CN105108347A - 一种准分子激光旋转刻蚀快速制作有机玻璃曲率可调微透镜的方法 - Google Patents

一种准分子激光旋转刻蚀快速制作有机玻璃曲率可调微透镜的方法 Download PDF

Info

Publication number
CN105108347A
CN105108347A CN201510330967.0A CN201510330967A CN105108347A CN 105108347 A CN105108347 A CN 105108347A CN 201510330967 A CN201510330967 A CN 201510330967A CN 105108347 A CN105108347 A CN 105108347A
Authority
CN
China
Prior art keywords
mask
turntable
laser
lenticular
dimensional micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510330967.0A
Other languages
English (en)
Other versions
CN105108347B (zh
Inventor
陈涛
杨桂栓
郑崇
闫晓光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201510330967.0A priority Critical patent/CN105108347B/zh
Publication of CN105108347A publication Critical patent/CN105108347A/zh
Application granted granted Critical
Publication of CN105108347B publication Critical patent/CN105108347B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种准分子激光旋转刻蚀快速制作有机玻璃曲率可调微透镜的方法,属于微光学器件及激光先进制造技术领域。该加工***主要由计算机、激光器、激光匀束器、掩膜及掩膜调换台、聚焦物镜、同轴观察***、旋转台及微移动工作台组成,通过进行掩膜设计、加工***的光路及旋转台轴心校准等准备工作,然后进行掩膜投影旋转刻蚀的方法来加工有机玻璃PMMA来获得圆形度较好的微透镜,其中掩膜孔的形状和尺寸由待加工微透镜的参数来进行设计。本发明用来加工制作微透镜或微透镜阵列,具有非接触、热效应影响小、低成本、高效率、高精度、微透镜的曲率可调控、可重复性强等优点。

