CN105115729A - Spindle deformation analysis device - Google Patents

Spindle deformation analysis device Download PDF

Info

Publication number
CN105115729A
CN105115729A CN201510631050.4A CN201510631050A CN105115729A CN 105115729 A CN105115729 A CN 105115729A CN 201510631050 A CN201510631050 A CN 201510631050A CN 105115729 A CN105115729 A CN 105115729A
Authority
CN
China
Prior art keywords
sensor
spindle
shaft sleeve
main shaft
analytical equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510631050.4A
Other languages
Chinese (zh)
Inventor
刘宁
周姝
覃欣
杨科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
API ZC Chengdu Precision Instrument Co Ltd
Original Assignee
API ZC Chengdu Precision Instrument Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by API ZC Chengdu Precision Instrument Co Ltd filed Critical API ZC Chengdu Precision Instrument Co Ltd
Priority to CN201510631050.4A priority Critical patent/CN105115729A/en
Publication of CN105115729A publication Critical patent/CN105115729A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

The invention discloses a spindle deformation analysis device. The spindle deformation analysis device comprises a spindle sleeve and sensors arranged on the spindle sleeve, wherein the number of the sensors is not only one, the sensors are fixedly arranged on the side wall surface of the spindle sleeve, the sensors are electrically inductive sensors, the measuring point of each sensor is not located on the same line and an electric heating coil is further arranged on the side wall of the spindle sleeve. The spindle deformation analysis device has the advantages that the realization of simultaneous measurement and analysis of a plurality of parameters of a spindle is facilitated; the measurement accuracy is not influenced by environment humidity; the device is convenient to install on the spindle; the spindle heating deformation analysis period is short and the like.

