CN105121812B - 通过燃气轮机提供负控制功率的方法及燃气轮机 - Google Patents

通过燃气轮机提供负控制功率的方法及燃气轮机 Download PDF

Info

Publication number
CN105121812B
CN105121812B CN201480021870.5A CN201480021870A CN105121812B CN 105121812 B CN105121812 B CN 105121812B CN 201480021870 A CN201480021870 A CN 201480021870A CN 105121812 B CN105121812 B CN 105121812B
Authority
CN
China
Prior art keywords
power
gas turbine
transmission network
compressor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480021870.5A
Other languages
English (en)
Other versions
CN105121812A (zh
Inventor
G·埃布纳
U·伦克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN105121812A publication Critical patent/CN105121812A/zh
Application granted granted Critical
Publication of CN105121812B publication Critical patent/CN105121812B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/30Arrangements for balancing of the load in a network by storage of energy using dynamo-electric machines coupled to flywheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • F02C9/50Control of fuel supply conjointly with another control of the plant with control of working fluid flow
    • F02C9/54Control of fuel supply conjointly with another control of the plant with control of working fluid flow by throttling the working fluid, by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/05Purpose of the control system to affect the output of the engine
    • F05D2270/053Explicitly mentioned power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/25Special adaptation of control arrangements for generators for combustion engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Eletrric Generators (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明涉及用于通过燃气轮机(1)的操作为电源和/或输电网提供负控制功率的方法,包括以下步骤:利用来自电源和/或输电网的电功率对燃气轮机(1)的电动机器(2)进行供电以用于电动机操作;‑基于来自燃气轮机(1)连接到的电源和/或输电网的网络信号,通过电动机操作调节或控制输入电功率;‑作为该调节或控制的结果,改变用于电动机操作的燃气轮机(1)的操作参数以便于有目的地从电源和/或输电网增加输入电功率。