Description

一种准分子激光旋转刻蚀快速制作有机玻璃曲率可调微透镜的方法
技术领域
本发明涉及一种利用准分子激光和掩膜投影旋转刻蚀来快速制作有机玻璃曲率半径可调微透镜的方法,属于微光学器件及激光先进制造技术领域。
背景技术
在现代微光学***领域,微透镜相对于传统光学透镜具有小型化的特点,使得微透镜在很多领域可以代替传统光学***,尤其是在光机电一体化领域,光电子学领域的光纤连接器、光纤准直器、光开关、光学信息存储等器件,光传感领域的各种传感器、探测器的输入、输出端口和连接器,微制造领域的二次微制造,微透镜具有越来越广阔的应用前景。
传统微透镜的加工方法主要有压模法、塑模法、研磨法、光刻热熔成型法、灰度掩膜法、LCVD法、喷墨法等,大多加工方法存在加工方法效率低、制造过程控制困难、透镜形状及曲率难以控制等问题,因此,如何使用低成本、高效率、高精度、可调控的加工方法制造微透镜成,成为微透镜制造的重要发展方向。
有机玻璃聚甲基丙烯酸甲酯(PMMA)作为重要的光学材料,具有物理光学性能好、价格便宜、易加工、机械强度高等优点,在目前计算机通信光学元器件及日常生活工具等方面有非常广泛的应用。采用准分子紫外激光刻蚀加工PMMA时光子直接打断其化学键将其分解,属于冷加工范畴,具有热影响小、非接触式加工等优点,另外准分子激光微加工具有单光子能量高、峰值功率高、材料吸收率高、加工分辨率高等优点,成为现在微光学元件加工领域的一种重要的加工手段。
发明内容
针对以上技术问题,本发明提出了一种低成本、高效率、高精度、曲率可调控的微透镜加工方法,即利用准分子激光和掩膜投影旋转刻蚀快速制作有机玻璃曲率半径可调微透镜的方法。
本发明在有机玻璃PMMA表面刻蚀加工获得微透镜或微透镜阵列。
一种准分子激光旋转刻蚀快速制作有机玻璃曲率可调微透镜的装置,该***的装置包括:装有***控制应用程序的计算机(1)、准分子激光器(2)、光束匀束器(3)、用于贴掩膜的掩膜调换台(4)、半反半透镜(5)、聚焦物镜(6)、加工台、电机驱动器(11),同轴观察摄像头(12),其中加工台的设计主要分为三部分,由下往上依次为:三维微移动台(10)、旋转台(9)、二维微移动台(8);具体如附图1所示,计算机(1)分别和准分子激光器(2)、电机驱动器(11)、同轴观察摄像头(12)连接,准分子激光器(2)、光束匀束器(3)、掩膜调换台(4)依次光路连接,掩膜调换台(4)的入射光处有掩膜,掩膜调换台(4)的出射光通过半反半透镜(5)的反射光通过聚焦物镜(6)汇聚到二维微移动台上的有机玻璃上;同轴观察摄像头(12)与半反半透镜(5)、聚焦物镜(6)、二维微移动台(8)之间组成直线光路连接,构成实时观察***;电机驱动器(11)分别与三维微移动台(10)、旋转台(9)、二维微移动台(8)连接。
采用准分子激光和掩膜投影旋转刻蚀法来快速制作有机玻璃曲率可调微透镜或微透镜阵列的方法,其特征在于,包括以下步骤:
(1)根据待加工的微透镜的要求设计制作类扇形孔结构的掩膜:根据待加工的微透镜的尺寸及曲率,计算出有机玻璃表面沿径向的刻蚀量,由聚焦物镜的倍率来设计类扇形掩膜孔的直径边曲线形状和尺寸,然后加工制作掩膜;类扇形孔结构为:其直径边为待设计的曲线;