Description

A kind of spindle deformation analytical equipment
Technical field
The present invention relates to machine tool chief axis testing apparatus field, particularly relate to a kind of spindle deformation analytical equipment.
Background technology
The axis system of lathe is one of parts of lathe most critical, it participates in the cut of lathe directly by cutter, the quality of its dynamic property and the thermal deformation surfaceness to the cutting shock resistance of lathe, machining precision and machined surface all has a great impact, namely the performance quality of lathe spindle directly affects the overall performance of lathe, and main shaft ability meter is the important device for testing the above performance of main shaft of numerical control machine tool.
Meanwhile, in prior art, main shaft thermal deformation errors is the main error in machine tool motion, accounts for the 50%-70% of the whole error rate of lathe, eliminates these errors or reduces these errors, and the machining precision of numerical control machining center can be made significantly to improve.The 26S Proteasome Structure and Function of the existing analyser of further optimization, by the progress promoting numerically-controlled machine further in high precision manufacture field.
Summary of the invention
Be the main error in machine tool motion for main shaft thermal deformation errors in above-mentioned prior art, account for the 50%-70% of the whole error rate of lathe, eliminate these errors or reduce these errors, the machining precision of numerical control machining center can be made significantly to improve.The 26S Proteasome Structure and Function of the existing analyser of further optimization, by the problem of the progress that promotes numerically-controlled machine further in high precision manufacture field, the invention provides a kind of spindle deformation analytical equipment.
For solving the problem, a kind of spindle deformation analytical equipment provided by the invention solves problem by following technical essential: a kind of spindle deformation analytical equipment, comprise shaft sleeve and be arranged on the sensor on shaft sleeve, more than one of described sensor, sensor is all fixed on the side wall surface of shaft sleeve, and sensor is electro-induction sensor, the measurement point of each sensor is not located along the same line, and the sidewall of described shaft sleeve is also provided with electrical heating coil.
Concrete, the shaft sleeve arranged is used for fixing each sensor, when shaft sleeve is sheathed on main shaft, each sensor then forms the multiple non-contacting sensors relative to tested main shaft, like this, this structure can conveniently be installed on the main shaft of lathe, to complete dynamic error and the thermal deformation analysis of main shaft; Further, this sensor all adopts the further restriction of electro-induction sensor, sensor can be made to appoint in wet environment and so can ensure good measuring accuracy; The sensor mounting location that the measurement point of each sensor is not located along the same line limits, the inclination being intended to be convenient to measure main shaft efficiently, deflection, the error analysis etc. on X-axis, Y-axis and Z axis; The electrical heating coil arranged is used for heating lathe spindle, and with the thermal deformation of Analog lathe main shaft under different being heated, above heating accelerates the programming rate of main shaft in operational process, and main shaft thermal deformation analysis can be made to complete in the short period of time.
Further technical scheme is:
Change sensor type or model for ease of needing according to concrete measurement, described sensor is provided with magnetic bases, each sensor is all adhered on shaft sleeve by the magnetic bases magnetic on respective.
For making this structure have main shaft rotation brake function, to enrich the operation strategies of this structure, as the test analysis of the single main shaft of disengaging can be used in, also comprise the drive division being fixed on any one end of shaft sleeve.
Fixing for ease of this structure, the free end of described drive division is also fixed with base.
For the inclination, the deflection that make this structure can complete measurement main shaft easily, the error analysis on X-axis, Y-axis and Z axis, the quantity of described sensor is at least five.
The present invention has following beneficial effect:
The shaft sleeve arranged is used for fixing each sensor, when shaft sleeve is sheathed on main shaft, each sensor then forms the multiple non-contacting sensors relative to tested main shaft, like this, this structure can conveniently be installed on the main shaft of lathe, to complete dynamic error and the thermal deformation analysis of main shaft; Further, this sensor all adopts the further restriction of electro-induction sensor, sensor can be made to appoint in wet environment and so can ensure good measuring accuracy; The sensor mounting location that the measurement point of each sensor is not located along the same line limits, the inclination being intended to be convenient to measure main shaft efficiently, deflection, the error analysis etc. on X-axis, Y-axis and Z axis; The electrical heating coil arranged is used for heating lathe spindle, and with the thermal deformation of Analog lathe main shaft under different being heated, above heating accelerates the programming rate of main shaft in operational process, and main shaft thermal deformation analysis can be made to complete in the short period of time.
Accompanying drawing explanation
Fig. 1 is the structural representation of a kind of spindle deformation analytical equipment of the present invention specific embodiment.
Figure acceptance of the bid note is respectively: 1, base, and 2, drive division, 3, sensor, 4, shaft sleeve.
Embodiment
The invention provides a kind of spindle deformation analytical equipment, below in conjunction with embodiment, the present invention is described in further detail, but the present invention is not limited only to following examples:
Embodiment 1:
As shown in Figure 1, a kind of spindle deformation analytical equipment, comprise shaft sleeve 4 and be arranged on the sensor 3 on shaft sleeve 4, more than one of described sensor 3, sensor 3 is all fixed on the side wall surface of shaft sleeve 4, and sensor 3 is electro-induction sensor 3, the measurement point of each sensor 3 is not located along the same line, and the sidewall of described shaft sleeve 4 is also provided with electrical heating coil.
In the present embodiment, the shaft sleeve 4 arranged is for fixing each sensor 3, when shaft sleeve 4 is sheathed on main shaft, each sensor 3 forms the multiple non-contacting sensors 3 relative to tested main shaft, like this, this structure can conveniently be installed on the main shaft of lathe, to complete dynamic error and the thermal deformation analysis of main shaft; Further, this sensor 3 all adopts the further restriction of electro-induction sensor 3, sensor 3 can be made to appoint in wet environment and so can ensure good measuring accuracy; Sensor 3 installation site that the measurement point of each sensor 3 is not located along the same line limits, the inclination being intended to be convenient to measure main shaft efficiently, deflection, the error analysis etc. on X-axis, Y-axis and Z axis; The electrical heating coil arranged is used for heating lathe spindle, and with the thermal deformation of Analog lathe main shaft under different being heated, above heating accelerates the programming rate of main shaft in operational process, and main shaft thermal deformation analysis can be made to complete in the short period of time.
Embodiment 2:
The present embodiment is further qualified on the basis of embodiment 1, as shown in Figure 1, further technical scheme is: for ease of needing more emat sensor 3 type or model according to concrete measurement, described sensor 3 is provided with magnetic bases 1, and each sensor 3 is all adhered on shaft sleeve 4 by magnetic bases 1 magnetic on separately.
For making this structure have main shaft rotation brake function, to enrich the operation strategies of this structure, as the test analysis of the single main shaft of disengaging can be used in, also comprise the drive division 2 being fixed on any one end of shaft sleeve 4.
Fixing for ease of this structure, the free end of described drive division 2 is also fixed with base 1.
Embodiment 3:
The basis of any one scheme that the present embodiment provides in above embodiment is further qualified, for the inclination, the deflection that make this structure can complete measurement main shaft easily, error analysis on X-axis, Y-axis and Z axis, the quantity of described sensor 3 is at least five.
Above content is the further description done the present invention in conjunction with concrete preferred implementation, can not assert that the specific embodiment of the present invention is confined to these explanations.For general technical staff of the technical field of the invention, not departing from other embodiments drawn under technical scheme of the present invention, all should be included in protection scope of the present invention.

Claims (5)

1. a spindle deformation analytical equipment, comprise shaft sleeve (4) and be arranged on the sensor (3) on shaft sleeve (4), it is characterized in that, more than one of described sensor (3), sensor (3) is all fixed on the side wall surface of shaft sleeve (4), and sensor (3) is electro-induction sensor, the measurement point of each sensor (3) is not located along the same line, and the sidewall of described shaft sleeve (4) is also provided with electrical heating coil.
2. a kind of spindle deformation analytical equipment according to claim 1, is characterized in that, (3) are provided with magnetic bases with described sensor, and each sensor (3) is all adhered on shaft sleeve (4) by the magnetic bases magnetic on separately.
3. a kind of spindle deformation analytical equipment according to claim 1, is characterized in that, also comprises the drive division (2) being fixed on any one end of shaft sleeve (4).
4. a kind of spindle deformation analytical equipment according to claim 3, is characterized in that, the free end of described drive division (2) is also fixed with base (1).
5. a kind of spindle deformation analytical equipment as claimed in any of claims 1 to 4, is characterized in that, the quantity of described sensor (3) is at least five.
CN201510631050.4A 2015-09-29 2015-09-29 Spindle deformation analysis device Pending CN105115729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510631050.4A CN105115729A (en) 2015-09-29 2015-09-29 Spindle deformation analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510631050.4A CN105115729A (en) 2015-09-29 2015-09-29 Spindle deformation analysis device

