CN1050525C - Single bed pressure swing adsorption system and process - Google Patents

Single bed pressure swing adsorption system and process Download PDF

Info

Publication number
CN1050525C
CN1050525C CN94115637A CN94115637A CN1050525C CN 1050525 C CN1050525 C CN 1050525C CN 94115637 A CN94115637 A CN 94115637A CN 94115637 A CN94115637 A CN 94115637A CN 1050525 C CN1050525 C CN 1050525C
Authority
CN
China
Prior art keywords
product
pressure
bed
gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN94115637A
Other languages
Chinese (zh)
Other versions
CN1101589A (en
Inventor
K·A·拉萨拉
H·R·肖布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair Technology Inc
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22373040&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1050525(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Publication of CN1101589A publication Critical patent/CN1101589A/en
Application granted granted Critical
Publication of CN1050525C publication Critical patent/CN1050525C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/053Pressure swing adsorption with storage or buffer vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/013Separation; Purification; Concentration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • B01D2253/1085Zeolites characterized by a silicon-aluminium ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40028Depressurization
    • B01D2259/4003Depressurization with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/4005Nature of purge gas
    • B01D2259/40052Recycled product or process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40077Direction of flow
    • B01D2259/40081Counter-current

Abstract

A single bed, air separation PSA system utilizes an external product surge tank to supply product oxygen and purge gas to the adsorbent bed. An equalization tank supplies void space gas to the bed for repressurization purposes.