(2)校准激光器的加工光路:校准准分子激光加工微透镜***的光路结构,使准分子激光器的指示光与准分子的紫外激光同轴重合,经过匀束后的激光束能够垂直穿过掩膜面的孔以及穿过聚焦物镜光轴;
(3)安装掩膜于合适位置:将制作好的掩膜放置到掩膜调换台(4)的入射光处,掩膜调至合适的位置,使经过匀束后的光斑能够覆盖整个掩膜孔且使类扇形孔的圆心在准分子激光束光斑中心区域,固定紧掩膜及掩膜台;
(4)放置有机玻璃样品(7)并校准刻蚀面:将清洁后的有机玻璃板放置在加工台的二维微移动台(8)上,使指示光斑能够照射到待制作微透镜的区域,然后通过控制驱动三维微移动台的竖直方向,来校准使掩膜孔投影的类扇形投影像清晰的投影到样品上表面,即样品表面所投影的类扇形投影形状轮廓清晰,大小与聚焦物镜的缩小倍率相符;
(5)旋转台轴心的校准:开启加工台上的旋转台,首先采用低转速(如6°-24°/s)及低脉冲频率(如1-4Hz)的激光脉冲进行同步刻蚀,通过由同轴观察摄像头所组成的实时观察***来观察激光在样品表面的刻蚀轨迹,同时驱动三维微移动加工台的两个水平方向的来调节旋转台旋转中心的位置,使旋转台旋转中心向类扇形投影像的圆心靠拢;待其接近时,转台旋转及激光器暂停,然后进行微调,转台每旋转90°后进行一次刻蚀,旋转一周后,微调三维微移动加工台的两个水平方向,最终使旋转台的旋转中心和投影刻蚀光斑类扇形投影像的圆心重合;
(6)微透镜的刻蚀加工:更换一块新的清洁后的且厚度与校准时所用样品相同的有机玻璃板,选择合适的旋转台转速(如10°-30°/s)、激光刻蚀脉冲频率(如3-9Hz)及单脉冲能量(如200-300mJ),采用同步刻蚀的模式,设置转台旋转量为1周,然后开始刻蚀加工微透镜,刻蚀过程中,样品材料随旋转台同步旋转,投影光斑相对于有机玻璃板围绕旋转台的旋转中心进行旋转刻蚀加工,由于沿径向的各位置所积累下来的平均曝光量不一样,刻蚀量也不一样,所以形成不同曲率的微透镜;
(7)微透镜的抛光处理:在实际加工中采用准分子激光刻蚀所产生的一些飞溅物会沉积在所加工微透镜的表面,影响了其表面的粗糙度,可在微透镜加工完成后,采用匀束后的准分子激光束对整个微透镜表面进行抛光处理,从而可以获得表面比较光洁的微透镜。
对于微透镜阵列的加工,其中的每个微透镜的加工按上述步骤(6)、(7),待一个微透镜加工完毕后,可以通过调节二维微移动台来改变微透镜的加工位置,以此进行下去,最后获得微透镜阵列。在加工微透镜阵列时,也可以设计一整套的加工程序来控制激光器、转台及二维微移动台来进行加工;
本发明的工作原理:采用准分子激光和掩膜投影旋转刻蚀法来快速制作有机玻璃曲率可调微透镜,根据脉冲激光累积刻蚀原理,材料表面的刻蚀深度与各点的平均曝光量成正比,通过设计圆心角沿径向逐渐变化的类扇形掩膜,以圆心为轴心来旋转刻蚀材料,以此来改变沿径向不同位置处的平均曝光量从而获得不同的刻蚀深度,最终在有机玻璃表面形成圆形的微透镜面,加工刻蚀原理如附图2所。
