要求3的“第三氧流”)在该设备自身中产生;然后,“蒸馏塔***以外的外部来源”由液氧罐形成,在标准运行期间将至少一部分第三氧流引入该液氧罐中。替代性地,第二氧流可以完全地、部分地或者有时取自其他的源,例如液体罐,其不是由该设备的蒸馏塔***,而是由相邻的空气分离设备或由罐车装填。
在该设备的标准运行中,在蒸馏塔***中,除液氧以外,还可以产生液体产品,如液氮和/或液氩。
有利的是,在本发明中,满足至少一个、优选所有的在权利要求2中所述的条件。优选地,相对于第一运行模式(具有液体生产的标准运行),在第二运行模式(在减少的能量供应时的运行)下,流减少的数值在如下数值范围内:
总空气量................................5摩尔%至30摩尔%
涡轮量(涡轮流)................10摩尔%至100摩尔%
在第二运行模式中通常不产生液体产品,或者若设置氩生产,则除氩以外不产生液体产品。
通过权利要求3的方法可实现特别有效地适应波动的能量供应,其中在第一运行模式(标准模式)下,从低压塔排出第三氧流作为液体产品。在第二运行模式(省电运行)下,获得少的氧作为液体产品,优选根本不产生。(LOX产品的)第二液氧量优选比第一液氧量少50摩尔%至100摩尔%。
在第二运行模式中,优选不对蒸馏塔***的工艺流实施冷压缩。特别地,在第二运行模式中,不使用旋转机器,其在第一运行模式中也不使用。因此,用于可变运行的硬件花费特别低。
在此,“冷压缩”应当理解为气体压缩过程,其中将气体在明显低于环境温度、特别是低于240K的温度下送去压缩。
因此根据本发明的方法能够特别有效地实施。可以利用通过供应液体提供的所有冷量,以减少涡轮空气量。通过相应地少的空气必须实施增压压缩,或者通过在将总空气压缩至高压的方法中,将总空气压缩至明显更低的压力。
优选在第二运行模式中,第二支流的做功膨胀完全停止,即第二涡轮量为零。
这两个增压压缩机可以各自具有分离的后冷却器;替代性地,其压缩热量在共同的后冷却器中排出。
原则上,总空气流可以仅由第一支流(涡轮流)和第二支流(节流流)组成。总空气流也可以包括其他的空气支流,包含第一部分(直接空气),其不发生涡轮膨胀,并且以基本上气态送入蒸馏塔***中,特别是高压塔。在此,“基本上气态”是指完全为气态或包含少于1至2摩尔%液体的流。如权利要求7中所述,优选将总空气流恰好分为三股空气流。
此外,本发明涉及根据权利要求8的设备。根据本发明的设备可以通过对应于从属方法权利要求的特征的设备特征加以补充。
根据本发明的可变运行模式不仅可以应用于针对该可变运行设计的设备;此外,本发明还涉及根据权利要求9至11的改造现有的低温空分设备的方法。
在此情况下,几乎不必改变现有蒸馏塔***的硬件。若缺少用于将液氧供应至低压塔的线路,则自然需要对其进行改造。在某些情况下,也可以利用现有的线路;然后,仅需补充配件和任选存在的泵。此外,修改控制器,即运行控制***的软件。特别地,不必对旋转机器进行改造。若现有的设备只具有单线增压压缩机,则第二增压压缩机可以是一个例外。
下面依照在附图中示意性显示的实施例更详细地阐述本发明以及本发明的其他细节。
附图说明
