CN105039519B - 一种基于足点域杂交的dna测定新方法 - Google Patents

一种基于足点域杂交的dna测定新方法 Download PDF

Info

Publication number
CN105039519B
CN105039519B CN201510325830.6A CN201510325830A CN105039519B CN 105039519 B CN105039519 B CN 105039519B CN 201510325830 A CN201510325830 A CN 201510325830A CN 105039519 B CN105039519 B CN 105039519B
Authority
CN
China
Prior art keywords
dna
dna1
target dna
magnetic bead
foot point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510325830.6A
Other languages
English (en)
Other versions
CN105039519A (zh
Inventor
混旭
孟妍
王学刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Fangwei Information Technology Co.,Ltd.
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201510325830.6A priority Critical patent/CN105039519B/zh
Publication of CN105039519A publication Critical patent/CN105039519A/zh
Application granted granted Critical
Publication of CN105039519B publication Critical patent/CN105039519B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/682Signal amplification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一种基于足点域杂交的DNA测定新方法,属于化学发光技术领域。将目标DNA加入DNA1修饰磁珠中,目标DNA的一端与DNA1的一端单链部分杂交形成足点域,在足点域作用下目标DNA未杂交的部分与DNA1继续进行杂交反应,将DNA1的发卡结构打开,同时形成双链DNA,再加入FITC标记DNA2探针,DNA2的一端与所形成的双链DNA的一端单链部分杂交形成足点域,在足点域的作用下DNA2未杂交的部分与双链DNA继续进行杂交反应,形成新的双链DNA,将目标DNA替换下来进行循环利用,并将大量的DNA2附着在磁珠上,利用光二极管诱导化学发光原理实现对目标DNA的测定。本发明方法简单、成本低、灵敏度高。