本发明中设计制作特殊结构的掩膜孔,是根据待加工的微透镜的尺寸及曲率半径,计算出有机玻璃表面待加工微透镜处沿径向所需的刻蚀量,然后根据单脉冲激光刻蚀量、转台的旋转角速度、聚焦物镜的倍率来设计类扇形掩膜的形状和尺寸,类扇形掩膜孔的形状及其对应的制作完成的微透镜的切面图如附图3所示,其中掩膜孔的AB弧边为圆弧,圆弧对应的圆心即为类扇形掩膜孔的圆心O,类扇形孔结构的直径边为直径边如AO弧及BO弧,根据待加工微透镜的曲率所设计且可调的,当掩膜孔形状为(1)所示时加工的微透镜为凸透镜,当掩膜孔形状为(2)所示时加工的微透镜为凹透镜。
本发明中加工台的设计主要分为三部分,由下往上依次为:三维微移动台、旋转台、二维微移动台。三维微移动台的Z轴方向即竖直方向是用来校准调节刻蚀加工面的位置,X、Y轴是用来调节旋转台的旋转轴的位置;旋转台是用来旋转待加工的PMMA有机玻璃板,使投影光斑相对于转台的轴产生旋转,以此来刻蚀加工微透镜;二维微移动台是用来调节PMMA样品表面微透镜的加工位置,以此来实施微透镜阵列的加工。
本发明中的计算机对该加工***的应用界面包括以下功能:激光器的触发控制,掩膜台的掩膜选择控制,三维微位移台、旋转台及二维微位移台的驱动电机控制,以及同轴观察***对加工过程的实时监测窗口。
本发明类扇形孔结构其直径边为向外的凸边和向内的凹边,分别见图4和凸4,也可以是其他不同形状的曲线。
本发明的优点:
(1)本发明采用准分子激光刻蚀加工有机玻璃PMMA,具有非接触无机械应力、冷刻蚀具有较低的热效应、加工精度高、材料对光的吸收率高等优点;
(2)本发明所设计的类扇形掩膜,可以根据不同的类型进行平凸或平凹透镜的加工,由于在旋转刻蚀加工微透镜时每个激光脉冲的曝光量较多,相对于逐点扫描加工的方法可以大幅提高加工的速率,同时类扇形掩膜使所制作的微透镜沿径向的连续性较好,可以提高透镜镜面的光滑度;
(3)本发明采用旋转刻蚀的方法制作的微透镜可以获得较好的圆形度,可以有效降低由于聚焦物镜光学像差带来的影响;
(4)本发明可以通过改变类扇形掩膜的形状来改变沿径向的平均曝光量,从而获得曲率半径可调控微透镜;
(5)本发明装置可经过一次校准调试后,可重复加工微透镜或微透镜阵列。
附图说明
图1.本发明所使用的准分子激光刻蚀加工微透镜阵列的***结构示意图。图中:1.装有***工作应用程序的计算机;2.准分子激光器;3.匀束器;4.掩膜调换台;5.半反半透镜;6.聚焦物镜;7.被加工样品;8.二维微移动台;9.电动旋转台;10.三维微移动台;11.电机驱动器;12.同轴观察的摄像头。
图2.掩膜投影旋转刻蚀加工微透镜的原理示意图。图中:6.聚焦物镜;7.被加工样品;13.掩膜孔;14.掩膜孔的投影像。
图3当类扇形掩膜孔的直径边为向内凹的凹边时,所得的微透镜是凸透镜的切面图;
图4当类扇形掩膜孔的直径边为向外凸的凸边时,所得的微透镜是凹透镜切面图。
具体实施方式
下面结合实施例对本发明做进一步说明,但本发明并不限于以下实施例。
本发明可以在有机玻璃PMMA上利用准分子紫外激光进行掩膜投影旋转刻蚀加工微透镜及微透镜阵列。该发明的***装置有:计算机及控制软件、准分子激光器、匀束器、掩膜及掩膜调换台、半反半透镜、聚焦物镜、同轴观察摄像头、加工移动工作台及电机驱动器,具体连接示意图如附图1所示。