图1所示为不包括氩生产的第一实施例,及
图2所示为具有氩生产的第二实施例。
具体实施方式
在图1中未示出主空气压缩机、空气的预冷却和空气净化。净化的总空气1在第一运行模式(标准运行/设计情况)中在5.8巴的压力下进入。在主热交换器3中将第一部分2在该压力下冷却至大约露点,并经由线路4引入蒸馏塔***的高压塔5中,该蒸馏塔***额外具有低压塔6和主冷凝器7。在这两个塔的顶部分别具有5.0至5.5巴或1.3至1.4巴的运行压力。替代性地,在这两个塔中的压力能够大致成比例地升高至更高的水平。
在具有后冷却器11的一对并联连接的增压压缩机9、10中对总空气1的第二部分8实施增压压缩至58巴,并作为“第一支流”13和“第二支流”16供应至主热交换器3。将第一支流送至主热交换器的冷端,并在此情况下伪液化。在节流阀15中膨胀后,将其主要以液态导入高压塔5中。从主热交换器3经由线路16在中间温度下排出第二支流,在膨胀涡轮17中做功膨胀至大约高压塔压力。在分离器(相分离器)18中分离出小的液体部分后,将第二支流与进料空气的第一部分共同经由线路4供应至高压塔。涡轮17由发电机G制动。
高压塔的氧富集的塔底液体19在过冷逆流热交换器20中冷却,并经由线路21供应至低压塔6的中间位置。经由线路22和23将供应至高压塔中的空气的至少一部分直接再次排出,并在过冷20后供应至低压塔6。不纯的液氮24同样过冷(20),然后经由线路25作为回流供应至低压塔6的顶部。
高压塔5的气态塔顶氮26的第一部分27在主冷凝器7中完全或几乎完全地液化。在此情况下获得的液氮28的第一部分29作为回流供应至高压塔5的顶部。第二部分30、32在过冷20及在分离器(相分离器)33中闪蒸气体分离后作为液体产品(LIN)获得。高压塔5的气态塔顶氮26的第二部分39在主热交换器中加热,并经由线路40作为气态压缩氮产品(PGAN)获得。
从低压塔的塔底(更精确地:从主冷凝器7的蒸发空间)排出液氧34。其第一部分作为“第一氧流”35流至泵36,并在此以液态压缩至30巴的压力。将(在该实施例中亚临界的)氧流37引导至主热交换器的冷端。其在主热交换器3中蒸发并被加热至大约环境温度。经由线路38,第一氧流最终作为气态压缩氧产品(GOXIC)获得。
液氧34的第二部分44/45任选在过冷20后经由线路45作为“第三氧流”排出,并作为液体产品获得。特别是将其引入液氧罐(未示出)中(LOX至罐)。
线路46用于从液氧罐向低压塔的塔底供应“第二氧流”;但是其在第一运行模式中不工作。
来自低压塔6的塔顶的气态不纯氮41在过冷逆流热交换器20中及进一步在主热交换器3中加热,并经由线路42吹出至大气,或者在未示出的空气净化设备中用作再生气体。
在第一运行模式中,空气涡轮17工作,不流过旁通线路43。液氧同样从蒸馏塔***经由线路45排出。额外地,氮可以作为液体产品(LIN)获得,以及作为纯气态氮由低压塔获得(未示出)。