Description

通过燃气轮机提供负控制功率的方法及燃气轮机
技术领域
本发明涉及用于通过燃气轮机的操作向电源或者供电网提供负控制功率的方法,并且涉及适用于这样的方法的对应的燃气轮机。
背景技术
由于从可再生能源发电(太阳能、风能等)增加的馈入电力,维持电力传输或者供电网的电网稳定性问题已成为能源行业日益突出的焦点。为了能够确保这些电网的稳定性,馈入这些电网的电功率必须在所有时间均与功率消耗匹配,该功率消耗与馈入的量可比较。供给和消耗的平衡并不总是得以确保,尤其是因为从可再生能源馈入的能量的高波动。因而,例如,在电力传输或供电网中的频率或者电压行为的波动表现为也随时间变化的相对于有功和无功功率的比率的偏差。
如果在从可再生能源的电能源馈入发生增加,例如因为合适的天气条件,电网中会出现过量的功率,这与在电网中存在低负载时的情况相似。为了随后维持电网稳定性,该过量的电能需要以恰当的方式被移除。
在能源行业中用于降低电源和/或输电网中的过量功率的常规方法基于减小来自发电厂的功率输出,这些发电厂例如是正在运行的石化燃料发电厂,其被切换至部分负载或者甚至是运行在待机模式。被供给到电网的功率可以凭借限制该功率输出而被适配功率需求。
然而,从现有技术已知的这些方案的缺点在于考虑到电功率主要是过供应,直接使用可用能量是不可能的。其结果是,电网以仅仅一定的时延被稳定。然而,该时延有时可持续很长的时间,使得安全且稳定的电网运行不再充分地可能。
发明内容
本文提出的方案旨在有助于克服从现有技术已知的这些缺点。特别地,旨在提出使得在输电网中可用的电能的充分快速使用成为可能的技术方案。其意图在于,当在电源和/或输电网中出现不稳定时,对于该使用可能的是持续相对较短的时间段(短于一分钟)。此外,其意图在于,该电能应当基于已经存在的能源基础设施和控制技术而被使用。这在一方面减小了相对大的投资成本,并且在另一方面减小了耗时的技术发展阶段。此外,其意图在于,提出的技术方案还使得发电厂的运营者能够对以该方式使用的电气能源做出技术使用以及因此经济可行的使用,并且例如能够在再转换过程中再次作为电能源输出它。
本发明基于的这些目的通过如在权利要求1中要求保护的用于提供负控制功率的方法以及通过被设计以便于实施下述的这种方法的燃气轮机而被实现。
特别是,本发明基于的这些目的通过用于由燃气轮机的操作向电源和/或输电网提供负控制功率的方法而被实现,包括以下步骤:
-从电源和/或输电网向燃气轮机的电动机器(dynamoelectric machine)供应电能以用于作为电动机的操作;
-通过取决于电源和/或输电网的电网信号的作为电动机的操作控制消耗的电功率,该燃气轮机被连接到电源和/或输电网;
-作为控制的结果,改变用于作为电动机的操作的燃气轮机的操作参数,以便于有目的地从电源和/或输电网增加消耗的电功率。
本发明基于以下构思,当在电源和/或输电网中存在过量的电力供应时,通过燃气轮机被机械耦接到的电动机器的逆电功率的消耗提供的负控制功率而使用该电力。在同一时间,输电网通过使用从电源和 /或输电网移除的电能的过度供应而被稳定。
在本发明的意义内,电动机器可以采取电动机和发电机两者的形式。然而,必要的是电动机器适用于燃气轮机作为电动机的操作。特别是,电动机器采取发电机的形式在同一时间也可以***作为电动机以用于燃气轮机作为电动机的操作。
凭借作为电动机操作电动机器,燃气轮机进而***作,其中特别是燃气轮机的压缩机进而压缩空气质量流并且要求压缩功率。该压缩功率由从电源和/或输电网移除的电能所覆盖。因而所需的压缩功率因此促进从电网移除电能。换言之,从电源和/或输电网移除的该逆功率可以提供适当的负控制功率以便于稳定电网。此外,因为需要在燃气轮机(其被电动机的操作保持旋转)中被旋转的质量相对较大,也从电网中移除充分量的电能以便于使得电网能够被稳定。
根据本发明的该逆功率可以基于能源行业中预先存在的基础设施而被提供。例如,因而预先存在的燃气轮机可以以适当的且成本高效的改造两者被常规地操作以便于发电并且根据本发明以便于通过作为电动机操作电动机器而提供负控制功率。
本发明进而证明是有利的,因为可以使用临时储备,由于燃气轮机中的旋转质量的高惯性,其可附加地有助于稳定电网。特别是,旋转质量的高惯性(膨胀机和压缩机的转子)抵消以稳定方式的输电网的频率变化。该动作基本上可以即时发生。