微透镜及微透镜阵列的加工具体实施步骤包括:
(1)设计制作掩膜:根据待加工的微透镜的尺寸及曲率,计算出有机玻璃表面沿径向的刻蚀量,根据聚焦物镜的倍率(15倍)来设计如图3所示的类扇形掩膜孔的形状,然后通过数控机床加工掩膜。
(2)校准激光器的加工光路:校准准分子激光加工微透镜***的光路结构,使氦氖激光器的指示光与准分子的紫外激光同轴重合,经过匀束后的激光束能够垂直穿过掩膜面以及穿过聚焦物镜光轴。
(3)安装掩膜于合适位置:将制作好的掩膜放置到掩膜调换台上,掩膜调至合适的位置(使经过匀束后的光斑能够覆盖整个掩膜孔且类扇形掩膜的圆心在准分子激光束光斑中心区域),固定紧掩膜及掩膜台。
(4)放置PMMA样品并校准刻蚀面:将清洁后的PMMA有机玻璃板放置在加工台上,使指示光斑能够照射到合适的刻蚀位置(待制作微透镜的区域),然后通过控制驱动三维微移动台的竖直方向,来校准使样品上表面和掩膜投影清晰的像面重合,即样品表面所刻蚀的类扇形投影形状轮廓清晰,大小与聚焦物镜的缩小倍率相符。
(5)旋转台轴心的校准:开启加工台上的旋转台,首先采用低转速(6°-24°/s)及低脉冲频率(1-4Hz)的激光脉冲进行同步刻蚀,通过由同轴观察CCD摄像头所组成的实时观察***来观察激光在样品表面的刻蚀轨迹,同时驱动三维微移动加工台的两个水平方向的轴来调节旋转台旋转中心的位置,使其向投影刻蚀光斑的圆心靠拢。待其接近时,转台旋转及激光器暂停,然后进行微调,转台每旋转90°后进行一次刻蚀,旋转一周后,根据刻蚀图样进行微调三维微移动加工台的两个水平方向的轴,最终使旋转台的旋转中心轴和投影刻蚀光斑的圆心重合。(6)微透镜的刻蚀加工:更换一块新的清洁后的且厚度与校准时所用样品相同的PMMA有机玻璃板,选择合适的旋转台转速(10°-30°/s)、激光刻蚀脉冲频率(3-9Hz)及单脉冲能量(200-300mJ),采用同步刻蚀的模式,设置转台旋转量为1周,然后开始刻蚀加工微透镜,刻蚀过程中,样品材料随旋转台同步旋转,投影光斑相对于PMMA有机玻璃板围绕旋转台轴进行旋转刻蚀加工,由于沿径向的各位置所积累下来的平均曝光量不一样,刻蚀量也不一样;
(7)微透镜的抛光处理:在实际加工中采用准分子激光刻蚀所产生的一些飞溅物会沉积在所加工微透镜的表面,影响了其表面的粗糙度,可在微透镜加工完成后,采用匀束后的准分子激光束对整个微透镜表面进行抛光处理,从而可以获得表面比较光洁的微透镜。
(8)加工完成,冷却、关闭激光器、驱动电源及计算机。
(9)对于微透镜阵列的加工,其中的每个微透镜的加工按上述步骤(6)、(7),待一个微透镜加工完毕后,可以通过调节二维微移动台来改变微透镜的加工位置,以此进行下去,最后获得微透镜阵列。在加工微透镜阵列时,也可以设计一整套的加工程序来控制激光器、转台及二维微移动台来进行加工。
实施例1
当类扇形掩膜孔的直径边为向内凹的凹边时(见图3),所得的微透镜是凸透镜,其切面图见图3。
实施例2
当类扇形掩膜孔的直径边为向外凸的凸边时(见图4),所得的微透镜是凹透镜,其切面图见图4。

