CN105008272B - 氩生产方法及装置 - Google Patents

氩生产方法及装置 Download PDF

Info

Publication number
CN105008272B
CN105008272B CN201480011819.6A CN201480011819A CN105008272B CN 105008272 B CN105008272 B CN 105008272B CN 201480011819 A CN201480011819 A CN 201480011819A CN 105008272 B CN105008272 B CN 105008272B
Authority
CN
China
Prior art keywords
stream
argon
liquid
liquid argon
adsorbent bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480011819.6A
Other languages
English (en)
Other versions
CN105008272A (zh
Inventor
H.E.霍华德
P.E.克查吉亚
P.A.巴雷特
J.R.汉德利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair Technology Inc
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Publication of CN105008272A publication Critical patent/CN105008272A/zh
Application granted granted Critical
Publication of CN105008272B publication Critical patent/CN105008272B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04733Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0036Physical processing only
    • C01B23/0052Physical processing only by adsorption in solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0036Physical processing only
    • C01B23/0052Physical processing only by adsorption in solids
    • C01B23/0057Physical processing only by adsorption in solids characterised by the adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • C01B2210/0014Physical processing by adsorption in solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0029Obtaining noble gases
    • C01B2210/0034Argon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0045Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/58Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/04Separating impurities in general from the product stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/58Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