Description

Single bed pressure swing adsorption system and method
The present invention relates to be used for the pressure swing adsorption system of air separation.More particularly, relate in the process of recovery oxygen from air the application of single bed pressure swing adsorption system.
The method and system of transformation absorption (PSA) provides a kind of industrial attractive separation and the method for at least a component of purifying from the admixture of gas raw material that contains at least a difficult absorbed component and at least a easy absorbed component.Under higher adsorptive pressure, in adsorbent bed, adsorb, and adsorbent bed pressure is reduced to lower desorption pressure, then make easy adsorbed components from adsorbent bed desorption.The operation of absorption/desorption PSA method is known, for example discloses a kind of PSA system that contains four or more a plurality of beds in Wagner patent US 3,430,418.In this patent, the PSA method is normally carried out with following operation sequence on the basis of circulation, this operation sequence is included in (1) in each bed is introduced in bed along with feed gas feed end, pressurization absorption takes place, and difficult absorbed component discharges as the product end of product gas from bed simultaneously; (2) along with void gas (voidspace gas) discharges from the product end of bed, the following current middle pressure that reduces pressure; (3) along with the feed end of easy absorbed component from bed discharges, countercurrent depressurization is to lower desorption pressure; (4) the optional purging under lower desorption pressure along with sweep gas passes to the product end of bed from the feed end of bed, further deviate from the easy absorbed component from adsorbent bed desorption; (5) boost to higher adsorptive pressure again from lower desorption pressure, thereby, this circulation can be repeated along with other feed gas passes to bed.The space gas of emitting in the following current depressurization step is generally used for the pressure balance between each in multibed system, and enters bed as purge gas under lower desorption pressure.The multi-form operation sequence of this class is used to contain the system of one or more adsorbent beds.
In many chemical industry refinery, Metal Production and other industrial application, the high-purity gas logistics is generally used for various purposes, and for example high purity oxygen gas is used for various industries, as chemical process, steel mill, paper mill, lead and glass production process.The purity that many these class purposes generally need oxygen is in the 90-93% scope, and flow is up to 100,000ft 3/ hour or higher.PSA technology is very suitable for coming separation of air to produce oxygen and nitrogen with (for example) above-mentioned various treatment technologies and its some improvement technology, is particularly suitable for operation on a small scale because this moment cryogenic air separation plant industrial be infeasible.In this PSA system that designs for preparation high purity oxygen gas product, oxygen is as the difficult absorbed component of air, and nitrogen is as airborne easy absorbed component, it is adsorbent bed to contain a kind of sorbent material that can select to adsorb nitrogen usually, when absorption/desorption circulates in when carrying out in the PSA system, along with bed layer pressure is reduced to lower desorption pressure, described chlorine desorption also shifts out from bed.
In the PSA of PSA-oxygen and other uses, in order to reach lower cost of investment, higher system reliability, it is desirable to design, make, the cost of transportation and equipment drops to minimum.Therefore wish to use the minimum PSA system and method for operating portion number of packages, described functional unit is absorbent container, quantity of sorbent, relevant jar, valve, compression device, process pipelines etc. for example.By selecting the lower method of units of product energy consumption for use, reduce the running cost of PSA system as far as possible.This method that is used to produce oxygen shows high oxygen recovery rate ideally, and its compression device can use lower compression ratio simultaneously.
As in four or the more adsorbent bed PSA system of containing described in the above-mentioned Wagner patent, be used for some gas lock out operation, especially to reach big capacity, be desirable when high-purity and high-recovery.In other purposes, the PSA system that uses two or three be possible also be desirable.The industrial PSA-oxygen purposes that the PSA system with two beds of for example having been found that is used for various reality is very desirable.The feed gas mixtures that separates is compressed to higher pressure usually, is generally several atmospheric pressure, carries out desirable selection absorption then.The high pressure product gas that produces, promptly low optionally oxygen components in the feeding air goes to the downstream for using by a pipeline.In typical 2-bed PSA operation, adopt the condition that surpasses atmospheric pressure.Therefore with regard to whole circulation, part is moved on atmospheric pressure, and part is moved under atmospheric pressure.Separate usually at pressure and take place during very near 1 atmospheric pressure, product gas is compressed to the downstream pressure of requirement then.Found that this is a kind of belt-tightening mode of operation, because the gas that must compress comes down to product, rather than whole feed gas stream.Yet because this PSA process cycles comprises pressure and two conditions of vacuum, therefore will finish this circulation needs two machines, i.e. feed compressor and vacuum blower.Such 2-bed system is 20 for production capacity, 000NCFH-50, and 000NCFH or higher oxygen production device are effective on cost.Be lower than the various uses of this scope for traffic requirement, the cost of investment of 2-bed Vacuum Pressure Swing Adsorption (VPSA) system makes such technology uneconomical.
In order to reduce the initial outlay cost, make the VPSA system be more suitable for purposes in low discharge, single sheet machine embodiment of VPSA has been proposed.Because most of cost of investment of VPSA-oxygen unit relates to each air compressor, container and the cost of the adsorbent that uses in described container, therefore be understandable that, no matter be in surpassing the operated system of atmospheric pressure or in system without vacuum state, if the compressor that comprises in the system and the quantity of absorbent container are reduced half, just can significantly reduce cost of investment.In addition, single PSA system wants much less than manying a needed valve of PSA system.
People such as McCombs are at US4, have described one single PSA system in 561,865.In people's such as McCombs method, when the top pressure of single container during at certain level, the pressure-control valve on the discharging pipeline that is come by the top of adsorbent bed is opened.Gas directly enters outside pressure balancing tank by the discharging pipeline.In people's such as McCombs embodiment, to draw a by-pass line and a check (non-return) valve is housed from the discharging pipeline in the exit of pressure-control valve at this pipeline, this pipeline is connected to the product surge tank.When the pressure in the product surge tank equaled pressure in the compensator, check (non-return) valve was opened, and product gas enters into compensator and product surge tank simultaneously.When bed layer pressure was lower than pressure in the product surge tank, check (non-return) valve can prevent that gas from flowing back to adsorbent bed from the product surge tank.In this device, compensator is the expansion of product surge tank, because these two jars all are forced into identical top pressure, and contains the gas of same purity.People such as McCombs have also mentioned the pressure that used the venting step partly to reduce contactor before vacuumizing.
Though people such as McCombs at the needs of this area to single PSA system, satisfy the demand of low discharge purposes in order to make single such operation, also need to be further improved.More particularly, wish to obtain higher product flow than method and other similar single PSA with people such as McCombs.
Therefore, an object of the present invention is to provide an improved low capacity PSA method and apparatus that is used for the low capacity purposes from air recovery oxygen.
Another object of the present invention provides an improved low capacity reclaims oxygen from air single PSA method and apparatus.
A further object of the present invention provides a single low capacity PSA method and system that reclaims the flow increase of product oxygen from air.
Consider these purposes and other purpose, will be described in detail invention below that its novelty proposes especially in claims.
The present invention adopts single PSA or VPSA method and has the device of two external buffer jars.One of them jar is the external product surge tank, and it provides the purpose product, also provides purge gas to adsorbent bed at PSA or vacuumizing in the step of VPSA operation cycle simultaneously.Second surge tank is used for collecting the void gas of emitting from bed during reducing pressure, and provides space gas to adsorbent bed during boosting again as compensator.