本发明进而开放针对未来目的的重新使用被拒绝的能量(对应于被作为电动机的电动机器的操作所转换的能量)的可能性,其在来自电源和/或输电网的负控制功率被使用时发生并且其并不以电形式建立而是例如以热量或物理形式建立。能量的该附加使用允许特别是相对于燃气涡***作的效率和收益率而言是有利的使用选项。特别的是,作为所消耗的电消耗功率的结果的、部分作为压缩热量产生的能量可以被用来充满热能存储器。
根据本发明的方法的用于提供负控制功率的燃气轮机进而证明是特别有利的,因为如以下将详细讨论的,在用来发电的常规操作期间部件上的热应力很高,而根据本发明的方法的在部件上的热应力较低或根本不存在。在该方面,例如,相对于燃气轮机的操作待被报告的等效工作小时(EOH)包括逆负载模式中的工作小时数。因此,这使得没有部件寿命上的减少以及没有维护间隔上的缩短。这继而确保了燃气轮机以特别有利的经济方式操作。例如,燃气轮机可以被用于未击发的逆功率操作超过10万工作小时而不需要采取任何措施来延长它们的寿命或者更换受到热应力的部件。
因为在电动机器作为电动机操作与为了在相对短的时间段(通常少于一分钟并且优选少于20秒)以内生成电力所提供的常规操作之间切换是可能的,根据本发明的方法可以在电网不稳定的第一迹象处迅速地使得负控制功率可用。因此,免除常规操作发电厂的功率输出的耗时且有时不充分快速的降低是可能的。此外,对于燃气轮机的运营者而言可产生强有力的经济刺激,在于他可以提供他的燃气轮机以用于能源使用,而在输电网中存在过量的电能时其不再被需要。该能源有时被电网运营者偿还。燃气涡轮运营者因而被允许既通过馈送功率到输电网中(在常规操作期间)又在存在电能的过量供应时使用功率而经济地工作。在两个操作模式之间的切换间隔可以在此被保持得相对较短,例如短于一分钟,特别是短于20秒。
在该点处,应当指出的是根据本发明的电网信号可以从例如能被技术地检测到(例如,使用传感器)的物理电网参数的意义上进行理解。然而,电网信号也可以被检测为通信信号,其例如具有传输电网的状态的特征并且例如由电网运营者输出。
根据本发明,从燃气涡轮发动机组的意义上的燃气轮机至少具有电动机器的功能性部件、压缩机、燃烧室以及膨胀机。压缩机和膨胀机在此可以被机械地耦接到彼此或者也被机械地解除耦接。在这些功能性部件的接触耦接的互连的情况下,压缩机与膨胀机两者可以被耦接到热电机。在这样的情况下,压缩机通常被耦接到电动机并且膨胀机被耦接到发电机。
根据本发明的方法的第一实施例,提供了被设计作为发电机的所述电动机器的逆功率保护电路电气地或者在电路方面被旁路,并且使能作为电动机的操作的可替代保护电路被连接。该类型的逆功率保护电路特别用作保护作为发电机操作的电动机器使其避免来自输电网的逆电功率的不希望的消耗。该保护性功能因而防止被设计为发电机的电动机器被用来以根据本发明的方式提供电负控制功率。在此方面,该保护电路需要被合适的可替代保护电路所取代,该可替代保护电路使能作为电动机的电动机器的操作,以便于同时确保来自输电网的电能的受控且安全的使用。
根据本发明的进一步的有利方面,提供了电网信号处于输电网的电网频率。电网信号在该方面应当被理解为物理参数。电网频率在此应当被认为在达到预定的目标频率时是稳定的。这在中欧是50.00Hz。当电网频率从该目标值偏离时,特别是向上偏离更高的频率时,其可以用作电网信号以便于指示过量电功率的供应的存在。当超过例如为 50.10Hz的预定频率阈值时,燃气轮机运营者可以决定使得负控制功率可用。
可同样理解的是,电网信号是外部控制信号,特别是来自于输电网的运营者的外部控制信号。控制信号特别可以是通信信号,其由输电网的运营者发送。当该电网信号被接收时,燃气轮机运营者例如可以决定凭借燃气轮机的逆功率操作提供负控制功率。
根据本发明的方法的特定优选的实施例,提供了改变的操作参数是供应到燃气轮机的燃烧室的燃料的量。换言之,燃料的供应可以被改变,特别是被减小,以便于获得从输电网增加的逆电功率消耗。逆电功率的最大量例如可以在理论上通过完全关断燃料供应而获得,其中在逆功率操作期间消耗的电能被提供用于燃气轮机的机械操作(转子或多个转子的旋转)。而且,为了确保有利的启动特性,该操作却难以发生并且可以在实践中获得的最大逆电功率通常在燃料供应被减小到仍需维持燃气轮机的引燃火焰操作的量而被达到。作为该引燃火焰操作的结果,当需要时可以确保燃气轮机可以被再次快速上电以便于生成电功率。该引燃火焰操作的特征在于,仅仅最小量的燃料(引燃气体量)被供应到燃气轮机的燃烧室以防止燃烧室中的燃烧熄灭。在此方面,对于在逆功率模式中的燃气轮机的经济操作而言,燃料的量可以被减小到燃料的该最小量以便于维持引燃火焰操作。然而,具有更大燃料供应的操作例如在支持部分负载操作中也是可能的。例如,由燃料的燃烧所生成的热能在此支持作为电动机的燃气轮机的操作。取决于生成的燃烧能量,在此可以使得负控制功率是可用的。