用于生产纯化的液氩产品的方法和装置,其中通过在氩塔内将氩与氧分离来在低温空气分离设备中生产具有氧杂质的液氩。在吸附床中通过以吸附剂吸附氧杂质来纯化由一部分液氩组成的不纯的液氩流,以产生构成纯化的液氩产品的纯化的液氩流。在吸附期间,用冷却剂将吸附床维持在低温下,以防止液氩的蒸发。随后通过以下方式使所述床再生:从吸附床中排出残留的液氩,将所述残留的液氩引回入空气分离设备中,且随后用再生气体脱附氧杂质。再生之后,在使吸附床返回在线之前用纯化的液氩进行重新填充。

Description

氩生产方法及装置
发明领域
本发明涉及用于生产氩的方法和装置,其中在具有氩塔的低温空气分离设备内,从空气中分离氩。液氩流产生自空气分离设备,随后通过在吸附床内除去氧杂质来纯化。更尤其,本发明涉及这样的方法和装置,其中依照变温吸附方法来操作吸附床,其中通过与冷却剂的间接热交换,将吸附床维持在足以防止液氩流蒸发的降低的温度下,并在吸附床的再生期间,将含于吸附床中的残留的液氩引回入低温空气分离设备中,并因此将其回收。
发明背景
典型地在(基于双塔的)双压蒸馏***中分离空气。在该工艺中,将空气压缩至高压(绝对压力5.5+巴)、进行预纯化、冷却并引向中等压力的氮精馏段,在那里将进料空气蒸馏成富氮蒸汽/液态塔顶馏分和富氧塔底液体(釜)。随后将这些浓缩液流低温冷却、减压并进料至低压(接近环境压力)蒸馏***中,其中富氧釜液被进一步分馏成基本上纯的氧塔底产品和进一步浓缩的氮塔顶馏分产品(一种或更多种)和/或废物流。
氩构成大气的一小部分(0.93%)。但是,它具有高的单位价值。因此,通常合意的是,从基础(base)双塔***中将其回收。通过从接近氮汽提段的底部(base)的塔上部提取富氩提取物(draw),可将氩从双塔***中回收。随后将富氩流引向氩精馏段,其中可从塔顶产生氩。将塔顶冷凝负荷(overhead condensation load)典型地赋予至少一部分富氧塔底流(在引入第一低压蒸馏塔之前)。可通过以下方式来生产氩:直接“超级(superstaged)”蒸馏成商品液体纯度(~1 ppm O2, ~180级)或蒸馏成中间纯度(1至2%, ~50级)并随后通过催化氧化(典型地使用氢气)进行精炼。
现代空气分离设备几乎专门采用超级蒸馏,用于高纯度氩生产。但是,此类***将典型地达到超过200+英尺的塔/冷箱高度。因此,为获得高纯度,招致相当大的花费(分离塔、多个冷箱段、液体回流/抽空泵)。对于大型空气分离设备,该情况进一步复杂化(compounded),在所述设备中塔进料/提取物再分配点典型地耗废更多高度。对以下方面存在着需求:急剧缩短氩蒸馏塔而不恢复使用催化燃烧(及其相关的复杂性和操作成本)。本主题发明以氩-氧蒸馏的经济上最薄弱的部分为目标。氩塔的上半部用于除去含于氩塔进料中的低于1%的氧。因为蒸馏成本与纯度的对数成比例,所以获得含1ppmO2的氩招致相当大的成本(和高度)。
在现有技术中存在着空气分离设备和吸附剂之间的集成,其意欲消除用以从氩中除去氧和氮的昂贵的后调节***。例如,在US 4,717,406中,液相吸附方法中,将来自低温设备的进料引向吸附***。所述吸附***用于在将液化气体引入液体储存槽中之前,纯化该液化气体。目标应用包括从电子级气体(例如LO2)中除去水和CO2。公开的再生方法是变温法。US 5,685,172详述了目标为从各种惰性气体中除去痕量氧(和CO)的方法。所述方法还着重提到直接液体处理,且将氩引用为示例性流体。详述金属氧化物(CuO、MnO2)作为氧的吸附剂。通过在适度温度(150~250℃)下使用还原气体(H2)来实现再生。还原气体的使用使得难以将吸附床与空气分离设备集成,因为还原气体不在空气分离设备中制备,但必须在附近,以使吸附剂再生。更重要地,在吸附剂的再生期间,富氩流体将从该工艺中损失。US7,501,009详述了用于氩纯化的循环吸附方法。所述方法可在低温温度下操作,同时处理呈气态的粗氩。着重提到沸石作为用于变压吸附(PSA)的可能的吸附剂。将再生气体引回到氩-氧精馏塔。该类集成的问题在于其需要包括粗氩压缩机(及相关的能耗)。最后,US 5,601,634公开了一种集成,其中含于氩中的氮和氧均在吸附床中被除去。该类集成的问题在于必须将蒸汽重新液化,这导致能耗增加。