Below with reference to accompanying drawing the present invention is done detailed description, accompanying drawing is the schematic flow diagram that reclaims single sheet machine VPSA system and device particular of oxygen from air.Each purpose of the present invention is by adopting single adsorbent bed PSA or VPSA system to finish, and this system comprises a uniprocessor, and promptly a compressor pressurizes and reduces pressure single adsorbent bed during operation cycle.Usually use a product surge tank and a compensator together, to improve the power demand of the product rate of recovery and system.Compare with single PSA system of the prior art of people's such as McCombs patent representative,, be able to significant improvement on the performance by implementing the present invention.
With reference to accompanying drawing, pipeline 1 is used for feeding air is infeeded feed compressor/vacuum blower unit 2, comprising a dust filtration-gas noise reduction unit 3 and valve 4, with pipeline 5 described unit 2 is linked to each other with 7 with pipeline 6.Pipeline 6 comprises valve 8 and outlet damper unit 9, and gas is emitted from 9 by pipeline 10.Pipeline 7 comprises outlet damper unit 11, is used for the aftercooler 12 and the valve 13 of feed gas cooling.Emit pipeline 14 and comprise valve 15, be connected with pipeline 7.Pipeline 16 comprises valve 17, and it is connected with pipeline 1 in valve 4 downstreams. Pipeline 7 and 16 all is connected on the pipeline 18, and pipeline 18 extends to the bottom of the single adsorbent bed 19 in suitable contactor.Pipeline 20 extends to from described adsorbent bed 19 tops and links to each other with pipeline 24 with pipeline 21 and be connected to compensator 23 and product surge tank 26 respectively, and pipeline 21 comprises valve 22, and pipeline 24 comprises only passs valve 25.Product oxygen is drawn from product surge tank 26 by pipeline 27, is used for the required purposes of downstream process.Pipeline 20 also is connected with pipeline 28, and pipeline 28 comprises valve 29 and extends to described surge tank 26.
In the operating process of adopting the PSA method of system shown in the accompanying drawing, preferably adopt 5 step operation cycle.This circulation comprises following operation sequence: (1) pressurization/product reclaims; (2) part decompression; (3) vacuumize; (4) purge; (5) part pressurization again.
In the operation of the particular of described operation sequence, when just part had been pressurized to the middle pressure of about 68.9kPa again, the first step began at adsorbent bed 19.Along with valve 4 and 13 is opened, valve 8,15,17,22 and 29 cuts out, and is provided with feeding air by feed compressor 2.The orientation of check (non-return) valve 25 should make when the pressure of adsorbent bed 19 during greater than the pressure of product surge tank 26 this valve open.
When feeding air was introduced in the container that contains adsorbent bed 19, pressure in this container raise and equals pressure in the product surge tank 26 up to pressure, generally is about 124.02kPa.Check (non-return) valve 25 is opened then, and product gas (being oxygen) is delivered to product surge tank 26.The volume of product surge tank 26 changes along with the different of the pressure of required product flow and outlet line 27, but must be enough greatly, holding product gas flow from adsorbent bed 19, and the pressure oscillation of Ying Wuda, for example be not more than 27.56-34.45kPa.It also must be able to be contained in the purging air-flow that flows back to absorbent container 19 in the purge step from surge tank 26 simultaneously, and the situation of product flow break in the pipeline 27 can not occur.Continue to provide product gas to reach higher adsorptive pressure like this, be generally about 155.025kPa up to the pressure of the container top of adsorbent bed 19.This moment, operation cycle proceeded to second step of operation sequence.In addition, also the available pressure control valve replaces check (non-return) valve, makes the constant pressure that keeps container during the product of circulation step is made, further to improve one's methods.
Should be noted that in the step of the remainder of operation sequence, product surge tank 26 is still for downstream application provides product oxygen, and the not influence of the container of sorbent suspension bed 19 and the miscellaneous equipment relevant with it.In the method, be generally the running time of the first step about 18-25 second.The temperature of feeding air is corresponding to the temperature of environment, but the temperature of feed gas that enters adsorbent bed 19 is usually above 16.7~22.2 ℃ of environment temperatures, and the Temperature Distribution in absorbent container is: the bottom temp at adsorbent bed is lower than about 5.56~11.1 ℃ of environment temperature, be similar to high about 5.56 ℃ of environment temperature or height ratio environment temperature at the middle part of adsorbent bed, be higher than about 16.7~22.2 ℃ of environment temperature at the top of adsorbent bed.These temperature have little variation in the whole operation program.The gas feed rate that gas adopted is directly relevant with the product flow that requires.For the 90% purity product oxygen rate of recovery is 50% o'clock, and the flow of feeding air is usually than high about 9.5 times of corresponding oxygen product flow.
When second in operation sequence step (i.e. part decompression) when beginning, valve 13 cuts out and valve 15 is opened.This makes feed compressor 2 be in no-load condition, promptly obtains air and puts back to atmosphere from atmosphere.Valve 22 is opened, and the higher adsorptive pressure that the first step of adsorbent bed 19 from operation sequence reaches begins step-down.Space gas enters compensator 23 from the void volume discharge of adsorbent bed 19 and by pipeline 21.The volume of this jar will be along with the scale of required device, i.e. the difference of product flow and changing, but described compensator 23 requires enough greatly, can under the pressure of about 99.91~103.35kPa, hold described space gas from the adsorbent bed container.Concentration of oxygen is generally about 85-89% in this jar.Because the pressure of the container of adsorbent bed 19 will be brought down below the pressure of product surge tank 26, check (non-return) valve 25 will cut out.During this operating procedure, valve 8,17,29 keeps cutting out, and this step continues, and is reduced to middle pressure up to the pressure of container, and as 110.24kPa, the pressure in the compensator 23 is elevated to 99.91~103.35kPa simultaneously.In second step, promptly be about 4-7 second the running time of part depressurization steps.Operation sequence entered into for the 3rd step then.Temperature during the temperature classes of the container of adsorbent bed 19 during second step is similar to the above-mentioned first step.
Enter compensator 23 when the container of adsorbent bed 19 has discharged a part of space gas, and after the pressure of adsorbent bed container dropped to the middle pressure of described about 110.24kPa, operation cycle entered into the 3rd step of operation sequence, promptly container vacuumizes.Operation is during third step, and valve 8 and 17 is opened, valve 4,15,13,22 and 29 and check (non-return) valve 25 close.Gas in the adsorbent bed container 19 is drawn from the bottom of adsorbent bed container 19 as a result, and by the import of the valve in the pipeline 16 17 to compressor 2.This space gas is vented to atmosphere by exit silencer 9.So configuration pipeline and valve make compressor 2 to be evacuated down to container 19 to be lower than atmospheric pressure.During whole the vacuumizing of operation cycle, the average composition that vacuumizes gas is approximately 90% nitrogen and 10% oxygen.Performance when being used for vacuum in order to improve compressor can be injected sealing water with hermetic compressor 2 interlobate spaces in the import of compressor.Method with water-stop can be moved compressor better under vacuum.When container is pumped to pressure and is lower than atmospheric pressure, cause in the space of adsorbent nitrogen partial pressure poor, thereby make nitrogen from the adsorbent surface desorption, thereby make adsorbent reactivation preparing from adsorbing nitrogen again the feeding air next time, for the application in downstream provides semicontinuous mobile product oxygen.Container vacuumizes step to be continued to carry out, and meets the requirements of lower desorption pressure, for example vacuum desorption pressure, 34.45kPa according to appointment up to the pressure of container.About 30-40 second running time of this circulation step.Operation cycle enters into the 4th step of whole operation program then.