Claims (6)

1.一种准分子激光旋转刻蚀快速制作有机玻璃曲率可调微透镜的装置,其特征在于,该***的装置包括:装有***控制应用程序的计算机(1)、准分子激光器(2)、光束匀束器(3)、用于贴掩膜的掩膜调换台(4)、半反半透镜(5)、聚焦物镜(6)、加工台、电机驱动器(11),同轴观察摄像头(12),其中加工台的设计主要分为三部分,由下往上依次为:三维微移动台(10)、旋转台(9)、二维微移动台(8);计算机(1)分别和准分子激光器(2)、电机驱动器(11)、同轴观察摄像头(12)连接,准分子激光器(2)、光束匀束器(3)、掩膜调换台(4)依次光路连接,掩膜调换台(4)的入射光处有掩膜,掩膜调换台(4)的出射光通过半反半透镜(5)的反射光通过聚焦物镜(6)汇聚到二维微移动台上的有机玻璃上;同轴观察摄像头(12)与半反半透镜(5)、聚焦物镜(6)、二维微移动台(8)之间组成直线光路连接,构成实时观察***;电机驱动器(11)分别与三维微移动台(10)、旋转台(9)、二维微移动台(8)连接。
2.利用权利要求1的装置速制作有机玻璃曲率可调微透镜或微透镜阵列的方法,其特征在于,包括以下步骤:
(1)根据待加工的微透镜的要求设计制作类扇形孔结构的掩膜:根据待加工的微透镜的尺寸及曲率,计算出有机玻璃表面沿径向的刻蚀量,由聚焦物镜的倍率来设计类扇形掩膜孔的直径边曲线形状和尺寸,然后加工制作掩膜;类扇形孔结构为:其直径边为待设计的曲线;
(2)校准激光器的加工光路:校准准分子激光加工微透镜***的光路结构,使准分子激光器的指示光与准分子的紫外激光同轴重合,经过匀束后的激光束能够垂直穿过掩膜面的孔以及穿过聚焦物镜光轴;
(3)安装掩膜于合适位置:将制作好的掩膜放置到掩膜调换台(4)的入射光处,掩膜调至合适的位置,使经过匀束后的光斑能够覆盖整个掩膜孔且使类扇形孔的圆心在准分子激光束光斑中心区域,固定紧掩膜及掩膜台;
(4)放置有机玻璃样品(7)并校准刻蚀面:将清洁后的有机玻璃板放置在加工台的二维微移动台(8)上,使指示光斑能够照射到待制作微透镜的区域,然后通过控制驱动三维微移动台的竖直方向,来校准使掩膜孔投影的类扇形投影像清晰的投影到样品上表面,即样品表面所投影的类扇形投影形状轮廓清晰,大小与聚焦物镜的缩小倍率相符;
(5)旋转台轴心的校准:开启加工台上的旋转台,首先采用低转速及低脉冲频率的激光脉冲进行同步刻蚀,通过由同轴观察摄像头所组成的实时观察***来观察激光在样品表面的刻蚀轨迹,同时驱动三维微移动加工台的两个水平方向的来调节旋转台旋转中心的位置,使旋转台旋转中心向类扇形投影像的圆心靠拢;待其接近时,转台旋转及激光器暂停,然后进行微调,转台每旋转90°后进行一次刻蚀,旋转一周后,微调三维微移动加工台的两个水平方向,最终使旋转台的旋转中心和投影刻蚀光斑类扇形投影像的圆心重合;
(6)微透镜的刻蚀加工:更换一块新的清洁后的且厚度与校准时所用样品相同的有机玻璃板,选择合适的旋转台转速、激光刻蚀脉冲频率及单脉冲能量,采用同步刻蚀的模式,设置转台旋转量为1周,然后开始刻蚀加工微透镜,刻蚀过程中,样品材料随旋转台同步旋转,投影光斑相对于有机玻璃板围绕旋转台的旋转中心进行旋转刻蚀加工,由于沿径向的各位置所积累下来的平均曝光量不一样,刻蚀量也不一样,所以形成不同曲率的微透镜;
(7)微透镜的抛光处理。
3.按照权利要求2的方法,其特征在于,对于微透镜阵列的加工,其中的每个微透镜的加工重复步骤(6)、(7),待一个微透镜加工完毕后,通过调节二维微移动台来改变微透镜的加工位置,以此进行下去,最后获得微透镜阵列。
4.按照权利要求2或3的方法,其特征在于,步骤(5)低转速为6°-24°/s,低脉冲频率为1-4Hz。
5.按照权利要求2或3的方法,其特征在于,三维微移动台的Z轴方向即竖直方向是用来校准调节刻蚀加工面的位置,X、Y轴是用来调节旋转台的旋转轴的位置;旋转台是用来旋转待加工的有机玻璃板,使投影光斑相对于转台的轴产生旋转,以此来刻蚀加工微透镜;二维微移动台是用来调节PMMA样品表面微透镜的加工位置,以此来实施微透镜阵列的加工。
6.按照权利要求2或3的方法,其特征在于,类扇形孔结构的直径边为向外的凸边和向内的凹边。
CN201510330967.0A 2015-06-15 2015-06-15 一种准分子激光旋转刻蚀快速制作有机玻璃曲率可调微透镜的方法 Expired - Fee Related CN105108347B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510330967.0A CN105108347B (zh) 2015-06-15 2015-06-15 一种准分子激光旋转刻蚀快速制作有机玻璃曲率可调微透镜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510330967.0A CN105108347B (zh) 2015-06-15 2015-06-15 一种准分子激光旋转刻蚀快速制作有机玻璃曲率可调微透镜的方法