正如将要讨论的,除了其它优势,本发明还提供了一种集成,其中用吸附剂纯化富氩液流,以允许纯化的液体被常规储存,并能够容易地与空气分离设备集成,通过在空气分离设备中将氩从空气中分离来生产所述富氩液流。
发明概述
本发明提供了生产纯化的液氩产品的方法,其中在低温空气分离设备内,将氩从空气中分离,所述低温空气分离设备具有氩塔,以将氩与氧分离。具有氧杂质的液氩产生自氩与氧的分离。通过以下方式对由一部分液氩组成的不纯的液氩流进行纯化:将所述不纯的液氩流引入吸附床中,并以吸附剂吸附氧杂质,以产生构成纯化的液氩产品的纯化的液氩流。吸附床经受具有在线(on-line)阶段和离线(off-line)阶段的交替循环,在所述在线阶段中,将不纯的液氩流在吸附床内纯化,在所述离线阶段中,使含于吸附床中的吸附剂再生。在交替循环的在线阶段期间,通过从吸附床到冷却剂流的间接交换热来将吸附床维持在降低的温度下,所述降低的温度足以防止液氩流的蒸发。在交替循环的离线阶段期间,终止将不纯的液氩流引入吸附床中,且排出吸附床的含于吸附床中的残留的液氩,以产生残留的液氩流。将所述残留的液氩流作为液体或蒸汽或液体和蒸汽的混合物引入低温空气分离设备中。通过脱附氧杂质使吸附剂至少部分再生,通过使再生气体穿过吸附床来脱附氧杂质。在交替循环的在线阶段之前,用由液氩产品组成的纯化的氩液重新填充吸附床。应理解,经受交替循环的吸附床可能是以异相程序(out-of-phase sequence)操作的多床吸附循环中的一个吸附床,且如在权利要求书中阐述的本发明意欲涵盖此类多床吸附循环,并不限于单吸附床的使用。
吸附剂可为分子筛,且交替循环可为变温吸附方法。在此类情况中,再生气体是经加热的再生气流,并通过终止吸附床与冷却剂流之间的间接热交换及使经加热的再生气流进入吸附床中来加热吸附床,以使吸附的氧脱附。在用纯化的氩液重新填充吸附床之前,恢复吸附床与冷却剂流之间的间接热交换。可将由富氮蒸汽组成的富氮蒸汽塔顶馏分(column overhead)流从低温空气分离设备的低压塔或高压塔中除去,并在低温空气分离设备的主热交换器中至少部分加热,以帮助冷却经压缩并纯化的空气流,所述空气流由欲在低温空气分离设备内分离的空气组成。在富氮蒸汽塔顶馏分流已在主热交换器中被至少部分加热之后,可从一部分所述富氮蒸汽塔顶馏分流形成再生气体。在交替循环的在线阶段期间,产生含有另一部分液氩的辅助液氩流,并将所述辅助液氩流引入储存槽,以储存所述另一部分液氩。通过从储存槽中除去辅助液氩流并蒸发所述辅助液氩流来产生置换气流,并将所述置换气流引入吸附床中,以协助促进残留的液氩流从吸附床至低温空气分离设备。
冷却剂流可形成自在高压塔中产生的贮存液体(shelf liquid)。液氩可产生自作为氩塔内的塔顶馏分而产生并在冷凝器中冷凝的富氩蒸汽,或者作为级间液体产生自氩塔。将液氩引入散装(bulk)氩储存槽中,并从所述散装氩储存槽中取出不纯的液氩流,用于在吸附床中处理。
本发明还提供了用于生产纯化的液氩产品的装置,其包含低温空气分离设备和氩纯化***。将所述低温空气分离设备进行配置,以将氩从空气中分离,且其具有用以将氩与氧分离的氩塔及用于由与氧分离的氩来生产具有氧杂质的液氩的设备。将氩纯化***集成在低温空气分离设备内且其具有流体网络(flow network),所述流体网络与液氩生产设备连接,以致接收由至少部分液氩组成的不纯的液氩流;和吸附床,所述吸附床接收所述不纯的液氩流。吸附床具有吸附剂,以吸附氧杂质,并因此生产构成纯化的液氩产品的纯化的液氩流,以及用于从吸附床至冷却剂流的间接交换热的设备,从而防止液氩流的蒸发。对流体网络进行配置,以使吸附床经受具有在线阶段和离线阶段的交替循环,在在线阶段中,在吸附床内纯化不纯的液氩流,在离线阶段中,使含于吸附床中的吸附剂再生。