The 4th operating procedure is the container purge step under low desorption pressure.For this reason, valve 29 is opened, and a little bypass product gas flow enters the top of single adsorbent bed container 19 from product surge tank 26.The oxygen concentration of this air-flow is 90-93%, is used for blowing down the most of remaining space gas of container, and space gas at this moment mainly is made up of the nitrogen of desorption.Purge air-flow and replace the desorption gas that is present in container 19 spaces, owing to purge the nitrogen that does not contain high concentration in the air-flow, and sorbent material does not have the selection compatibility to oxygen, and therefore when the pressure in the container begins to raise, space gas will can not be adsorbed onto the surface of sorbent material again.The container purge step is carried out under constant vacuum or constant desorption pressure, and valve 8 and 17 keeps opening state therebetween, and control valve 29 is opened, other valve Close All.When the most of desorption gas in the adsorbent space in the container by after the product gas displacement, operation sequence enters into the 5th operating procedure, i.e. part pressurization steps again.In the 4th step, promptly the average operating time of container purge step is about 7-10 second.Keep the vacuum substantially constant in the step in order to vacuumize at container, as 34.45kPa, the flow of the desorption gas of amount discharge container is approximately equal to and vacuumizes flow.
The 5th step of operation sequence is a part pressurization steps again, and valve 8,17 and 29 cuts out therebetween, and valve 4 and 15 is opened, and makes compressor 2 running lights.Control valve 22 is opened to the valve position of setting.During second step (being the part depressurization steps) of operation sequence, collect the space gas in the compensator 23, during part is boosted step again, be used to make absorbent container 19 to boost to the middle pressure level again, as 68.9kPa.Pressure in the compensator 23 descends, and in typical VPSA used, this pressure was reduced to 65.46kPa from about 103.35kPa.The running time of this step is identical with the running time of part depressurization step basically, as 4-7 second.In case container 19 is pressurized to described middle pressure level again, then the whole operation program is finished, and circulation proceeds to its first step again.Continue operation PSA or VPSA method with other feeding air, operation sequence is carried out repeatedly.
When five of particular of the present invention went on foot each EOS of operation sequences, the approximate pressure of adsorbent bed 19, product surge tank 26 and compensator 23 was as shown in the table.
Table
Pressure when each operating procedure finishes
Pressure (kPa)
Step Time (second) Operating procedure Adsorbent bed The product surge tank Compensator
1 18-25 Pressurization/product reclaims 155.03 124.02- 151.58 68.9
2 4-7 The part decompression 110.24 148.14 96.46
3 30-40 Container vacuumizes 34.45 134.36 96.46
4 7-10 Container purges 37.90 129.19 96.46
5 4-7 Part is boosted again 65.46 127.47 68.9
Especially in the VPSA operation, provide the gas that boosts again that the rate of recovery of product is improved by adopting an independent gas balance jar, power requires to reduce.When absorbent container is in higher adsorptive pressure, and the part step-down of container is when beginning, and the gas of discharging from adsorbent bed is collected in the described compensator.The gas of collecting is space gas, and it can be the arbitrary gas that comprises in any void volume of container adsorbent (void volume) that produced of adsorbent space, and when the bed pressure drop is hanged down all nitrogen under the adsorbent surface desorption.The purity of space gas is different from the purity of gas in the product surge tank in the compensator, and this is because the gas that a part is collected in the compensator is the nitrogen of desorption, thereby makes the nitrogen that contains higher concentration in the gas of space.Usually the purity of oxygen is about 85-89% in compensator, and the product gas in the product surge tank has higher oxygen purity, is generally 90-93%.When absorbent container through after vacuumizing and being in negative pressure, the space gas with in this compensator or the title receiving tank is pressurized to about 68.9kPa pressure again to container part.By from part depressurization step circulation space gas, rather than resemble the prior art the air-blowing of described space in atmosphere, the oxygen molecule of the system of entering into is recovered more, thereby improves product yield.The raising of product yield means that under the situation of equal air intlet flow the flow of product oxygen improves.The raising of product flow causes the specific energy consumption of PSA system lower.Add compensator in the PSA method, especially add compensator in the VPSA method, help improving product yield and save specific energy consumption, compare with these two significant operational advantages, the cost of compensator is less important comparatively speaking.
Another superiority of the present invention is in vacuumizing step, and the product oxygen in the usefulness product surge tank is as purge gas.For example when absorbent container is in condition of negative pressure, the nitrogen that is adsorbed onto adsorbent surface is because its partial pressure difference and desorption.The nitrogen of desorption is present in the space of sorbent material in the container.Ideal situation is to shift out the desorption nitrogen of the overwhelming majority from absorbent container, because pressure one raises in the container, dividing potential drop will make nitrogen remaining in container be adsorbed onto the surface of adsorbent again, thereby make adsorbent can not get holomorphosis.Product gas by introducing oxygenous 90-93% from the product surge tank is as sweep gas, remains in nitrogen in the container and is rinsed out the space and replaced by product oxygen.When adsorbent bed boosted subsequently again, space gas mainly was made up of oxygen, and its also no longer absorption makes the surface of adsorbent keep the holomorphosis state, to prepare next feed step when the pressure in the container begins to raise.Usually, the oxygen purity of purge gas is high more, and purge step is effective more, because the nitrogen of staying in the container is many more, the nitrogen that is adsorbed onto again on the adsorbent surface in part is boosted step again will be many more, thereby make the regeneration validity of adsorbent surface lower.In the sweep gas in being incorporated into container possible nitrogen gas concn hour, required air separation will be able to further reinforcement.
Implementing to find that the product flow velocity is compared with prior art can improve 20-25% when of the present invention, the technology that has earlier is as boost the again source of the gas of gas of bed with product gas.And product gas may cause having only in the product gas total amount sub-fraction to can be effectively used to the purposes in downstream as the source of the gas that boosts again.Boost by with void gas container being carried out part, all product gas that method of the present invention produced can both be used for required downstream use effectively again.This provides a very distinctive performance advantage for single PSA technology.
When enforcement is of the present invention, can use any suitable sorbent material that from air, to select absorption nitrogen.Molecular sieve can use easily such as 5A and 13X zeolite molecular sieve material as the well-known.
The zeolite molecular sieve that can adopt routine is as the sorbent material in the invention process, and simultaneously, the special material of modifying of various warps also can be used for selecting absorption nitrogen from feeding air, and is difficult for the oxygen components of absorption as purpose product gas in the recovery air.Therefore, adsorbent can be lithium cation form or its mixed-cation form of X zeolite in specific embodiment, as the form of lithium and calcium.Find that lithium X (being LiX) adsorbent when absorption nitrogen from other gas of the molecular species (as oxygen) that contains the lower or difficult polarization of polarity of air or other, shows desirable capacity and selectivity.
Used in the embodiment of this invention LiX sorbent material is the lithium cation form of X zeolite, wherein Si/Al in the skeleton 2Mol ratio is about 2.0 to 3.0, and is preferred 2.0 to 2.5, and wherein at least 88%, and preferably at least 90%, more preferably at least 95% AlO 2Tetrahedron element is combined with lithium cation.So the nitrogen adsorption character of the LiX of height exchanging form generally speaking is impossible from wherein 86% equivalent or cation lithium still less and all the other results that mainly to be the LiX material of sodium obtain predict.Also further find AlO in the X-zeolitic frameworks 2The relative scale of tetrahedron element is increased to 50% from 44.4% of total tetrahedron element, and while Li +The also corresponding increase of ion (is the Li of every kind of situation +The ion equivalent percent is all identical), also help to improve zeolite to nitrogen adsorption capacity and selectivity, this value added is more much bigger than only increasing the corresponding value added that the cation quantity in the LiX material shown.
Be used for implementing the process of LiX material of the present invention in preparation, can use common available X zeolite parent material.It is SiO that two kinds of such materials are arranged 2/ Al 2O 3Than two kinds of X zeolites that are 2.5 and 2.0, wherein mainly contain sodium cation, i.e. the NaX material.2.5NaX molecular sieve can, carry out hydro-thermal and be synthesized into, reactant mixture (oxide mol ratio) composed as follows as reagent with sodium metasilicate, sodium aluminate and water with reference to the U.S. Pat 2,882,244 of milton under about 100 ℃