在第二运行模式(省电模式)中,关闭线路45;优选也不产生液氮(LIN)。相反地,经由线路46,液氧从蒸馏塔***外部供应至低压塔中。在此情况下,气态压缩氧38/GOXIC的产量保持不变。相对于第一运行模式,总空气量1减少了大约32摩尔%,第二部分8/12甚至减少了65摩尔%;优选地,这两个增压压缩机9、10中的一个不工作,另一个以降低的功率工作。涡轮17是静止的,旁通43打开,小的流流过,其吹洗主热交换器的相应的通道。总空气压力仅为5.3巴,在增压压缩机9、10下游的空气压力仅为53巴。在此情况下,在第二运行模式中,在与第一运行模式相同的压力下输送相同量的气态压缩氧产品(GOXIC)。这些数值适用于如下情况,在第一运行模式中作为液体产品获得总氧产品的大约25摩尔%,作为气态(内部压缩的)压缩产品获得大约75摩尔%,在大约30巴下。此外,在此情况下,产生与液氧大致相同量的液氮。在此,两种效果互相加强,从而允许在主空气压缩机(总空气量)和增压压缩机(第一和第二支流)中的能量消耗特别显著地降低:一方面,通过从外部供应液氧(因此不再需要从供应的空气量产生),总空气量减少;另一方面,不产生的LOX和LIN产品进一步降低了空气和冷量需求。与此不同,在下述的用于纯气体设备的第二数值实施例中,只描述量的改变,这仅仅是通过在第二运行模式中供应外部LOX产生的。
在本发明的范畴内,可由用于产生液体产品的设备(第一运行模式)制造纯气体设备(第二运行模式),在此情况下在高电价时节省许多能量。该方法在此保持高效,这是因为在旁路中压缩机不运行,并且因为少的(主要是吹洗热交换器通道所需的)量和低的进入温度(该温度在第二运行模式中显著低于第一运行模式),涡轮流节流时的损失比较小。实际上实现了不进行液体生产的有效的运行模式。额外的能量节省来自于减少的总空气量(在未示出的主空气压缩机中相应地减少的驱动能量)。因为不需要的冷量输出,额外地节省了在增压压缩机9/10中的驱动能量。
在本发明的范畴内,也可以相应地改造根据图1但是没有线路46的现有的液体设备。为此,仅需要安装该线路46,否则所有部件保持不变。
本发明还可以相应地用于没有增压压缩机的方法中,其中将总空气压缩至明显高于高压塔压力(HAP高空气压力)。与此无关地,涡轮17代替发生器可以通过用于涡轮空气的增压压缩机制动。本发明也可以应用于具有所谓的吹入式涡轮(来自主空气压缩机的空气在膨胀后不导入压力塔,而是导入低压塔)或者具有多于一个涡轮的方法,以及应用于具有氮循环的方法。
图2与图1的区别仅在于增加的氩生产,其在此仅示意性地示出(氩箱)。其以通常的方式与高压塔和低压塔相连接。
在第一数值实施例中,根据图2的设备可以如图1一样运行。在此情况下,在第二运行模式中,产生液氩LAR的量与总空气量成比例地减少。
第二数值实施例与此不同,(也)因为在第一运行模式中不获得液氧产品(而且优选也不获得液氮产品LIN)。在此情况下,在第二运行模式中气态压缩氧38/GOXIC的产品量也与第一运行模式中相等。相对于第一运行模式,总空气量减少了10摩尔%,第二部分8/12减少了25摩尔%。这也可以是通过单个增压压缩机(代替在图中所示的两个并联连接的增压压缩机)产生的。
与图中所示不同,涡轮流16也可以在这两个增压压缩机9、10的中间排出位置排出,即在比从增压压缩机9、10的出口排出的节流流13的压力更低的压力下。原则上,涡轮17也可以使用增压压缩机阶段制动,其进一步对流13和16中的一个或两个实施增压压缩。