根据本发明的进一步的有利实施例,提供了改变的操作参数是被吸入燃气轮机的质量流。通过改变被吸入燃气轮机的压缩机的空气的量,压缩质量流被影响,其结果是,当电动机器作为电动机操作时压缩功率以及因而电功率被改变。因而在理论上可设想的是通过恰当调节压缩机的吸入的空气管的横截面而改变吸入的质量流。通过放大该横截面,吸入的质量流变得更大,例如,其结果是当作为电动机操作时,电动机器可以/必须使用来自电网的更大的电功率以用于压缩目的。
而且,根据实施例所提供的是,所改变的操作参数是被吸入压缩机的流体质量流与从压缩机排出的流体质量流之间的比率。换言之,改变的操作参数可以被表达为在压缩过程期间的附加压缩流体添加进压缩机之后的压缩质量流的改变。同样地,压缩功率被流出压缩机的压缩流体的量的改变所影响。因为,在作为电动机操作的电动机器的操作期间,压缩功率必须至少部分地被所消耗的逆电功率应用,所消耗的电功率的量因而还可以以这样的方式被调节。根据具体的实施例,为了增加压缩质量流,例如,可以设想将蒸汽引入压缩机以便于提高压缩机的性能。
例如,可以设想将蒸汽引入压缩机以便于因而增加压缩机的性能。同样地,气体或压缩空气例如可从压缩空气存储罐或者气体存储罐被附加地引入压缩机以便于进一步增大所需的压缩功率。
根据本发明的方法的特定优选实施例,所改变的操作参数是燃气轮机的压缩机的上游导向叶片的俯仰角(pitch angle)。压缩质量流还可以通过上游导向叶片的俯仰角的该改变而被恰当地影响,其结果是,压缩功率以及因而逆功率可以在电动机器作为电动机操作时被恰当地调节。在此应当指出的是,压缩机的上游导向叶片涉及压缩机的第一压缩阶段。
可替代地或者附加地,改变的操作参数还可以是燃气轮机的压缩机的下游导向叶片的俯仰角。下游导向叶片与上游导向叶片不同之处在于它们被布置在燃气轮机的压缩机的第二或随后的阶段。相对地,上游导向叶片位于第一阶段。压缩质量流继而通过改变下游导向叶片的俯仰角而被影响,其结果是压缩功率可以被改变。这再一次影响逆功率的量,其在电动机器作为电动机操作时被消耗。
根据本发明进一步的特定优选实施例,所改变的操作参数是燃气轮机的压缩机的放泄阀的俯仰角。压缩质量流还可以通过改变放泄阀的俯仰角而被影响,即例如通过被增大或减小的压缩阻力。其结果是,压缩功率再次改变,该压缩功率必须至少部分地被在电动机器作为电动机操作时来自输电网的消耗的逆电功率所应用。
根据本发明的方法进一步的实施例,提供了改变的操作参数是供应到燃气轮机的膨胀机的来自燃烧室的排放气体质量流。换言之,整个燃气轮机的性能可以通过改变排放气体的量而被影响,该排放气体从压缩机被供应到燃气轮机的膨胀机以用于膨胀。根据实施例,从燃烧室排出的排放气体质量流与馈入膨胀机的排放气体质量流之间的比率可以因而改变。例如,因而可设想的是燃气轮机的压缩机和膨胀机例如从彼此机械地去耦。如果现在排放气体流从燃烧室不向膨胀机而是例如向不同的功能性部件(例如,热存储器)供应,在膨胀机中不由燃气轮机生成进一步的膨胀功率,并且待被应用的逆功率主要由压缩机的操作所确定。例如,如果通过出于存储目的的热能的适当使用,排放气体质量流例如因此不被用来生成电能,包含在排放气体流中的热能并不直接可用于生成电力并且因而减小燃气轮机的暂时总效率。如果排放气体流的热能被临时存储在热存储器中,例如,该热能却可以继而在随后的时间点处被使用且利用以例如在再转换过程中产生电力。
根据本发明的方法进一步的有利实施例,改变的操作参数是供应到燃气轮机的燃烧室的来自压缩机的压缩质量流。换言之,被供应到燃烧室的压缩流体的质量流被改变。根据实施例,从压缩机排出的流体质量流与馈入燃烧室的流体质量流之间的比率可以因而改变。例如,通过改变,被供应到燃气轮机的燃烧室以用于燃烧的压缩空气的量,在整个燃气轮机中的发电性能可以继而被影响。例如,如果来自压缩机的压缩质量流不被供应到燃烧室,但例如供应到不同的功能性部件 (例如,压缩空气存储器或热存储器),可能的是仅有相对低的燃烧功率通过燃烧涡轮机而实现,并且因此仅有相对低的膨胀功率在膨胀机中被释放。相应地,待被应用的逆功率主要通过压缩机的操作而被确定。这继而主要要求逆功率操作的电能的使用,并且不允许在膨胀机中发生任何电能的产生。而且,根据实施例的该方法允许例如在能量存储器中临时存储的能量被随后使用。