3.5Na 2O∶Al 2O 3∶3.0SiO 2∶144H 2O
2.0NaX material can be synthetic with the potassium-na form that mixes.At first in the 267g50%NaOH aqueous solution, dissolve 208g Al (OH) 3, form first solution, ie in solution (a) by heating and stirring.The KOH sheet of dissolving 287g 85.3% forms solution (b) with the solution of formation and the NaOH aqueous solution of 671g 50% then in 1000g water.Solution (a) is slowly joined formation solution (c) in the solution (b), and be cooled to 4~12 ℃.With 1, the sodium metasilicate (9.6%Na of 131.7g water dilution 453.25g 40-grade 2O; 30.9%SiO 2) formation solution (d).Join the solution (c) of cooling in the solution (d) in a blender and mixed on low speed 3 minutes.In last mixing, cooling off and avoiding producing excessive mechanical energy is the key factor for preparing the high-quality product.Become glue after 4 minutes, to take place.Glue is at 36 ℃ of aging 2-3 days and 70 ℃ of boilings (digest) 16 hours.By filtering to isolate required molecular sieve, filter cake washes to the NaOH of the mother liquor volume aqueous solution (PH=12) with 7 times then.Product after the flushing is (PH=10) pulp again in 4 liters of NaOH solution, filtered and recycled and water flushing then.Repeat pulp and preferably carry out twice again, isolated product is at air drying.The pulp and in slurry, kept 21 hours in 100ml 1%NaOH solution of dried product at 90 ℃.Filter cake after the filtration is 60 ℃ of (PH=12) pulps 30 minutes again in 1000mlNaOH solution, and filters.Repeat the pulp process and preferably repeat 2 times again, then, the filtered and recycled solid is also used the NaOH aqueous solution (PH=9) washing, in air drying.
Can make zeolite " pre-type (preform) " sintered body with the 2.5NaX for preparing above: the initial zeolite crystal of caustic liquor washing of at first using PH=12 and being made up of NaOH and water basically is washed with water to PH=9 then.Zeolite crystal after the washing and industrial available a kind of kaolin type clay one Avery clay fusion, its ratio is a 80Wt% zeolite 20Wt% clay.But the zeolite clay mixture mixes with enough water and produces the extruded material with enough initial strengths then, make the sheet of extruding to stand subsequently calcination steps, in roasting process, the kaolin type clay about 650 ℃ after about 1 hour, transform into active metakaolin form (meta Kaolin form).After the roasting, the bonding sinter that obtains of cooling, and in caustic solution in water, flood and boiling in about 100 ℃, make the metakaolin main body change into zeolite crystal, mainly be the X zeolite crystal.Sinter after the boiling takes out from the causticity cooking liquor, and is that 9~10 aqueous sodium hydroxide washes is washed and at air drying with fresh PH once more.The particle that dried product is broken and screening formation has convenient size is as 16 * 40 orders.
So the particle of sieve mesh is in a vacuum in 375 ℃ of heating activation in about 2.5 hours.Activation process should be very careful, corrodes so that zeolite NaX crystal is avoided the excessive hydro-thermal of the steam that formed by the water that is mingled with and/or adsorbs.The material that has activated that forms is exactly the 2.5NaX active material.
When preparation LiX material, non-activated screening particle can carry out ion-exchange, thus particle in a glass column in 80 ℃, contact with the 1.0M lithium chloride aqueous solution of adjusting PH to 9.0 with LiOH.Use a large amount of lithium chloride solutions, make these zeolite granulars be preferably in lithium ion interior and more excessive 4 times during about 14 hours and contact than theoretical amount.The ion exchanged soln that flows out pillar no longer recycles.Product after the ion-exchange that obtains washes with water and transfers PH to 9 with LiOH, finds to have 94% ion to exchange.
Use is during according to the low silica 2.0NaKX material of above-mentioned preparation, and the available if desired lithium chloride aqueous solution (adjusting PH to 9 with LiOH) carries out ion-exchange, makes alkali metal cation in the material by Li +Ion substitutes onto the degree greater than 99% equivalent.The material of this powder type comprises 2.0LiX material (99%).
Those skilled in the art will figure out in the preparation process of LiX, or in the preparation of mixed-cation adsorbent, some details can be carried out various variations and change, and these do not constitute the part of the present invention that relates to improved psa process and system.Based on this understanding, should be noted that for example the 2.5NaX material also can be by above-mentioned column technology, use less than or carry out ion-exchange greater than 4 times to the LiCl of the theoretical amount aqueous solution (adjusting pH to 9) with LiOH, thereby form product with different lithium cation amount.Be appreciated that also required LiX material also can make by replacing lithium chloride to carry out ion-exchange with lithium carbonate or other lithium salts.Equally, LiX material that obtains or mixed-cation material (as the LiCaX material) have constituted the required adsorbent that is used for specific embodiment of the present invention, these materials can use under various operating conditions, these operating conditions require (as the pressure or the temperature conditions of special feeding gas or product gas) corresponding to the practical operation of given purposes, or/and the separation of level of given purposes and the rate of recovery.
In not exceeding the listed scope of the present invention of claims, can carry out various other changes for details of the present invention.As, using the absorbent container of tubular usually, and be provided with tray shape end socket at its top and bottom, gas flows vertically.Perhaps can use such absorbent container, wherein gas radially flows, and promptly gas flows to outer cylindric periphery and enters in the inner cylinder, collects product gas at the internal layer cylinder.Because flow area is the cross section of the flow path of variation, therefore can reduces, thereby further reduce power consumption with the relevant pressure loss that flows.In addition, in order to adorn more adsorbent and to produce more product, absorbent container axially can be very long, and the length of flow path remains the radius of container, and the pressure relevant with Radial Flow falls and remains unchanged.According to the bed scale coefficient (BSF) of 1000 lb molecular sieve/TPD product stream, in absorbent container, adorn 15,000~80, during the 000lb adsorbent of molecular sieve, the airflow range of this class vessel configuration is 15,000~80,000 NCFH oxygen flow.
Should be noted that the VPSA device of the adsorbent that uses the lithium exchange, under warm weather condition, when feeding temperature in the charging aftercooler during available cooling water control, device moves very goodly.Yet in cold weather, when environment temperature was near or below freezing point, adsorbent temperature descended, and descended with the performance of the adsorbent of lithium exchange.In order to improve the temperature of absorbent container, the feeding air that enters container can be heated to and approach the temperature that reached under the warm environment.Being not more than under 23.9~26.7 ℃ of weather conditions this in the summer environment temperature can add a preheater in the import of compressor and replace the charging aftercooler.
In order to make the product flow unit more economical effectively, charging aftercooler and preheater can be withdrawn from particular of the present invention.The decline of the product rate of recovery that causes owing to the variation of the variation of environmental condition and the vessel temp that causes is not sufficient to illustrate that it is necessary using above-mentioned add-on assemble in PSA or the VPSA system.Without the situation of inlet air noise reduction/damper also within the scope of the invention.Because the pulsation effect of gas is not removed inlet air noise reduction/damper for large-scale device suggestion, but can for the device of the less product flow oxygen product of 5~10TPD scope (promptly).Charging/vacuum blowing muffler (being assembly 9 and 11) merges, and can simplify PSA or VPSA system, and save totle drilling cost in actual industrial embodiment of the present invention.
Under the situation of the product that needs higher degree, can adopt for the 6th step, the step of promptly boosting again for the second time.Accept from compensator after oxygen purity is 85~89% the gas that boosts at container, the 6th step will be adopted the oxygen (as 90~93% purity) that makes higher degree from a small amount of purging air-flow of product surge tank, enter the void area (void area) of absorber.Like this, the average purity in the space improves, and produces the oxygen product of higher degree, and needn't reduce the product flow for reaching this oxygen product purity, only some decline aspect product yield.
The present invention makes significant improvement to single PSA and VPSA.By improving the product flow, improve the adsorption capacity of single adsorbent bed, the present invention has improved single operating characteristics and has improved the desirability of using low-cost single bed PSA and VPSA system in the actual air lock out operation.