Description

一种基于足点域杂交的DNA测定新方法
技术领域
本发明属于化学发光技术领域,涉及一种基于足点域杂交的DNA测定新方法。
背景技术
DNA催化自组装技术是在DNA链式杂交反应技术的基础上发展而来的一种放大技术。它不同于DNA链式杂交反应技术中需要两条发卡DNA,而是涉及了一条或者多条发卡DNA。近年来DNA测定方法主要有化学发光法(Zhang X,Liu H,Li R,Zhang N,Xiong Y,NiuS.Chemiluminescence detection of DNA/microRNA based on cation-exchange of CuSnanoparticles and rolling circle amplification.Chem Commun.2015.DOI:10.1039/C5CC01317H);电化学法(Liu L,Song C,Zhang Z,Yang J,Zhou L,Zhang X,XieG.Ultrasensitive electrochemical detection of microRNA-21 combining layerednanostructure of oxidized single-walled carbon nanotubes and nanodiamonds byhybridization chain reaction.Biosens Bioelectron.2015,28;70:351-357);荧光法(Wang Q,Wang W,Lei J,Xu N,Gao F,Ju H.Anal Chem.Fluorescence quenching ofcarbon nitride nanosheet through its interaction with DNA for versatilefluorescence sensing.2013.17;85(24):12182-12188);光度法(Thavanathan J,HuangNM,Thong KL.Colorimetric detection of DNA hybridization based on a dualplatform of gold nanoparticles and graphene oxide.BiosensBioelectron.2014.15;55:91-98);表面等离子共振法(Szunerits S,Maalouli N,WijayaE,Vilcot JP,Boukherroub R.Recent advances in the development of graphene-based surface plasmon resonance(SPR)interfaces.Anal Bioanal Chem.2013,405(5):1435-43)等。
但是,这些方法各有其优缺点,本发明利用有DNA1标记的磁珠为载体,以异硫氰酸荧光素FITC为标记物,利用DNA取代反应,实现了目标DNA的循环利用,从而实现了信号的循环放大,并最终实现了对目标DNA的高灵敏度测定,具有方法简单、灵敏度高,成本低的优点。
发明内容
本发明目的是提供一种基于足点域杂交的DNA测定新方法,利用DNA1标记的磁珠为载体,以异硫氰酸荧光素FITC标记DNA2为探针,当目标DNA加入DNA1修饰磁珠溶液中时,目标DNA的一端与DNA1的一端单链部分杂交形成足点域,在足点域的作用下目标DNA未杂交的部分与DNA1继续进行杂交反应,将DNA1的发卡结构打开,同时形成双链DNA,然后加入FITC标记DNA2探针,DNA2的一端与所形成的双链DNA的一端单链部分杂交又形成足点域,在足点域的作用下DNA2未杂交的部分与双链DNA继续进行杂交反应,形成新的双链DNA,将DNA2附着在磁珠上,同时,将目标DNA替换下来,被替换下来的目标DNA进行下一个双链的形成,并使另外一条DNA2附着在磁珠上,如此目标DNA被循环利用,同时将大量的DNA2附着在磁珠上,利用光二极管诱导化学发光原理,利用化学发光仪检测化学发光强度,根据化学发光强度实现对目标DNA的测定。
技术方案
一种基于足点域杂交的DNA测定新方法,其特征在于根据目标DNA序列,设计好有特定序列的发卡DNA1,发卡DNA2,并利用DNA1标记的磁珠为载体,以异硫氰酸荧光素FITC标记的DNA2为探针,利用足点域杂交反应实现目标DNA的循环使用,同时实现了信号的循环放大,最终实现了对目标DNA的测定。测定步骤如下:
(1)磁珠的前处理
取10μL链霉亲和素修饰的磁珠至1.5mL的离心管中,用100μL pH 8.0的Tris-HCl缓冲溶液清洗两遍,然后将其分散到Tris-HCl缓冲溶液中。
(2)发卡DNA的前处理
发卡DNA在使用之前在95℃温度下孵化2min,并逐步降至室温。
(3)捕获DNA1在磁珠表面的固定
在含10μL链霉亲和素修饰的磁珠的1.5mL的离心管中,加入10μL 1.0×10-5M的生物素修饰的DNA1,在37℃下振荡反应30min,并用100μL pH 6.8的磷酸缓冲溶液洗涤两遍,得到DNA1修饰磁珠,并分散到1mL的磷酸缓冲溶液中。
(4)目标DNA检测
取(3)所得磁珠溶液100μL,并加入含有目标DNA的样品溶液100μL,然后再加入100μL含有1.0×10-7M DNA2的pH为6.8的磷酸缓冲溶液,并在37℃振荡反应1h。然后进行磁分离,除去上清液后,将磁珠用100μL pH 6.8的磷酸缓冲溶液洗涤两遍,并将其分散于100μLpH 6.8的磷酸缓冲溶液中。再加入200μL pH 11.3的鲁米诺溶液,打开光二极管,15秒后关闭光二极管,用化学发光仪检测化学发光信号,根据化学发光信号强度对目标物进行定量分析。
本发明的化学试剂优选分析纯试剂,所有溶液均用二次蒸馏水配置。
本发明的0.2M pH 6.8磷酸缓冲溶液的配制方法:称取0.2g KH2PO4、2.9gNa2HPO4·12H2O溶解于1L水中。
Tris-HCl缓冲溶液配制方法:称取2.429g三(羟甲基)氨基甲烷,用500mL超纯水溶解后,用0.1M盐酸调pH至8.0,最后用超纯水稀释至1000mL。
所用人工合成DNA序列(购自北京赛百盛生物工程有限公司)如下。
DNA的部分序列如下:
DNA1:5’-biotin-GCGGTAGGCCGTCCTAATCTCCTCCCCCAACACGGCC-3’
DNA2:5’-GTTGGGGGAGGAGATTAGGACGGCC-FITC-3’
目标DNA:5’-AGATTAGGACGGCCTACCGC-3’
本发明的化学发光测定选用MPI-E型化学发光分析***(西安瑞迈分析仪器有限公司)。
本发明的振荡孵育选用THZ-82A气浴恒温振荡器(全坛市医疗仪器厂)。
本发明的离心机选用Anke-TGL-16C飞翁牌高速离心机(上海市安亭科学仪器厂)。
本发明的pH测量选用PHS-3D型酸度计(上海雷磁仪器厂)。
本发明的显著效果
本发明实现了目标DNA的循环使用,同时实现了信号的循环放大,最终实现了对目标DNA的测定,得到了检测目标DNA的标准曲线,线性范围及线性方程。
当目标DNA的浓度在1.0pM-700pM之间时,随着目标DNA浓度的变化,化学发光强度有明显变化。经计算得到检测目标DNA的线性方程为ICL=9.8136x+59.506(ICL是体系的化学发光强度;x是目标DNA的浓度,pM;n=12,n表示同一浓度测定次数,R=0.9997),检测限是0.5pM。同时,考察了利用三明治夹心法测定目标DNA的检测限为500pM,基于足点域杂交的DNA测定方法检测限较三明治夹心法的低1000倍,表明该方法的灵敏度高。
该测定方法的精密度通过对浓度为30.0pM的目标DNA进行11次平行测定而计算得出,相对标准偏差为3.9%,表明本发明的测定方法有较好的重现性。
附图说明
图1.测定目标DNA的方法原理示意图。
图2.目标DNA标准曲线,横坐标是目标DNA浓度,单位是pM,纵坐标ICL是体系的化学发光强度。
具体实施方式
按照技术方案的步骤(1)至(4)得到目标DNA标准曲线见图2。DNA由赛百盛基因技术有限公司(上海,中国)合成。实验所用其他试剂均为分析纯,并且不用对其进一步纯化可以直接使用。
根据发明的方法对目标DNA含量进行了测定,并采用标准加入法对方法进行了评价,样品测定回收率为96.0–103.4%,测定结果见表1,本发明的方法在目标DNA检测中具有精密度高的特点。
表1.样品分析测定结果
编号 含量a,b 标准样品加入量 测得量 回收率(%)
1 3.2 5.0 8.1 96.0
2 27.6 30.0 58.3 102.3
3 46.9 50.0 98.6 103.4
a7次测量结果
b单位:pM。