根据本发明的进一步有利的方面,在根据实施例的方法中附加地包括另外的步骤。该步骤在电动机器作为电动机的操作期间将被拒绝的能量馈入能量存储器中。被拒绝的能量可以在此从热能的意义上发生,其并不被直接作为物理能量或者作为化学能量使用(例如,以在膨胀机中生成热量)。这样的能量存储器可以在该方面被设计为热存储器、压缩空气存储器和/或热化学存储器,其中被拒绝的能量以适当的形式被存储。能量的该临时存储在一方面致使燃气轮机在逆功率操作中高度灵活的操作,并且在另一方面在该操作期间生成的能量还可以在随后的时间点处经济地以其它形式被再次附加地或者有利地使用。
本发明将在以下利用各个附图做出更详细的解释。应当在此指出的是,附图应当仅被示意性地理解并且不代表相对于本发明的实用性的任何限制。
在以下附图中所示的各个特征被独立地要求保护以及以与其它特征的任何组合要求保护,只要该组合能够解决本发明的目的。
应该进一步指出的是,被标以相同的附图标记的这些技术特征具有可比较的技术效果。
附图说明
图1示出了在用于生成可用于电源或输电网的电功率的燃气轮机的常规操作期间具有能量流的示意图;
图2示出了燃气轮机的示意图,该燃气轮机以逆功率操作而***作以便于提供负控制功率,其中也示出了能量流,其中逆电功率从电源或输电网所采用;
图3以示意图示出了根据本发明的燃气轮机的实施例,以用于执行根据本发明的用于提供负控制功率的方法的实施例;
图4示出了根据本发明的用于提供负控制功率的方法的实施例的流程图;
图5示出了当燃料供应被关断时,根据本发明的方法的实施例在燃气轮机的操作期间不同的技术特性的随时间进展的图解视图;
图6示出了当到燃气轮机的燃料供应被降低到燃料的最小供应量以便于维持引燃火焰操作时,根据本发明的方法的实施例在燃气轮机的操作期间不同的技术特性的随时间进展的图解视图。
具体实施方式
图1示意性地示出了燃气轮机1的实施例,其被常规地操作以便于生成电力。从燃气涡轮发电机组的意义上来说,燃气轮机1包括作为发电机工作的电动机器2、压缩机3、燃烧室4和膨胀机5。电动机器2在此通过轴(并未提供附图标记)机械地耦接到压缩机3和/或到膨胀机5。在燃气轮机1的常规操作期间,吸入空气110被供应到压缩机3并且在燃烧室4中与燃料120一起被燃烧。来自该燃烧的排放气体被膨胀机5膨胀以便于提供机械功率。通过该膨胀过程旋转运动被施加到轴,其中电动机器2被同时激励并且电能100 可以被生成并输出。因而,电能100通常被传输到电源和/或输电网作为电能(在目前情况下未示出)。膨胀的排放气体130从膨胀机5释放并且可以被供应到其它功能性部件(在目前情况下未示出)以用于进一步可能的热量使用。
图2现示出了图1所示的燃气轮机1的进一步示意图,其中操作状态不是生成电力的常规状态,而是根据本发明的方法的实施例的状态,以用于通过逆功率操作使用电能。用于该逆功率操作,随后以电动机的方式操作的电动机器2消耗来自电源和/或输电网的电能100 并将其转换为轴的旋转运动(并未进一步提供附图标记)。这继而致使压缩机3的转子的旋转移动,使得吸入空气110流入压缩机3并被压缩。以该方式压缩的该空气被供应至燃烧室4,在其中其可以可选地至少部分地与燃料120燃烧。被供应到燃烧室4中的燃料的量可以根据需要的负控制功率而被调节。在对应的(部分)燃烧之后,或者如果没有发生这样的燃烧,在压缩和通流已经在燃烧室4中发生之后,排放气体130(等于燃烧排放气体或者压缩空气或者两者的混合物) 被膨胀机5膨胀。
在排放气体130中仍然剩余的能量的量例如可以在此被重新利用。换言之,燃气轮机1可以***作高至电气目标功率的60%以用于例如通过操作电动机器2作为电动机而提供负控制功率。该控制功率可以以相对短时间段被提供。例如,燃料120的燃料供应可以因而被减少。例如,该过程可以被导向叶片的俯仰角的进一步的改变或者被压缩机的放泄阀的开口而支持。这些调节根据期望的功率梯度而做出。