Claims (11)

1.通过在蒸馏塔***中低温分离空气以可变的能量消耗产生气态压缩氧的方法,该蒸馏塔***具有高压塔(5)和低压塔(6),其中
-将进料空气以总空气流(1)的形式在主热交换器(3)中冷却,
-将至少一部分的冷却的进料空气导入高压塔(5)中,
-将来自低压塔(6)的第一氧流(35)以液态压缩(36),
-使压缩的第一氧流(37)在主热交换器(3)中蒸发或伪蒸发及加热,
-作为气态压缩氧产品获得加热的第一氧流(38),
-将进料空气的第一支流(13)在其进入主热交换器(3)中之前压缩(9、10)至比高压塔(5)的运行压力高出至少4巴的第一高压,
-使第一支流在主热交换器(3)中在第一高压下液化或伪液化,随后导入(14)该蒸馏塔***中,
-将进料空气的第二支流(16)压缩(9、10)至比高压塔(5)的运行压力高出至少4巴的第二高压,
-将第二支流在主热交换器(3)中仅冷却至中间温度,
-使冷却至中间温度的第二支流(16)做功膨胀(17),随后导入(4)该蒸馏塔***中,
-其中,在第一运行模式中
-将第一总空气量在主热交换器(3)中冷却,
-将第一涡轮量作为第一支流(16)送去做功膨胀,
-及其中,在第二运行模式中
-将小于第一总空气量的第二总空气量在主热交换器(3)中冷却,
-将小于第一涡轮量的第二涡轮量作为第二支流送去做功膨胀(17),
其特征在于:
-在第二运行模式中,将来自该蒸馏塔***以外的外部来源的第二氧流(46)以液态导入低压塔(6)中,及
-在第一运行模式中,将第一和第二支流(13、16)在一对并联连接的增压压缩机(9、10)内共同地(8、12)实施增压压缩。
2.根据权利要求1的方法,其特征在于,满足以下条件至少之一:
-第二总空气量比第一总空气量小至少5摩尔%,
-第二涡轮量比第一涡轮量小至少10摩尔%,尤其是小至少30摩尔%。
3.根据权利要求1或2的方法,其特征在于:
-在第一运行模式中,第三氧流在第一液氧量的范围内从低压塔作为液体产品排出,及
-在第二运行模式中,第三氧流在小于第一液氧量的第二液氧量的范围内作为液体产品排出,
-其中第二液氧量比第一液氧量特别是小至少50摩尔%,尤其是小100摩尔%。
4.根据权利要求1至3之一的方法,其特征在于,在第二运行模式中,不对蒸馏塔***的工艺流实施冷压缩。
5.根据权利要求1至4之一的方法,其特征在于,第二涡轮量为零。
6.根据权利要求1至5之一的方法,其特征在于,两个增压压缩机(9、10)具有共同的后冷却器(11)或者各自具有后冷却器。
7.根据权利要求1至6之一的方法,其特征在于,总空气流由第一部分(2)和第二部分(8)组成,其中第二部分(2)由第一支流(13)和第二支流(16)组成,尤其是第一部分(2)不进行涡轮膨胀以基本上气态供应至该蒸馏塔***中,尤其是高压塔(5)中。
8.通过低温分离空气以可变的能量消耗产生气态压缩氧的设备,其包括
-具有高压塔(5)和低压塔(6)的蒸馏塔***,
-用于将进料空气以总空气流(1)的形式冷却的主热交换器(3),
-用于将至少一部分的冷却的进料空气导入高压塔(5)中的装置,
-用于将来自低压塔(6)的第一氧流(35)以液态压缩的装置(36),
-用于使压缩的第一氧流(37)在主热交换器(3)中蒸发或伪蒸发及加热的装置,
-用于作为气态压缩氧产品获得加热的第一氧流(38)的装置,
-用于将进料空气的第一支流(13)在其进入主热交换器(3)中之前压缩至比高压塔(5)的运行压力高出至少4巴的第一高压的装置(9、10),
-用于使第一支流在主热交换器(3)中在第一高压下液化或伪液化的装置,
-用于将(伪)液化的第一支流导入该蒸馏塔***中的装置(14),
-用于将进料空气的第二支流(16)压缩至比高压塔(5)的运行压力高出至少4巴的第二高压的装置(9、10),
-用于将主热交换器(3)中的第二支流在中间温度下排出的装置,
-用于使冷却至中间温度的第二支流(16)做功膨胀的装置(17),
-用于将做功膨胀的第一支流导入该蒸馏塔***中的装置(4),
其特征在于,
-用于将来自该蒸馏塔***以外的外部来源的第二氧流(46)以液态导入低压塔(6)中的装置,以及
-调节以下工艺参数的控制装置:
-在第一运行模式中
-在主热交换器(3)中冷却的第一总空气量,
-作为第一支流(16)送去做功膨胀的第一涡轮量,
-在第二运行模式中
-在主热交换器(3)中冷却的第二总空气量,其小于第一总空气量,
-作为第一支流送去做功膨胀(17)的第二涡轮量,其小于第一涡轮量,
-以液态导入低压塔(6)中的第二氧流的量,其大于第一运行模式中的量。
9.用于改造低温空气分离设备以根据权利要求1至7之一的方法运行的方法,其特征在于,增加用于将第二氧流导入低压塔中的装置。
10.根据权利要求9的方法,其特征在于,额外的增压压缩机(10)与现有的增压压缩机(9)并联连接。
11.根据权利要求9或10的方法,其特征在于,除了用于将第二氧流导入低压塔中的装置及任选存在的额外的增压压缩机(10)以外,不改变或基本上不改变所述设备。
CN201480018663.4A 2013-03-28 2014-03-27 以可变能量消耗产生气态压缩氧的方法和设备 Pending CN105143801A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13001637.1 2013-03-28
EP13001637 2013-03-28
PCT/EP2014/000832 WO2014154361A2 (de) 2013-03-28 2014-03-27 Verfahren und vorrichtung zur erzeugung von gasförmigem drucksauerstoff mit variablem energieverbrauch