Publications (2)

Publication Number Publication Date
CN105108347A true CN105108347A (zh) 2015-12-02
CN105108347B CN105108347B (zh) 2017-08-25

Family

ID=54656574

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510330967.0A Expired - Fee Related CN105108347B (zh) 2015-06-15 2015-06-15 一种准分子激光旋转刻蚀快速制作有机玻璃曲率可调微透镜的方法

Country Status (1)

Country Link
CN (1) CN105108347B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106094447A (zh) * 2016-08-15 2016-11-09 东莞同济大学研究院 一种光刻机及方法
CN107322167A (zh) * 2017-07-10 2017-11-07 北京工业大学 一种在玻璃表面产生规则纹理结构的方法
CN107414284A (zh) * 2017-09-04 2017-12-01 北京工业大学 一种准分子激光辅助微铣削加工方法与装置
CN108838515A (zh) * 2018-07-01 2018-11-20 北京工业大学 一种准分子激光加工锥形微孔的方法及装置
CN109000591A (zh) * 2018-06-26 2018-12-14 中国科学院苏州生物医学工程技术研究所 一种偏心差测量仪
CN109137059A (zh) * 2018-10-12 2019-01-04 湖南文理学院 一种硅基纳米多孔硅单凸透镜的制备方法
CN109234791A (zh) * 2018-10-12 2019-01-18 湖南文理学院 一种制备纳米多孔硅双凸透镜的方法
CN110290759A (zh) * 2016-07-01 2019-09-27 李硕俊 一种激光三维处理***
CN110921613A (zh) * 2019-11-21 2020-03-27 武汉大学 电磁场控制等离子体的激光掩膜刻蚀方法以及***
CN111451629A (zh) * 2020-04-20 2020-07-28 中国科学院合肥物质科学研究院 一种准分子激光后端光路***
CN111558772A (zh) * 2020-04-23 2020-08-21 中国科学院西安光学精密机械研究所 一种激光二极管光束指向调节装置及调节方法
CN112453688A (zh) * 2020-12-01 2021-03-09 强一半导体(苏州)有限公司 Mems探针激光刻蚀装置用光学准焦结构
CN112453692A (zh) * 2020-12-01 2021-03-09 强一半导体(苏州)有限公司 一种mems探针激光刻蚀方法
CN113909696A (zh) * 2021-08-24 2022-01-11 清华大学 镜面加工装置
CN114924406A (zh) * 2022-07-22 2022-08-19 北京大学长三角光电科学研究院 微型反射镜阵列加工方法及***
CN115077424A (zh) * 2022-07-15 2022-09-20 南昌昂坤半导体设备有限公司 一种实时晶圆片表面曲率检测装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124462A (ja) * 2003-10-23 2005-05-19 Kagome Co Ltd 容器詰め無菌米飯の製造方法及び容器詰め無菌米飯
CN102607454A (zh) * 2011-02-24 2012-07-25 南京理工大学 光学自由曲面干涉检测装置
US20130121016A1 (en) * 2010-07-15 2013-05-16 Lg Chem., Ltd Optical film having improved optical performance, and backlight unit comprising the same
CN103253851A (zh) * 2013-04-27 2013-08-21 北京工业大学 一种掩膜贴片选区co2激光辐照制作玻璃微透镜的方法
CN103797149A (zh) * 2011-09-16 2014-05-14 株式会社V技术 蒸镀掩膜、蒸镀掩膜的制造方法及薄膜图案形成方法
US20140313697A1 (en) * 2012-01-13 2014-10-23 Lg Chem, Ltd. Micro lens array sheet and backlight unit comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124462A (ja) * 2003-10-23 2005-05-19 Kagome Co Ltd 容器詰め無菌米飯の製造方法及び容器詰め無菌米飯
US20130121016A1 (en) * 2010-07-15 2013-05-16 Lg Chem., Ltd Optical film having improved optical performance, and backlight unit comprising the same
CN102607454A (zh) * 2011-02-24 2012-07-25 南京理工大学 光学自由曲面干涉检测装置
CN103797149A (zh) * 2011-09-16 2014-05-14 株式会社V技术 蒸镀掩膜、蒸镀掩膜的制造方法及薄膜图案形成方法
US20140313697A1 (en) * 2012-01-13 2014-10-23 Lg Chem, Ltd. Micro lens array sheet and backlight unit comprising the same
CN103253851A (zh) * 2013-04-27 2013-08-21 北京工业大学 一种掩膜贴片选区co2激光辐照制作玻璃微透镜的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
初新俊: "大功率半导体激光器列阵的光纤双向耦合研究", 《北京工业大学硕士论文》 *
大功率半导体激光器列阵的光纤双向耦合研究;初新俊;《北京工业大学硕士论文》;20060501;第5章第5.2节 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110290759A (zh) * 2016-07-01 2019-09-27 李硕俊 一种激光三维处理***
CN106094447B (zh) * 2016-08-15 2018-11-30 东莞同济大学研究院 一种光刻机及方法
CN106094447A (zh) * 2016-08-15 2016-11-09 东莞同济大学研究院 一种光刻机及方法
CN107322167A (zh) * 2017-07-10 2017-11-07 北京工业大学 一种在玻璃表面产生规则纹理结构的方法
CN107414284A (zh) * 2017-09-04 2017-12-01 北京工业大学 一种准分子激光辅助微铣削加工方法与装置
CN109000591A (zh) * 2018-06-26 2018-12-14 中国科学院苏州生物医学工程技术研究所 一种偏心差测量仪
CN108838515A (zh) * 2018-07-01 2018-11-20 北京工业大学 一种准分子激光加工锥形微孔的方法及装置
CN109137059A (zh) * 2018-10-12 2019-01-04 湖南文理学院 一种硅基纳米多孔硅单凸透镜的制备方法
CN109234791A (zh) * 2018-10-12 2019-01-18 湖南文理学院 一种制备纳米多孔硅双凸透镜的方法
CN109234791B (zh) * 2018-10-12 2020-10-27 湖南文理学院 一种制备纳米多孔硅双凸透镜的方法
CN110921613A (zh) * 2019-11-21 2020-03-27 武汉大学 电磁场控制等离子体的激光掩膜刻蚀方法以及***
CN111451629A (zh) * 2020-04-20 2020-07-28 中国科学院合肥物质科学研究院 一种准分子激光后端光路***
CN111558772A (zh) * 2020-04-23 2020-08-21 中国科学院西安光学精密机械研究所 一种激光二极管光束指向调节装置及调节方法
CN112453688A (zh) * 2020-12-01 2021-03-09 强一半导体(苏州)有限公司 Mems探针激光刻蚀装置用光学准焦结构
CN112453692A (zh) * 2020-12-01 2021-03-09 强一半导体(苏州)有限公司 一种mems探针激光刻蚀方法
CN113909696A (zh) * 2021-08-24 2022-01-11 清华大学 镜面加工装置
CN115077424A (zh) * 2022-07-15 2022-09-20 南昌昂坤半导体设备有限公司 一种实时晶圆片表面曲率检测装置及方法
CN114924406A (zh) * 2022-07-22 2022-08-19 北京大学长三角光电科学研究院 微型反射镜阵列加工方法及***