Claims (2)

1.一种基于足点域杂交的DNA测定新方法,其特征包括以下步骤:
a.发卡DNA在使用之前在95℃温度下孵化2min,并逐步降至室温;
b.取10μL链霉亲和素修饰的磁珠至1.5mL的离心管中,用100μL pH 8.0的Tris-HCl缓冲溶液清洗两遍,然后将其分散到Tris-HCl缓冲溶液中;
c.在含10μL链霉亲和素修饰的磁珠的1.5mL的离心管中,加入10μL 1.0×10-5M的生物素修饰的DNA1,在37℃下振荡反应30min,并用100μL pH 6.8的磷酸缓冲溶液洗涤两遍,得到DNA1修饰磁珠,并分散到1mL的磷酸缓冲溶液中;
d.取c所得磁珠溶液100μL,并加入含有目标DNA的样品溶液100μL,然后再加入100μL含有1.0×10-7M DNA2的pH为6.8的磷酸缓冲溶液,并在37℃振荡反应1h;然后进行磁分离,除去上清液后,将磁珠用100μL pH 6.8的磷酸缓冲溶液洗涤两遍,并将其分散于100μL pH6.8的磷酸缓冲溶液中;再加入200μL pH 11.3的鲁米诺溶液,打开光二极管,15秒后关闭光二极管,用化学发光仪检测化学发光信号,根据化学发光信号强度对目标物进行定量分析;
其中,DNA1、DNA2和目标DNA的序列如下:
DNA1:5’-biotin-GCGGTAGGCCGTCCTAATCTCCTCCCCCAACACGGCC-3’
DNA2:5’-GTTGGGGGAGGAGATTAGGACGGCC-FITC-3’
目标DNA:5’-AGATTAGGACGGCCTACCGC-3’。
2.根据权利要求1的测定DNA的方法,其特征在于所述的磁珠粒径为0.4-0.6μm,浓度为8-12mg/mL。
CN201510325830.6A 2015-06-12 2015-06-12 一种基于足点域杂交的dna测定新方法 Active CN105039519B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510325830.6A CN105039519B (zh) 2015-06-12 2015-06-12 一种基于足点域杂交的dna测定新方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510325830.6A CN105039519B (zh) 2015-06-12 2015-06-12 一种基于足点域杂交的dna测定新方法

Publications (2)

Publication Number Publication Date
CN105039519A CN105039519A (zh) 2015-11-11
CN105039519B true CN105039519B (zh) 2018-01-02

Family

ID=54446486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510325830.6A Active CN105039519B (zh) 2015-06-12 2015-06-12 一种基于足点域杂交的dna测定新方法

Country Status (1)

Country Link
CN (1) CN105039519B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107192831B (zh) * 2017-05-24 2019-03-05 青岛科技大学 一种化学发光技术检测糖化血红蛋白的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004739A2 (en) * 1996-07-25 1998-02-05 Navix, Inc. Homogeneous diagnostic assay method utilizing simultaneous target and signal amplification
CN101936940A (zh) * 2010-09-03 2011-01-05 江南大学 一种电化学发光适配体传感器检测赭曲霉毒素a的方法
CN102888457A (zh) * 2012-09-25 2013-01-23 江阴天瑞生物科技有限公司 一种分子信标链置换等温扩增基因芯片检测技术及试剂盒
CN104655615A (zh) * 2014-07-08 2015-05-27 青岛科技大学 基于CuS纳米粒子阳离子交换增强化学发光的生物传感器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004739A2 (en) * 1996-07-25 1998-02-05 Navix, Inc. Homogeneous diagnostic assay method utilizing simultaneous target and signal amplification
CN101936940A (zh) * 2010-09-03 2011-01-05 江南大学 一种电化学发光适配体传感器检测赭曲霉毒素a的方法
CN102888457A (zh) * 2012-09-25 2013-01-23 江阴天瑞生物科技有限公司 一种分子信标链置换等温扩增基因芯片检测技术及试剂盒
CN104655615A (zh) * 2014-07-08 2015-05-27 青岛科技大学 基于CuS纳米粒子阳离子交换增强化学发光的生物传感器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
An ultrasensitive electrochemical biosensor for detection of DNA species related to oral cancer based on nuclease-assisted target recycling and amplification of DNAzyme;Chen J et al.;《Chem commun》;20110614;第47卷(第28期);第8004-8006页 *
Magnetic bead-based DNA hybridization assay with chemiluminescence and chemiluminescent imaging detection;Li H et al.;《Analyst》;20090213;第134卷(第4期);第800-804页 *
Rapid identification of mycobacterium tuberculosis complex by a novel hybridization signal amplification method based on self-assembly of DNA-streptavidin nanoparticles;Wang H et al.;《Braz J microbiol》;20110901;第42卷(第3期);第964-972页 *
基于DNA循环放大的肿瘤标志物传感分析研究;纪小婷;《万方学位论文数据库》;20121130;第1-76页 *