在原理上,完全中断燃料的供应并因此用于由燃气轮机1非常高的功率消耗的可能性是存在的。可替代地,然而,功率的不同部分的量可以例如通过压缩质量流的减少、引导叶片的俯仰角的改变以及燃料质量流的减少的组合而被获得,例如高至燃料的最小量,其仍允许以引燃火焰模式操作。
图3示出了根据本发明的燃气轮机1的进一步实施例,其具有彼此被机械地耦接的压缩机3和膨胀机5。它们中的两者被适当的线(并未提供附图标记)连接到燃烧室4。在同一时间,压缩机3经由轴(未提供附图标记)被耦接到电动机器2,其根据一个实施例被设计以便于消耗来自电源和/或输电网的电能100。通过电动机器2作为电动机的操作吸入且在压缩机3中被压缩的空气110被供应到燃烧室4,在其中空气例如可以与燃料120一起被燃烧。为了增加压缩质量流,可以以蒸汽的形式经由流体供应线6向压缩机3提供水。可替代地,气体也可以经由该流体供应线6被供应到压缩空间,其例如从气体存储器中移除以便于增加压缩质量流。
所有压缩质量流中从压缩机3排出的部分可以被供应至能量存储器10以便于存储物理和/或化学能量。该能量存储器例如可以被设计为压力存储器或者热量存储器。如果压缩质量流的部分在燃烧室4中与燃料120一起燃烧,该排放气体130可以被供应到膨胀机5以用于膨胀。可替代地或者附加地,该排放气体130还可以被供应到进一步的能量存储器10以便于存储物理和/或化学能量140。该能量存储器 10例如可以被设计为压力存储器或者热量存储器。
根据电动机器2的实施例,该电动机器2经由轴(未提供附图标记)被耦接到膨胀机5,当排放气体130经由膨胀机5被膨胀时可以被激励。如果电动机器2和膨胀机5经由耦接的轴被连接到彼此,排放气体130例如还可以经由膨胀机5被膨胀而不使电动机器被激励。在该情况下,仅使得排放气体130同时冷却的气体膨胀发生。
图4以流程图示出了根据本发明的用于提供负控制功率的方法的进一步实施例。该方法在此具有以下步骤:
-利用来自电力供应和/或输电网的电能对燃气轮机1的电动机器2进行供电以用于作为电动机的操作(第一方法步骤210);
-通过取决于来自电源和/或输电网的电网信号的作为电动机的操作控制消耗的电功率,该燃气轮机1被连接到电源和/或输电网(第二方法步骤220);
-作为控制的结果,改变用于作为电动机的操作的燃气轮机1的操作参数,以便于有目的地从输电网增加消耗的电功率(第三方法步骤230)。
图5示出了根据用于向电源和/或输电网提供负控制功率的燃气轮机1的实施例在操作期间的不同技术操作参数的随时间的依赖性的图解视图。在此示出了在改变燃气轮机1的常规的发电操作之后不同的操作参数如何被改变以便于执行根据用于提供负控制功率的实施例的方法。这些改变基于简化的建模而被预测。仅相对于在用于发电的常规操作期间呈现的量级而给出改变的速率。
例如,其应当留意的是燃料120的供应被完全关断。燃料的消耗 因此跌到0%的水平。在同一时间,电动机器2消耗来自电网的电能并且在初始的短整合阶段之后旋转速度150被基本上维持恒定。在整合阶段期间,压缩机质量流160以短的时间段减小,但其在目标旋转速度达到时再次升高到其原始值的100%。因为在燃烧室4中的燃烧被完全停止,被调节到高于0%的略微增大的水平的燃烧室温度(等于温度并不增大到高于周围的温度水平)也降低。温度的增大基本上由在吸入空气110的压缩期间释放的压缩热量导致。
如图解视图所示,以易于理解的方式,燃气轮机1的电排放功率也从100%的正值降到-30%的负值。燃气轮机1因此必须消耗负控制功率以便于能够维持其操作。以该方式消耗的电功率被用来向电源和 /或输电网提供负控制功率。
该示图还示出了,向着时间帧的末端,作为燃气轮机1被完全关断(从电网断开耦接)的结果的操作参数的新的突然变化。
图6示出了根据本发明的方法的以便于提供负控制功率的实施例在燃气轮机1的操作期间不同的技术操作参数的随时间改变的进一步图解视图。以与图5中所示的操作相似的方式,燃料120到燃气轮机 1的燃烧室4 的供应在此被减少。然而,与图5中示出的方法相对的是燃料的供应不被抑制到没有燃料消耗180发生的程度,反之,设定最小燃料消耗180,其足以维持燃气轮机1的引燃火焰。因此,比图5中的情况更高的燃烧室温度170在稳定操作期间的一段时间之后产生。由电动机器2在逆功率操作中消耗的电功率的量也比较低,因为燃气轮机1的操作进而由燃料的燃烧所支持。
向着图6中的技术操作参数的改变的随时间进展的末端,普通的发电操作由燃气轮机1继续。
其它实施例可以在从属权利要求中找到。