Claims (12)

1. be used for reclaiming the pressure swing absorption process of oxygen, comprise from air:
(a) air feed enters and can select to adsorb the feed end that nitrogen is single of the sorbent material of airborne easy absorbed component, the pressure of bed is elevated to higher adsorptive pressure from middle pressure, and oxygen is airborne difficult absorbed component enters the approaching described higher adsorptive pressure of pressure from the product end of bed product surge tank simultaneously;
(b) along with void gas (void space gas) discharges from the product end of bed, make the following current middle pressure that reduces pressure, described void gas enters compensator;
(c) along with the feed end of other gas from bed discharges, make bed be depressured to lower desorption pressure from the middle pressure adverse current;
(d) effluent of product gas is as purge gas, and the product end that enters bed from the product surge tank is in the nitrogen of desorption in the void volume from bed of low desorption pressure with displacement, and the desorption nitrogen of displacement is emitted from the feed end of bed;
(e) from described compensator with void gas be incorporated into the bed product end, make the bed pressure be elevated to described middle pressure from lower desorption pressure;
(f) other feeding air enters into described single feed end, continues the cycling of (a)-(e) step; Reclaim product oxygen with the product flow that increases from air whereby, the adsorption capacity of single sorbent material also is improved simultaneously.
2. by the process of claim 1 wherein that described low desorption pressure is negative pressure.
3. by the method for claim 2, wherein higher adsorptive pressure is higher than atmospheric pressure, and described middle pressure is lower than atmospheric pressure.
4. by the process of claim 1 wherein that sorbent material comprises zeolite molecular sieve material.
5. by the method for claim 1, and be included in step (e) and void gas be incorporated into after the product end of bed, a spot of product gas is guided to the product end of bed from the product surge tank, whereby to improve the average purity of oxygen in the bed space.
6. from feeding air, reclaim the pressure swing adsorption system of oxygen, comprising:
(a) can select to adsorb single of sorbent material that nitrogen is airborne easy absorbed component;
(b) hold the compensator of the void gas of emitting from the product end of described bed;
(c) hold the product surge tank of the product oxygen of emitting from the product end of described bed;
(d) void gas is delivered to compensator and product oxygen is delivered to the line device of product surge tank;
(e) be used to control void gas to compensator flow, product oxygen is to the product surge tank flows and the effluent of described void gas and described product oxygen flows to the product end of described bed from described each jar control device;
(f) air enters the feed compressor device of described bed feed end; With
(g) void gas and the nitrogen line device of emitting from the feed end of bed,
Product oxygen can obtain with the product flow that increases reclaiming in pressure swing adsorption system whereby, and the adsorption capacity of single sorbent material also is improved simultaneously.
7. by the system of claim 6, wherein control product oxygen and comprise check (non-return) valve to the described control device that the product surge tank flows.
8. by the system of claim 6, wherein control product oxygen and comprise pressure-control valve to the described control device that the product surge tank flows.
9. by the system of claim 6, wherein sorbent material comprises zeolite molecular sieve material.
10. by the system of claim 9, wherein said sorbent material comprises the zeolite molecular sieve material of lithium exchange.
11. by the system of claim 6, wherein said feed compressor device comprises that the feed end that is suitable for from bed sends void gas and nitrogen into the feed compressor/vacuum blower device of line device to emit under negative pressure.
12. press the system of claim 6, and be included in the aftercooler in feed compressor device downstream, enter the air of bed feed end with cooling.
CN94115637A 1993-09-07 1994-09-06 Single bed pressure swing adsorption system and process Expired - Lifetime CN1050525C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/117,455 US5370728A (en) 1993-09-07 1993-09-07 Single bed pressure swing adsorption system and process
US117455 1993-09-07
US117,455 1993-09-07

Publications (2)

Publication Number Publication Date
CN1101589A CN1101589A (en) 1995-04-19
CN1050525C true CN1050525C (en) 2000-03-22

Family

ID=22373040

Family Applications (1)

Application Number Title Priority Date Filing Date
CN94115637A Expired - Lifetime CN1050525C (en) 1993-09-07 1994-09-06 Single bed pressure swing adsorption system and process

Country Status (10)