Also Published As

Publication number Publication date
CN105039519A (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
Liao et al. Double-strand displacement biosensor and quencher-free fluorescence strategy for rapid detection of microRNA
Zhou et al. Dual-mode SERS and electrochemical detection of miRNA based on popcorn-like gold nanofilms and toehold-mediated strand displacement amplification reaction
Pang et al. Fe3O4@ Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells
Jamali et al. Nanomaterials on the road to microRNA detection with optical and electrochemical nanobiosensors
Lu et al. CMOS‐compatible silicon nanowire field‐effect transistors for ultrasensitive and label‐free microRNAs sensing
Guo et al. Amplified fluorescence sensing of miRNA by combination of graphene oxide with duplex-specific nuclease
Song et al. Pathogenic virus detection by optical nanobiosensors
Ma et al. Ultrasensitive detection of miRNA-155 using multi-walled carbon nanotube-gold nanocomposites as a novel fluorescence quenching platform
D’Agata et al. Advanced methods for microRNA biosensing: a problem-solving perspective
Xu et al. An electrochemical biosensor based on nucleic acids enzyme and nanochannels for detecting copper (II) ion
Zhang et al. MoS2-loaded G-quadruplex molecular beacon probes for versatile detection of MicroRNA through hybridization chain reaction signal amplification
Feng et al. Electrochemiluminescent DNA sensing using carbon nitride nanosheets as emitter for loading of hemin labeled single-stranded DNA
Zhu et al. Selective and sensitive detection of MiRNA-21 based on gold-nanorod functionalized polydiacetylene microtube waveguide
Yun et al. Graphene oxide-based fluorescent “turn-on” strategy for Hg2+ detection by using catalytic hairpin assembly for amplification
Wang et al. A novel aptasensor based on silver nanoparticle enhanced fluorescence
Hu et al. Magnetic separate" turn-on" fluorescent biosensor for Bisphenol A based on magnetic oxidation graphene
Wu et al. A novel recyclable surface-enhanced Raman spectroscopy platform with duplex-specific nuclease signal amplification for ultrasensitive analysis of microRNA 155
Jie et al. Amplified electrochemiluminescence detection of cancer cells using a new bifunctional quantum dot as signal probe
Bidar et al. Monitoring of microRNA using molecular beacons approaches: Recent advances
Lin et al. Graphitic C3N4 nanosheet and hemin/G-quadruplex DNAzyme-based label-free chemiluminescence aptasensing for biomarkers
Yu et al. Label-free detection of Hg2+ based on Hg2+-triggered toehold binding, Exonuclease III assisted target recycling and hybridization chain reaction
Cao et al. Calcium ion assisted fluorescence determination of microRNA-167 using carbon dots–labeled probe DNA and polydopamine-coated Fe 3 O 4 nanoparticles
Park et al. A DNA-templated silver nanocluster probe for label-free, turn-on fluorescence-based screening of homo-adenine binding molecules
Chen et al. Highly sensitive multiplexed DNA detection using multi-walled carbon nanotube-based multicolor nanobeacon
Wang et al. Fluorometric determination of HIV DNA using molybdenum disulfide nanosheets and exonuclease III-assisted amplification

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210810

Address after: 518, 91 Kefeng Road, Huangpu District, Guangzhou, Guangdong 510000

Patentee after: Guangzhou Fangwei Information Technology Co.,Ltd.

Address before: 266000 Qingdao University of Science & Technology, 53 Zhengzhou Road, Shibei District, Qingdao, Shandong

Patentee before: Qingdao University Of Science And Technology

TR01 Transfer of patent right