Claims (17)

1.一种用于通过燃气轮机(1)的操作向电源和/或输电网提供负控制功率的方法,包括以下步骤:
-利用来自电源和/或输电网的电能对所述燃气轮机(1)的电动机器(2)进行供电以用于作为电动机的操作;
-取决于来自所述电源和/或输电网的电网信号通过作为电动机的所述操作控制消耗的电功率,所述燃气轮机(1)被连接到所述电源和/或输电网;
-作为所述控制的结果,改变用于作为电动机的所述操作的所述燃气轮机(1)的操作参数,以便于有目的地从所述电源和/或输电网增加所述消耗的电功率。
2.根据权利要求1所述的方法,其特征在于,所述电动机器(2)的逆功率保护电路电气地或者在电路方面被旁路。
3.根据权利要求2所述的方法,其特征在于,所述电动机器(2)被设计为发电机。
4.根据权利要求2所述的方法,其特征在于,可替代保护电路被连接,使能作为电动机的操作。
5.根据前述权利要求中任一项所述的方法,其特征在于,所述电网信号是所述电源和/或输电网的电网频率。
6.根据权利要求1至4中任一项所述的方法,其特征在于,所述电网信号是外部控制信号。
7.根据权利要求1至4中任一项所述的方法,其特征在于,所述电网信号是来自所述电源和/或输电网的运营者的外部控制信号。
8.根据权利要求1至4中任一项所述的方法,其特征在于,所改变的操作参数是被供应到所述燃气轮机(1)的燃烧室(4)的燃料的量。
9.根据权利要求1至4中任一项所述的方法,其特征在于,所改变的操作参数是所述燃气轮机(1)的吸入质量流。
10.根据权利要求1至4中任一项所述的方法,其特征在于,所改变的操作参数是被吸入压缩机(3)的流体质量流与从所述压缩机(3)排出的流体质量流之间的比率。
11.根据权利要求1至4中任一项所述的方法,其特征在于,所改变的操作参数是所述燃气轮机(1)的压缩机(3)的上游导向叶片的俯仰角。
12.根据权利要求1至4中任一项所述的方法,其特征在于,所改变的操作参数是所述燃气轮机(1)的压缩机(3)的下游导向叶片的俯仰角。
13.根据权利要求1至4中任一项所述的方法,其特征在于,所改变的操作参数是所述燃气轮机(1)的压缩机(3)的放泄阀的俯仰角。
14.根据权利要求1至4中任一项所述的方法,其特征在于,所改变的操作参数是被供应到所述燃气轮机(1)的膨胀机(5)的来自燃烧室(4)的排放气体质量流。
15.根据权利要求1至4中任一项所述的方法,其特征在于,所改变的操作参数是被供应到所述燃气轮机(1)的燃烧室(4)的来自压缩机(3)的压缩质量流。
16.根据权利要求1至4中任一项所述的方法,其特征在于,还包括以下步骤:
-在所述电动机器 (2)作为电动机的所述操作期间,将被拒绝的能源馈入能源存储器(10)。
17.一种燃气轮机(1),至少包括电动机器(2),并且所述燃气轮机(1)被设计为实施在前述权利要求中任一项所述的方法。
CN201480021870.5A 2013-04-18 2014-02-27 通过燃气轮机提供负控制功率的方法及燃气轮机 Active CN105121812B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013206992.8 2013-04-18
DE102013206992.8A DE102013206992A1 (de) 2013-04-18 2013-04-18 Bereitstellung negativer Regelleistung durch eine Gasturbine
PCT/EP2014/053828 WO2014170058A1 (de) 2013-04-18 2014-02-27 Bereitstellung negativer regelleistung durch eine gasturbine