流体网络具有管道***和在管道***内的阀***,将所述阀***配置为在在线阶段期间选择性地将冷却剂流引入吸附床间接热交换设备中,并将不纯的液氩流引入吸附床中,及在离线阶段期间进行再生程序。再生程序包括:终止将液氩流引入吸附床中;排出吸附床的含于吸附床中的残留的液氩,以产生残留的液氩流;使再生气体穿过吸附床,通过除去吸附剂中的氧杂质使吸附剂至少部分再生;及在交替循环的在线阶段之前,将由液氩产品组成的纯化的液氩引入吸附床中,并因此用纯化的氩液重新填充吸附床。将流体网络的管道***与低温空气分离设备连接,以致在离线阶段期间,使残留的液氩流作为液体或蒸汽或液体和蒸汽的混合物进入低温空气分离设备并因此将其回收。
吸附剂可为分子筛,且交替循环可为变温吸附方法。在此类情况中,再生气体是经加热的再生气流,以加热吸附床并因此使吸附的氧脱附。再生程序还包括在使吸附床排出残留的氩之后,终止将冷却剂流引入吸附床间接热交换设备中。在用纯化的氩液重新填充吸附床之前,恢复将冷却剂流引入吸附床间接热交换设备中。
低温空气分离设备具有主热交换器,以帮助冷却经压缩并纯化的空气流,所述空气流由欲分离的空气组成,及将主热交换器与低温空气分离设备的低压塔或高压塔流体连通(flow communication),以使富氮蒸汽塔顶馏分流在主热交换器内至少部分加热,所述塔顶馏分流由产自高压塔或低压塔的富氮蒸汽组成。将管道***与主热交换器连接,以致在富氮蒸汽塔顶馏分流已在主热交换器中至少部分加热之后,从一部分富氮蒸汽塔顶馏分流形成再生气体。氩纯化***可具有储存槽和蒸发器,所述蒸发器位于储存槽和吸附床之间。在此类情况中,将管道***与储存槽连接。另外,对流体网络进行配置,以致在交替循环的在线阶段期间,产生含有另一部分液氩的辅助液氩流,并将辅助液氩流引入储存槽中以储存另一部分液氩,并在交替循环的离线阶段期间,辅助液氩流从储存槽流至蒸发器,从而蒸发辅助液氩流,以形成置换气流,且将置换气流引入吸附床中,以协助促进残留的液氩流从吸附床至低温空气分离设备。在本发明的任意实施方案中,低温空气分离设备可具有冷凝器再沸器(condenser reboiler),其位于低压塔中以生产贮存液体。流体网络的管道***与冷凝器再沸器流体连通,以致从贮存液体形成冷却剂流。另外,液氩生产设备可以是与氩塔连接的冷凝器,以冷凝在氩塔内作为塔顶馏分产生的富氩蒸汽或氩塔的出口,以从氩塔中排出作为级间液体的液氩。流体网络可具有散装氩储存槽,其位于氩塔或冷凝器与吸附床之间,以致在在线阶段期间将液氩引入散装氩储存槽中,且不纯的液氩流从散装氩储存槽进入吸附床。
相对于当前的和建议的氩精炼方法,本主题发明具有数个优势。与当前的氩精炼的“超级”蒸馏方式相反,混杂液体吸附***的使用将急剧减少总体的冷箱空间。相对于现有技术的过往的液相氩吸附处理构造(arrangements),通过利用现存的低温蒸馏基础结构,有效回收再生气体/液体。这是经济生命力的关键要素,因为前述含于容器中的液氩的价值对于经济运行是关键的。相对于现有技术气体吸附方法,不需要进料气体压缩。另外,通过直接处理液氩,急剧减小了设备/容器的相关尺寸。因此本发明提供了胜过现有技术的固定成本和操作费用益处。
附图简述
虽然说明书以具体指出申请人关于其发明的主题的权利要求书结束,但是相信当结合附图时,本发明将被更好地理解,其中唯一的附图是用于进行依照本发明方法的装置的示意性工艺流程图。
发明详述
参照图1,其阐述了与氩纯化***2集成的空气分离设备1。本主题设备典型地被包封在绝缘的外壳(或冷箱-未显示)中。将作为经压缩并预纯化的进料空气流10的进入空气分离成在高压蒸馏塔和低压蒸馏塔14和24中的富氧馏分和富氮馏分。在氩塔50中分离氩,以生产具有氧杂质的液氩。在氩纯化***2中纯化由一部分在氩塔50中产生的液氩组成的不纯的液氩流60,以产生纯化的液氩产品92。