Publications (1)

Publication Number Publication Date
CN105143801A true CN105143801A (zh) 2015-12-09

Family

ID=48142590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480018663.4A Pending CN105143801A (zh) 2013-03-28 2014-03-27 以可变能量消耗产生气态压缩氧的方法和设备

Country Status (5)

Country Link
US (1) US20160003536A1 (zh)
EP (1) EP2979051B1 (zh)
CN (1) CN105143801A (zh)
ES (1) ES2746755T3 (zh)
WO (1) WO2014154361A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107238255A (zh) * 2016-01-14 2017-10-10 林德股份公司 在空气分离设备中获得空气产品的方法和空气分离设备
CN109297258A (zh) * 2018-09-19 2019-02-01 北京科技大学 一种降低空分装置气体放散和管网压力的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016015850A1 (de) * 2014-07-31 2016-02-04 Linde Aktiengesellschaft Gewinnung eines luftprodukts in einer luftzerlegungsanlage mit kältespeichereinheit
US10281207B2 (en) * 2016-06-30 2019-05-07 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for the production of air gases by the cryogenic separation of air with variable liquid production and power usage
US10281206B2 (en) * 2016-06-30 2019-05-07 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus for the production of air gases by the cryogenic separation of air with variable liquid production and power usage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1075003A (zh) * 1991-10-15 1993-08-04 乔治·克劳德工艺研究开发有限公司 低温蒸馏生产氧和氮的改进方法
CN1126306A (zh) * 1994-05-13 1996-07-10 普拉塞尔技术有限公司 从低温空气分离体系中回收氧的方法
EP0793070A2 (en) * 1996-01-31 1997-09-03 Air Products And Chemicals, Inc. High pressure combustion turbine and air separation system integration
US20010054298A1 (en) * 2000-03-17 2001-12-27 Linde Aktiengesellschaft Process for obtaining gaseous and liquid nitrogen with a variable proportion of liquid product

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3913880A1 (de) * 1989-04-27 1990-10-31 Linde Ag Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
GB9515907D0 (en) 1995-08-03 1995-10-04 Boc Group Plc Air separation
DE19815885A1 (de) * 1998-04-08 1999-10-14 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt bei der Tieftemperaturzerlegung von Luft
FR2854682B1 (fr) * 2003-05-05 2005-06-17 Air Liquide Procede et installation de separation d'air par distillation cryogenique
US7228715B2 (en) * 2003-12-23 2007-06-12 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process and apparatus
US7272954B2 (en) 2004-07-14 2007-09-25 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Proceded Georges Claude Low temperature air separation process for producing pressurized gaseous product
FR2913760B1 (fr) 2007-03-13 2013-08-16 Air Liquide Procede et appareil de production de gaz de l'air sous forme gazeuse et liquide a haute flexibilite par distillation cryogenique
CN101779093A (zh) 2007-08-10 2010-07-14 乔治洛德方法研究和开发液化空气有限公司 用于通过低温蒸馏分离空气的方法和设备
US8427123B2 (en) * 2009-07-08 2013-04-23 Microchip Technology Incorporated System, method and apparatus to transition between pulse width modulation and pulse-frequency modulation in a switch mode power supply