Publications (2)

Publication Number Publication Date
CN105121812A CN105121812A (zh) 2015-12-02
CN105121812B true CN105121812B (zh) 2018-03-27

Family

ID=50189687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480021870.5A Active CN105121812B (zh) 2013-04-18 2014-02-27 通过燃气轮机提供负控制功率的方法及燃气轮机

Country Status (6)

Country Link
US (1) US10530159B2 (zh)
EP (1) EP2971652B1 (zh)
CN (1) CN105121812B (zh)
DE (1) DE102013206992A1 (zh)
DK (1) DK2971652T3 (zh)
WO (1) WO2014170058A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017211965A1 (de) * 2017-07-12 2019-01-17 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Leistungseinrichtung an einem Stromnetz, und Leistungseinrichtung, eingerichtet zur Durchführung eines solchen Verfahrens

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2470838A (en) * 1946-04-19 1949-05-24 Bell Telephone Labor Inc Power supply system
US4158145A (en) * 1977-10-20 1979-06-12 The United States Of America As Represented By The United States Department Of Energy Combined compressed air storage-low BTU coal gasification power plant
US5449568A (en) * 1993-10-28 1995-09-12 The United States Of America As Represented By The United States Department Of Energy Indirect-fired gas turbine bottomed with fuel cell
US5640841A (en) * 1995-05-08 1997-06-24 Crosby; Rulon Plasma torch ignition for low NOx combustion turbine combustor with monitoring means and plasma generation control means
NZ336117A (en) * 1996-12-16 2001-02-23 Ramgen Power Systems Inc Ramjet engine for power generation
US6640548B2 (en) * 2001-09-26 2003-11-04 Siemens Westinghouse Power Corporation Apparatus and method for combusting low quality fuel
DE102004028530B4 (de) * 2004-06-11 2015-05-21 Alstom Technology Ltd. Verfahren zum Betrieb einer Kraftwerksanlage
CA2601474C (en) * 2005-03-08 2017-04-04 E-Radio Usa, Inc. Systems and methods for modifying power usage
AR066539A1 (es) * 2008-05-12 2009-08-26 Petrobras En S A Metodo para la regulacion primaria de frecuencia, a traves de control conjunto en turbinas de ciclo combinado.
US8341964B2 (en) * 2009-10-27 2013-01-01 General Electric Company System and method of using a compressed air storage system with a gas turbine
US8446024B2 (en) * 2010-03-16 2013-05-21 Hamilton Sundstrand Corporation Electrical machines with integrated power and control and including a current source inverter
US8474271B2 (en) 2011-08-08 2013-07-02 General Electric Company System and method for hot ambient and grid frequency compensation for a gas turbine
CA2787868C (en) 2011-09-07 2016-07-12 Alstom Technology Ltd Method for operating a power plant
DE102011055252A1 (de) * 2011-11-10 2013-05-16 Evonik Degussa Gmbh Verfahren zur Bereitstellung von Regelleistung für ein Stromnetz
ITFI20120292A1 (it) * 2012-12-24 2014-06-25 Nuovo Pignone Srl "gas turbines in mechanical drive applications and operating methods"

Also Published As

Publication number Publication date
US10530159B2 (en) 2020-01-07
DK2971652T3 (en) 2018-04-09
WO2014170058A1 (de) 2014-10-23
EP2971652B1 (de) 2018-01-17
EP2971652A1 (de) 2016-01-20
CN105121812A (zh) 2015-12-02
DE102013206992A1 (de) 2014-10-23
US20160064933A1 (en) 2016-03-03

Similar Documents

Publication Publication Date Title
AU2009338124B2 (en) CAES plant using humidified air in the bottoming cycle expander
KR101760477B1 (ko) 가스 터빈 에너지 보조 시스템 및 가열 시스템, 그리고 그 제작 및 이용 방법
EP2559881A2 (en) Adiabatic compressed air energy storage system and corresponding method
JP2014148934A (ja) 火力発電システム
EA010252B1 (ru) Повышение мощности турбин внутреннего сгорания посредством введения холодного воздуха выше по потоку компрессора
CN104033249B (zh) 用于操作联合循环动力设备的方法
JP2010169092A (ja) 一時的事象の間にタービンのパワー出力を増加させるためのシステムおよび方法
JP5442206B2 (ja) 電力システム
JP2006274868A (ja) ガスタービン発電機の運転制御装置
JP2010065636A (ja) 2軸式ガスタービン
CN203420787U (zh) 用于操作功率设备的***
EP2770172B1 (en) Method for providing a frequency response for a combined cycle power plant
US20160131031A1 (en) Gas turbine fast regulation and power augmentation using stored air
JP2016176477A (ja) 余剰空気流を生じる圧縮機とそれのための冷却流体注入とを有する発電システム
CN105121812B (zh) 通过燃气轮机提供负控制功率的方法及燃气轮机
CN108590783A (zh) 一种用于汽轮机低压缸胀差的控制方法
CN102562189B (zh) 低压饱和蒸汽回收利用设备
KR101613227B1 (ko) 선박의 폐열을 이용한 전력 생산 장치 및 방법
KR20130112473A (ko) 선박의 폐열 회수 시스템 및 그 제어방법
JP5730223B2 (ja) コンバインド発電システム
CN206368724U (zh) 一种可调节工况型低温余热发电装置
JP2017027719A (ja) 燃料電池システム、ハイブリッドシステム、航空機及び航空機に搭載される補助動力装置
JP2021110332A (ja) ターボチャージャ付きガスタービンエンジンを動作させるためのシステムおよび方法
KR102099492B1 (ko) 에너지가 저장된 ves 에어 공급장치를 채택한 전력 생성 시스템 및 방법
JP6877216B2 (ja) 発電システム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220901

Address after: Munich, Germany

Patentee after: Siemens Energy International

Address before: Munich, Germany

Patentee before: SIEMENS AG