Country Link
US (1) US5370728A (en)
EP (1) EP0641591B2 (en)
JP (1) JP3197436B2 (en)
KR (1) KR100196626B1 (en)
CN (1) CN1050525C (en)
BR (1) BR9403449A (en)
CA (1) CA2131520C (en)
DE (1) DE69409737T3 (en)
ES (1) ES2115123T5 (en)
TW (1) TW256782B (en)

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429664A (en) * 1993-02-22 1995-07-04 Air Products And Chemicals, Inc. Pressure swing absorption with recycle of void space gas
US5518526A (en) * 1994-10-07 1996-05-21 Praxair Technology, Inc. Pressure swing adsorption process
FR2734172B1 (en) * 1995-05-19 1997-06-20 Air Liquide DEVICE AND METHOD FOR GAS SEPARATION BY ADSORPTION
US5785740A (en) * 1995-05-19 1998-07-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and process for the separation of gas by adsorption
US5565018A (en) * 1995-07-12 1996-10-15 Praxair Technology, Inc. Optimal pressure swing adsorption refluxing
US5620501A (en) * 1995-08-15 1997-04-15 The Boc Group, Inc. Recovery of trace gases from gas streams
US5658371A (en) * 1995-11-06 1997-08-19 Praxair Technology, Inc. Single bed pressure swing adsorption process for recovery of oxygen from air
US5702504A (en) * 1996-03-07 1997-12-30 Praxair Technology, Inc. Vacuum pressure swing adsorption process
FR2746668B1 (en) * 1996-03-27 1998-04-30 Air Liquide PROCESS FOR TREATING A GAS MIXTURE BY PRESSURE VARIATION ADSORPTION
FR2751892B1 (en) * 1996-07-30 1998-09-11 Air Liquide METHOD AND APPARATUS FOR TREATING GAS BY ADSORPTION WITH A VARIABLE PRODUCTION RATE
FR2755875B1 (en) * 1996-11-15 1999-01-29 Air Liquide PROCESS AND INSTALLATION FOR SEPARATION OF GAS MIXTURES BY ADSORPTION AT VARIATION OF PRESSURE
US5871565A (en) * 1997-01-15 1999-02-16 Praxair Technology, Inc. Vacuum/pressure swing adsorption (VPSA) for production of an oxygen enriched gas
US5846294A (en) * 1997-04-23 1998-12-08 The Boc Group, Inc. Pressure swing adsorption process and apparatus
US5882380A (en) * 1997-05-14 1999-03-16 Air Products And Chemicals, Inc. Pressure swing adsorption process with a single adsorbent bed
US5906673A (en) * 1997-05-15 1999-05-25 Nitrotec Corporation Pressure swing system with auxiliary adsorbent bed
US5961694A (en) * 1997-06-09 1999-10-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus and process for the separation of gas mixtures by pressure swing adsorption
FR2764205B1 (en) * 1997-06-09 1999-07-16 Air Liquide PSA DEVICE AND METHOD FOR SEPARATING A GASEOUS MIXTURE
FR2765810B1 (en) * 1997-07-09 1999-08-13 Air Liquide METHOD FOR SEPARATING A GAS MIXTURE BY PRESSURE VARIATION ADSORPTION
US6183537B1 (en) * 1997-11-04 2001-02-06 Praxair Technology, Inc. Rotary blowers for pressure swing adsorption process and system
US6007606A (en) * 1997-12-09 1999-12-28 Praxair Technology, Inc. PSA process and system
US6048384A (en) * 1997-12-09 2000-04-11 Smolarek; James PSA process and system using simultaneous top and bottom evacuation of absorbent bed
US5968236A (en) * 1998-02-20 1999-10-19 Bassine; Stuart Valve free oxygen concentrator
FR2776941B1 (en) * 1998-04-07 2000-05-05 Air Liquide PROCESS AND UNIT FOR OXYGEN PRODUCTION BY ADSORPTION WITH SHORT CYCLE
US5997611A (en) * 1998-07-24 1999-12-07 The Boc Group, Inc. Single vessel gas adsorption system and process
US6045603A (en) * 1998-08-21 2000-04-04 The Boc Group, Inc. Two phase pressure swing adsorption process
US6146447A (en) * 1998-11-25 2000-11-14 Air Products And Chemicals, Inc. Oxygen generation process and system using single adsorber and single blower
US6096115A (en) * 1998-11-25 2000-08-01 Air Products And Chemicals, Inc. Pressure swing adsorption process and system utilizing two product storage tanks
EP1018359A3 (en) * 1998-11-25 2002-09-04 Air Products And Chemicals, Inc. Pressure swing adsorption process and system with product storage tank(s)
US6102985A (en) * 1998-11-25 2000-08-15 Air Products And Chemicals, Inc. Pressure swing adsorption process and system with dual product storage tanks
US6183538B1 (en) 1999-02-09 2001-02-06 Air Products And Chemicals, Inc. Pressure swing adsorption gas flow control method and system
US6156101A (en) * 1999-02-09 2000-12-05 Air Products And Chemicals, Inc. Single bed pressure swing adsorption process and system
US6245127B1 (en) 1999-05-27 2001-06-12 Praxair Technology, Inc. Pressure swing adsorption process and apparatus
DE19941057C1 (en) * 1999-08-28 2001-01-11 Mahler Ags Gmbh Pressure swing adsorption process used for recovery of oxygen from air includes adding or removing gas through the inlet of an adsorption bed
US6503299B2 (en) * 1999-11-03 2003-01-07 Praxair Technology, Inc. Pressure swing adsorption process for the production of hydrogen
FR2800860B1 (en) 1999-11-10 2001-12-28 Air Liquide METHOD FOR COOLING OR HEATING AN INTERMITTENT CURRENT OF FLUID
US6428607B1 (en) * 2000-06-26 2002-08-06 Air Products And Chemicals, Inc. Pressure swing adsorption process which provides product gas at decreasing bed pressure
US6425938B1 (en) * 2000-11-01 2002-07-30 Air Products And Chemicals, Inc. Single bed pressure swing adsorption process
EP1346951B1 (en) * 2000-12-19 2007-08-01 Sumitomo Seika Chemicals Co., Ltd. Method of recovering enriched gaseous oxygen
US6585804B2 (en) * 2001-11-09 2003-07-01 Air Products And Chemicals, Inc. Pressure swing adsorption process operation at turndown conditions
KR100495974B1 (en) * 2002-01-16 2005-06-17 디지털오토모빌(주) Air purification device with oxygen-supplying function, for automobiles
KR20030068636A (en) * 2002-02-15 2003-08-25 에이엔비 주식회사 Oxygen Separator
US6770120B2 (en) 2002-05-01 2004-08-03 Praxair Technology, Inc. Radial adsorption gas separation apparatus and method of use
CN100506586C (en) * 2003-04-25 2009-07-01 数字汽车株式会社 Automobile empty purifier with oxygen supply function
EP1484207B1 (en) 2003-06-02 2006-05-24 Digital Automobile Co., Ltd. Air purification device for automobile with oxygen-supplying function
US6878186B2 (en) * 2003-09-09 2005-04-12 David Lloyd Neary Pure vacuum swing adsorption system and apparatus
CA2540240A1 (en) * 2003-09-29 2005-04-14 Questair Technologies Inc. High density adsorbent structures
US6949132B2 (en) 2003-11-05 2005-09-27 Systel, Llc Axial degassing transfer lines
US7713331B2 (en) 2003-11-05 2010-05-11 Rheodyne, Llc Axial transfer line degassing
US7368005B2 (en) * 2005-04-05 2008-05-06 Respironics Oxytec, Inc. Portable oxygen concentrator
US7329304B2 (en) * 2005-04-05 2008-02-12 Respironics Oxytec, Inc. Portable oxygen concentrator
US7402193B2 (en) * 2005-04-05 2008-07-22 Respironics Oxytec, Inc. Portable oxygen concentrator
US8210205B2 (en) 2006-03-09 2012-07-03 Michaels Gregory A Rotary valve assembly
CA2702758C (en) 2007-11-12 2016-08-30 Exxonmobil Upstream Research Company Methods of generating and utilizing utility gas
CN101239696B (en) * 2007-11-21 2013-03-27 江苏惠利特环保科技有限公司 Oil gas discharging processing device for gas station and adsorption method thereof
MY158840A (en) 2008-04-30 2016-11-15 Exxonmobil Upstream Res Co Method and apparatus for removal of oil from utility gas stream
JP5495766B2 (en) * 2009-12-18 2014-05-21 株式会社医器研 Oxygen concentrator
CN101822929B (en) * 2010-02-02 2012-06-06 华东理工大学 Method for capturing carbon dioxide by utilizing electrical desorption technology
CN102917767B (en) 2010-05-28 2015-11-25 埃克森美孚上游研究公司 Integrate absorber head and the design of relative valve and change absorption method
DE102010048774A1 (en) * 2010-10-16 2012-04-19 Linde Aktiengesellschaft Vacuum-pressure swing adsorption process
TWI495501B (en) 2010-11-15 2015-08-11 Exxonmobil Upstream Res Co Kinetic fractionators, and cycling processes for fractionation of gas mixtures
WO2012161826A1 (en) * 2011-03-01 2012-11-29 Exxonmobil Upstream Research Company Methods of removing contaminants from a hydrocarbon stream by swing adsorption and related apparatus and systems
CA2990793C (en) 2011-03-01 2019-04-09 Exxonmobil Upstream Research Company Methods of removing contaminants from a hydrocarbon stream by swing adsorption and related apparatus and systems
BR112013017837A2 (en) 2011-03-01 2016-10-11 Exxonmobil Upstream Res Co apparatus and systems having multiple compact configuration oscillating adsorption beds and related methods
CA2842928A1 (en) 2011-03-01 2012-11-29 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
CA2824986C (en) 2011-03-01 2017-05-09 Exxonmobil Upstream Research Company Apparatus and systems having an encased adsorbent contactor and swing adsorption processes related thereto
WO2012118757A1 (en) 2011-03-01 2012-09-07 Exxonmobil Upstream Research Company Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto
EP2680948A4 (en) 2011-03-01 2015-05-06 Exxonmobil Upstream Res Co Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US8888902B2 (en) 2011-08-26 2014-11-18 Separation Design Group Llc Portable oxygen enrichment device and method of use
JP5926384B2 (en) 2011-09-12 2016-05-25 アイデックス ヘルス アンド サイエンス エルエルシー Degassing supersaturated fluid
US9034078B2 (en) 2012-09-05 2015-05-19 Exxonmobil Upstream Research Company Apparatus and systems having an adsorbent contactor and swing adsorption processes related thereto
US9649589B2 (en) * 2013-02-21 2017-05-16 Lehigh University Oxygen concentrator system and method
AU2015294518B2 (en) 2014-07-25 2019-06-27 Exxonmobil Upstream Research Company Apparatus and system having a valve assembly and swing adsorption processes related thereto
EP3218326B1 (en) 2014-11-11 2020-03-04 ExxonMobil Upstream Research Company High capacity structures and monoliths via paste imprinting
US9713787B2 (en) 2014-12-10 2017-07-25 Exxonmobil Upstream Research Company Adsorbent-incorporated polymer fibers in packed bed and fabric contactors, and methods and devices using same
JP2018503507A (en) 2014-12-23 2018-02-08 エクソンモービル アップストリーム リサーチ カンパニー Structured adsorbent tower, process for its production and use thereof
US9610532B2 (en) * 2014-12-30 2017-04-04 Pacific Consolidated Industries, Inc. Method and system for high reliability oxygen supply from multiple units
CN104656618B (en) * 2015-01-19 2017-05-31 河南心连心化肥有限公司 Pressure-variable adsorption agent regenerating control device and its control method
AU2016265109B2 (en) 2015-05-15 2019-03-07 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto comprising mid-bed purge systems
AU2016265110B2 (en) 2015-05-15 2019-01-24 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10220345B2 (en) 2015-09-02 2019-03-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10124286B2 (en) 2015-09-02 2018-11-13 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
CA3001336A1 (en) 2015-10-27 2017-05-04 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto having a plurality of valves
US10040022B2 (en) 2015-10-27 2018-08-07 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
SG11201802604TA (en) 2015-10-27 2018-05-30 Exxonmobil Upstream Res Co Apparatus and system for swing adsorption processes related thereto having actively-controlled feed poppet valves and passively controlled product valves
US10744449B2 (en) 2015-11-16 2020-08-18 Exxonmobil Upstream Research Company Adsorbent materials and methods of adsorbing carbon dioxide
CA3017612C (en) 2016-03-18 2021-06-22 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10259711B2 (en) 2016-04-20 2019-04-16 Exxonmobil Research And Engineering Company Pressure swing adsorption for oxygen production
CN109219476A (en) 2016-05-31 2019-01-15 埃克森美孚上游研究公司 For becoming the device and system of adsorption method
BR112018074420A2 (en) 2016-05-31 2019-03-06 Exxonmobil Upstream Research Company apparatus and system for variation adsorption processes
US10434458B2 (en) 2016-08-31 2019-10-08 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
EP3506992B1 (en) 2016-09-01 2024-04-17 ExxonMobil Technology and Engineering Company Swing adsorption processes for removing water using 3a zeolite structures
US10328382B2 (en) 2016-09-29 2019-06-25 Exxonmobil Upstream Research Company Apparatus and system for testing swing adsorption processes
KR102260066B1 (en) 2016-12-21 2021-06-04 엑손모빌 업스트림 리서치 캄파니 Self-supporting structure with foamed geometry and active material
JP7021227B2 (en) 2016-12-21 2022-02-16 エクソンモービル アップストリーム リサーチ カンパニー Self-supporting structure with active material
CN106829869A (en) * 2016-12-28 2017-06-13 北京金大万翔环保科技有限公司 The apparatus and method that a kind of seven towers low pressure adsorbent vacuum desorption prepares oxygen
CN106829868A (en) * 2016-12-28 2017-06-13 北京金大万翔环保科技有限公司 The apparatus and method that a kind of single column low pressure adsorbent vacuum desorption prepares oxygen
CN106629610A (en) * 2016-12-28 2017-05-10 北京金大万翔环保科技有限公司 Device and method for preparing oxygen by vacuum pressure swing adsorption (VPSA) through five towers
JP6677181B2 (en) * 2017-01-19 2020-04-08 Jfeスチール株式会社 Gas separation and recovery method and equipment
WO2019147516A1 (en) 2018-01-24 2019-08-01 Exxonmobil Upstream Research Company Apparatus and system for temperature swing adsorption
WO2019168628A1 (en) 2018-02-28 2019-09-06 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10946161B2 (en) 2018-12-05 2021-03-16 Aires Medical LLC Pulsed pressure swing adsorption system and method
WO2020131496A1 (en) 2018-12-21 2020-06-25 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
US11376545B2 (en) 2019-04-30 2022-07-05 Exxonmobil Upstream Research Company Rapid cycle adsorbent bed
CN110479022A (en) * 2019-07-08 2019-11-22 江苏新久扬环保设备科技有限公司 A kind of device for recovering oil and gas and working method
US11655910B2 (en) 2019-10-07 2023-05-23 ExxonMobil Technology and Engineering Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves
US11433346B2 (en) 2019-10-16 2022-09-06 Exxonmobil Upstream Research Company Dehydration processes utilizing cationic zeolite RHO