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1075003A (zh) * 1991-10-15 1993-08-04 乔治·克劳德工艺研究开发有限公司 低温蒸馏生产氧和氮的改进方法
CN1126306A (zh) * 1994-05-13 1996-07-10 普拉塞尔技术有限公司 从低温空气分离体系中回收氧的方法
EP0793070A2 (en) * 1996-01-31 1997-09-03 Air Products And Chemicals, Inc. High pressure combustion turbine and air separation system integration
US20010054298A1 (en) * 2000-03-17 2001-12-27 Linde Aktiengesellschaft Process for obtaining gaseous and liquid nitrogen with a variable proportion of liquid product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
机械工业部空分设备科技情报网组: "《国外空分技术专利选辑》", 31 October 1985, 杭州制氧机研究所 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107238255A (zh) * 2016-01-14 2017-10-10 林德股份公司 在空气分离设备中获得空气产品的方法和空气分离设备
TWI712770B (zh) * 2016-01-14 2020-12-11 德商林德股份公司 在空氣分離廠中獲取空氣產品之方法及空氣分離廠
CN107238255B (zh) * 2016-01-14 2021-03-16 林德股份公司 在空气分离设备中获得空气产品的方法和空气分离设备
CN109297258A (zh) * 2018-09-19 2019-02-01 北京科技大学 一种降低空分装置气体放散和管网压力的方法
CN109297258B (zh) * 2018-09-19 2020-04-28 北京科技大学 一种降低空分装置气体放散和管网压力的方法

Also Published As

Publication number Publication date
EP2979051A2 (de) 2016-02-03
EP2979051B1 (de) 2019-07-17
ES2746755T3 (es) 2020-03-06
US20160003536A1 (en) 2016-01-07
WO2014154361A3 (de) 2014-12-11
WO2014154361A2 (de) 2014-10-02

Similar Documents

Publication Publication Date Title
US6131407A (en) Natural gas letdown liquefaction system
CN106662394B (zh) 以可变能耗低温分离空气的方法和设备
CN105143801A (zh) 以可变能量消耗产生气态压缩氧的方法和设备
RU2681901C2 (ru) Способ и устройство для низкотемпературного разделения воздуха
EP3374713B1 (en) Method and system for providing supplemental refrigeration to an air separation plant
US20170211880A1 (en) Method for obtaining an air product, and air separation plant
TWI663373B (zh) 用於低溫分離空氣之方法及裝置
CN111433545B (zh) 在包括裂芯式主热交换器的空气分离单元中产生的富氮流的利用
CN105378411B (zh) 生产至少一种空气产品的方法、空分设备、产生电能的方法和装置
KR20170085449A (ko) 공기 분리 플랜트에서 공기 생성물을 얻는 방법 및 공기 분리 플랜트
CN105473968A (zh) 用于以可变的能量消耗通过空气的低温分离产生氧的方法和装置
MX2010011008A (es) Procedimiento y dispositivo para la obtencion de nitrogeno liquido a traves de la descomposicion del aire a baja temperatura.
WO2014158214A2 (en) Method and system for air separation using a supplemental refrigeration cycle
CN103453731B (zh) 用于产生电能的方法和装置
CN102997617A (zh) 通过低温空气分离得到压缩氧气的方法和设备
WO2018005787A1 (en) Method and apparatus for operating an air separation plant
EA024400B1 (ru) Способ генерирования газообразного сжатого кислородного продукта низкотемпературным разделением воздуха
CN109564061B (zh) 用于通过低温分离空气以可变液体产量和功率使用来产生空气气体的方法和设备
RU2647297C2 (ru) Способ и установка для производства жидких и газообразных кислородсодержащих продуктов низкотемпературным разделением воздуха
EP4004468B1 (en) Process and apparatus for the separation of air by cryogenic distillation
US11740014B2 (en) System and method for natural gas and nitrogen liquefaction with independent nitrogen recycle loops
US10281206B2 (en) Apparatus for the production of air gases by the cryogenic separation of air with variable liquid production and power usage
CN109642771B (zh) 操作空气分离装置的方法和设备
US10267561B2 (en) Apparatus for the production of air gases by the cryogenic separation of air
US10302356B2 (en) Method for the production of air gases by the cryogenic separation of air

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20151209