Publications (1)

Publication Number Publication Date
CN105115729A true CN105115729A (en) 2015-12-02

Family

ID=54663770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510631050.4A Pending CN105115729A (en) 2015-09-29 2015-09-29 Spindle deformation analysis device

Country Status (1)

Country Link
CN (1) CN105115729A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4667186B2 (en) * 2005-09-26 2011-04-06 学校法人慶應義塾 Rotational accuracy measurement method
CN102176135A (en) * 2011-01-30 2011-09-07 合肥工业大学 Thermal error measuring and integrating system for numerical control machine tool
CN103567815A (en) * 2013-11-12 2014-02-12 沈阳机床(集团)设计研究院有限公司 Method for testing and evaluating numerically-controlled machine tool cutting heat errors of based on small milling holes
CN103644875A (en) * 2013-11-19 2014-03-19 重庆机床(集团)有限责任公司 Dynamic spindle rotation precision detection device
CN104502102A (en) * 2014-12-02 2015-04-08 西安交通大学 Device and method for testing the dynamic characteristics of high-speed machine tool spindle
CN104776987A (en) * 2015-03-20 2015-07-15 浙江大学 Main shaft performance testing platform and testing method of testing platform

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4667186B2 (en) * 2005-09-26 2011-04-06 学校法人慶應義塾 Rotational accuracy measurement method
CN102176135A (en) * 2011-01-30 2011-09-07 合肥工业大学 Thermal error measuring and integrating system for numerical control machine tool
CN103567815A (en) * 2013-11-12 2014-02-12 沈阳机床(集团)设计研究院有限公司 Method for testing and evaluating numerically-controlled machine tool cutting heat errors of based on small milling holes
CN103644875A (en) * 2013-11-19 2014-03-19 重庆机床(集团)有限责任公司 Dynamic spindle rotation precision detection device
CN104502102A (en) * 2014-12-02 2015-04-08 西安交通大学 Device and method for testing the dynamic characteristics of high-speed machine tool spindle
CN104776987A (en) * 2015-03-20 2015-07-15 浙江大学 Main shaft performance testing platform and testing method of testing platform

Similar Documents

Publication Publication Date Title
CN103231279B (en) Machine tool chief axis dynamic checkout unit under a kind of numerical control machine tool cutting state
CN102937409B (en) Polar coordinate gear measurement center and zero calibrating method thereof
CN105043317A (en) Device and method for measuring dynamic revolution error of main shaft of set of revolution equipment
CN103776590A (en) Rotor balance experiment table
CN109794805A (en) A kind of cone hole machine bus deviation automatic detection device and its detection method
CN102658503B (en) Modal testing method of numerical control machine tool feed system based on built-in sensors
CN102095575A (en) Automatic electric spindle test system based on UMAC (Universal Motion and Automation Controller)
CN103341788B (en) Ultra-precise static-pressure main shaft dynamic characteristic online testing method capable of eliminating measuring basis installation error
CN104776779B (en) Hub bearing outer ring groove position detection means
CN102003931A (en) Comprehensive detection method and device of tool tapered handle (7:24)
CN102430958B (en) Three-lever centering device and centering method for numerical control machine
CN204535603U (en) Hub bearing outer ring groove position pick-up unit
CN105181319A (en) Spindle dynamic error and thermal deformation analyzer
CN105108581A (en) Numerically-controlled machine tool spindle rotation precision verifying unit
CN201083489Y (en) Variable cross-section arc workpiece thickness measurement instrument
CN204757949U (en) Measurement device for main shaft developments gyration error is equipped in complete set gyration
CN106808315A (en) A kind of reset bearing calibration for machine tool chief axis
CN203587021U (en) Roundness error detector
CN105115729A (en) Spindle deformation analysis device
CN203375923U (en) Novel HSK tool taper shank taper detection device
CN105108582A (en) Device beneficial to shortening thermal deformation analyzing cycle of machine tool spindle
CN104279939A (en) Precision detecting device
CN106808317A (en) A kind of analysis method for machine tool chief axis dynamic error
CN106813908A (en) A kind of analytical equipment for machine tool chief axis dynamic error
CN106808316A (en) A kind of reset means for correcting for machine tool chief axis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20151202

RJ01 Rejection of invention patent application after publication