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2337754A1 (en) * 1972-07-27 1974-02-07 Grace W R & Co Fractionating gas by preferential adsorption - using alternating pressures in adsorption bed
US4477264A (en) * 1983-03-30 1984-10-16 Air Products And Chemicals, Inc. Pressure swing adsorption process for a medical oxygen generator for home use
EP0548755A1 (en) * 1991-12-20 1993-06-30 Air Products And Chemicals, Inc. Nitrogen adsorption with a Ca and/or Sr exchanged lithium X-zeolite

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE603202A (en) * 1960-04-29
NL136032C (en) * 1961-12-18 1900-01-01
GB1054373A (en) * 1963-05-17
US3399510A (en) * 1966-05-25 1968-09-03 Air Technologies Inc Process and apparatus for dehydrating compressed gas
US3430418A (en) * 1967-08-09 1969-03-04 Union Carbide Corp Selective adsorption process
US3788036A (en) * 1972-07-26 1974-01-29 D Stahl Pressure equalization and purging system for heatless adsorption systems
DE2460513C3 (en) * 1974-12-20 1979-01-25 Linde Ag, 6200 Wiesbaden Method and device for the decomposition of gas mixtures by adiabatic adsorption and desorption
GB1529701A (en) * 1975-01-02 1978-10-25 Boc International Ltd Oxygen enriched air
US4194890A (en) * 1976-11-26 1980-03-25 Greene & Kellogg, Inc. Pressure swing adsorption process and system for gas separation
JPS5399091A (en) * 1977-02-10 1978-08-30 Osaka Sanso Kougiyou Kk Method of concentrating oxygen gas
US4482361A (en) * 1983-01-14 1984-11-13 Union Carbide Corporation Pressure swing adsorption process
US4534346A (en) * 1983-03-15 1985-08-13 Guild Associates, Inc. Pressure swing cycle for the separation of oxygen from air
US4561865A (en) * 1983-11-01 1985-12-31 Greene & Kellogg, Inc. Single bed pressure swing adsorption gas separation system
US4650500A (en) * 1985-02-22 1987-03-17 Union Carbide Corporation Enhanced pressure swing adsorption process and system
US4816039A (en) * 1986-02-24 1989-03-28 The Boc Group, Inc. PSA multicomponent separation utilizing tank equalization
US4963339A (en) * 1988-05-04 1990-10-16 The Boc Group, Inc. Hydrogen and carbon dioxide coproduction
US4948391A (en) * 1988-05-12 1990-08-14 Vacuum Optics Corporation Of Japan Pressure swing adsorption process for gas separation
JP2691991B2 (en) * 1988-05-12 1997-12-17 豊 野口 Gas separation method
US5032150A (en) * 1989-11-03 1991-07-16 The Ohio State University Pressure swing adsorption
US5228888A (en) * 1990-03-23 1993-07-20 The Boc Group, Inc. Economical air separator
US5258060A (en) * 1992-09-23 1993-11-02 Air Products And Chemicals, Inc. Adsorptive separation using diluted adsorptive phase
US5266102A (en) * 1992-09-23 1993-11-30 Air Products And Chemicals, Inc. O2 VSA process with low O2 capacity adsorbents
US5268023A (en) * 1992-10-05 1993-12-07 Air Products And Chemicals, Inc. Nitrogen adsorption with highly Li exchanged X-zeolites with low Si/Al ratio
US5258058A (en) * 1992-10-05 1993-11-02 Air Products And Chemicals, Inc. Nitrogen adsorption with a divalent cation exchanged lithium X-zeolite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2337754A1 (en) * 1972-07-27 1974-02-07 Grace W R & Co Fractionating gas by preferential adsorption - using alternating pressures in adsorption bed
US4477264A (en) * 1983-03-30 1984-10-16 Air Products And Chemicals, Inc. Pressure swing adsorption process for a medical oxygen generator for home use
EP0548755A1 (en) * 1991-12-20 1993-06-30 Air Products And Chemicals, Inc. Nitrogen adsorption with a Ca and/or Sr exchanged lithium X-zeolite

Also Published As

Publication number Publication date
ES2115123T3 (en) 1998-06-16
EP0641591A1 (en) 1995-03-08
BR9403449A (en) 1995-05-16
ES2115123T5 (en) 2004-08-16
CN1101589A (en) 1995-04-19
DE69409737T2 (en) 1998-11-12
JPH0796128A (en) 1995-04-11
CA2131520A1 (en) 1995-03-08
JP3197436B2 (en) 2001-08-13
US5370728A (en) 1994-12-06
KR100196626B1 (en) 1999-06-15
EP0641591B2 (en) 2004-03-03
DE69409737D1 (en) 1998-05-28
KR950008351A (en) 1995-04-17
TW256782B (en) 1995-09-11
CA2131520C (en) 1999-08-24
EP0641591B1 (en) 1998-04-22
DE69409737T3 (en) 2004-09-23

Similar Documents

Publication Publication Date Title
CN1050525C (en) Single bed pressure swing adsorption system and process
US6197092B1 (en) Selective removal of nitrogen from natural gas by pressure swing adsorption
CN1195570C (en) Optimal pressure swing adsorption refluxing
CA2322169C (en) Pressure swing adsorption gas separation method, using adsorbents with high intrinsic diffusivity and low pressure ratios
EP0324171B1 (en) Pressure swing adsorption process and system for gas separation
EP0546542B1 (en) Improved adsorbent beds for pressure swing adsorption operations
KR960004606B1 (en) Process for producing high purity oxygen gas from air
US6478854B1 (en) High purity, low silica X-type zeolite binderless shaped product and gas separation method employing it
JPH0794004B2 (en) Improved air separation pressure swing adsorption method
CN1012799B (en) Process for separating nitrogen from mixtures
CN1599636A (en) Psa process for co-producing nitrogen and oxygen
CN1153609C (en) Method and device for purifying air
CN1073876C (en) Pressure swing adsorption process for separating carbon monooxide from carbon monooxide contg. mixed gas
CN209438318U (en) A kind of pressure swing adsorption system with Pneumatic booster device
JPS60500563A (en) Adsorption method
CN1095387C (en) High efficiency flexible variable-pressure adsorption technology
CN220424946U (en) Carbon dioxide purification device
CN220546768U (en) Tail gas recovery system
Wawrzyńczak Adsorption technology for CO2 capture

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: PLEX TECHNOLOGIES CORP.

Free format text: FORMER NAME OR ADDRESS: PLACER TECHNOLOGY CO., LTD.

CP01 Change in the name or title of a patent holder

Patentee after: Praxair Technology, Inc.

Patentee before: Praxair Technology Inc.

C17 Cessation of patent right
CX01 Expiry of patent term

Expiration termination date: 20140906

Granted publication date: 20000322