Also Published As

Publication number Publication date
CN105108347B (zh) 2017-08-25

Similar Documents

Publication Publication Date Title
CN105108347A (zh) 一种准分子激光旋转刻蚀快速制作有机玻璃曲率可调微透镜的方法
CN104029394B (zh) 一种提高激光扫描成像光固化快速成型效率的方法
CN102248309B (zh) Ccd装置辅助定位的晶圆激光划片方法
US6597510B2 (en) Methods and apparatus for making optical devices including microlens arrays
Scheiding et al. Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies
Liu et al. Influence of machining errors on form errors of microlens arrays in ultra-precision turning
CN102501143B (zh) 微结构件精密加工的ccd对刀与监控装置
WO2014058010A1 (ja) 光学組立体の製造方法および組立用レンズの設計方法
Huang et al. Design and fabrication of a micro Alvarez lens array with a variable focal length
CN111168232A (zh) 一种利用飞秒激光进行纳米精度制备的方法
Hua et al. Free‐form micro‐optics out of crystals: femtosecond laser 3D sculpturing
US20190016074A1 (en) Reusable castings molds
CN107030379A (zh) 一种激光加工头、激光加工装置及其加工方法
CN106773025A (zh) 调焦镜头及振镜式激光扫描***
CN105607163B (zh) 一种具有微透镜或微透镜阵列结构的表面的压痕制造方法
CN104678714A (zh) 定位装置、光刻装置和物品制造方法
CN108873805A (zh) 一种慢刀伺服车削加工微透镜阵列刀具路径优化方法
CN205393786U (zh) 一种激光加工头、激光加工装置
CN108161230A (zh) 一种准3d加工球冠栅网的装置及其方法
Zhang et al. Highly uniform manufacturing method for large-area microlens arrays
CN110837215A (zh) 一种可实现长焦深小焦斑结构的高效率激光直写光刻方法
CN115055814A (zh) 工件五轴调整架、五轴运动装置、激光加工***和方法
CN108838515A (zh) 一种准分子激光加工锥形微孔的方法及装置
CN103197509A (zh) 一种回转面用激光旋转直接曝光成像装置及方法
CN114178723A (zh) 一种折叠光路激光切割头调试方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170825

Termination date: 20200615