应当注意,高压蒸馏塔和低压蒸馏塔14和24以及氩塔50代表蒸馏塔,其中蒸汽与液体逆流(counter-currently)接触,以便影响各自进料流的基于气体/液体传质的分离。塔14、24和50将优选采用填料(规整的(structured)或堆积的(dumped))或塔板或它们的组合(如本领域所众所周知的)。虽然未阐述,但是正如本领域技术人员将理解的,进入空气在主空气压缩机中被压缩且随后在预纯化单元中被预纯化,以从空气中除去高沸点杂质。此类单元具有吸附剂床,以吸附诸如水蒸汽和二氧化碳及可能还有烃之类的杂质。此外,可向该基础构造中添加另外的塔,用于氩的进一步精炼和/或稀有气体(例如氪和氙)的回收的目的。
更具体地,将由空气的压缩和预纯化(如上所述)所产生的经压缩、预纯化的进料空气流10(“LP空气”)在第一或主热交换器12中冷却至接近饱和,并随后引向高压蒸馏塔14的底部。高压蒸馏塔14在5.0至6.0巴范围的绝对压力下操作。将高压空气流16(“HP空气”)也进料至主热交换器12。该(气)流通过进一步压缩一部分已被压缩并纯化之后的空气产生。部分横越(partial traversal)主热交换器12之后,该(气)流的一部分18随后通过涡轮20做功膨胀(work expanded)至1.1至1.5巴范围的绝对压力。随后将得到的排气流22引入低压塔24的中间位置。应当注意,膨胀功可用于其它压缩装置或用于产生电力。剩余的高压空气馏分在主热交换器12中被进一步冷却并冷凝,以产生高压液态空气流26。得到的高压液态空气流26通常将在98.0至103.0K范围的温度下排出。高压液态空气流26随后分为两部分,28和32。部分28通过阀30被引入高压塔14中。剩余部分32通过阀34膨胀进入低压塔24中。通常总的高压空气流16将构成进入设备的总的空气的30.0至40.0%。介于5.0%和15.0%之间的该馏分将可能被膨胀,剩余的馏分在高压塔和低压塔14和24之间分离。
在高压塔14内,膨胀的液态空气和气态空气被分离成富氮塔顶馏分(贮存)和富氧塔底物(釜)。塔顶馏分气体/氮的冷凝通过引入富氮蒸汽流35至主冷凝器36中实现。将冷凝的潜热赋予低压塔24的(富氧)塔底流体。随后将得到的富氮液流37分离。部分38用于回流塔14,同时将其余的贮存液流39引向低压塔24作为回流。
下文将要讨论的釜液流68,其由高压塔14的塔底液体和回流流38组成,其在低温冷却器/热交换器40内借以加热从塔24获得的氮而得以冷却。由一部分回流流39组成的液氮产品流41可通过阀42作为产品被取走并送往合适的储存器(storage)(未显示)。含于回流流39中的剩余的贮存液体的大部分在迅速通过(flashing through)阀43之后用于回流低压塔24。
在低压塔24内,釜液、液态空气和贮存氮进一步被分离成富氮塔顶馏分和富氧塔底液体(典型地纯度为99.5+%)。在低温冷却器/热交换器40和主热交换器12中加热塔顶馏分氮流78。或者,可从低压塔24提取两股氮流(产品氮流和废氮流)。一部分经加热的氮经常发现作为吹扫/清扫流体的用途,用于再生预纯化单元的热端(warm end)吸附***的目的。
从低压塔24的底部提取富氧液流44。随后通过重力压头和/或机械泵45的组合来压缩该(液)流。随后可将加压的液氧流分离成液态产品馏分46和待加热的产品流,引导所述馏分46通过阀47(进入未显示的合适的储存器中)。剩余的液氧馏分在交换器12内被蒸发并加热,并作为高压气态产品流48出现,所述高压气态产品流48可直接使用或被引向分配管道。大部分高压空气流16被液化,用于蒸发液氧的目的(如所述)。经由阀30和34将得到的液态空气流分配入塔***中,同样如上所述。
在可与低压塔24相匹敌的压力下运行氩精馏塔50,并典型地采用50和180级。从低压塔24的更低的级间部分提取气态富氩蒸汽进料(8.0%–15.0%氩)并将其引向氩塔50的底部。氩塔50通过以下方式用于精馏所述进料:将氩与氧分离,成为富氩塔顶馏分流52(典型地含有痕量水平的氧并可能含有氮)。塔50的富氩蒸汽塔顶馏分气流52在含于壳56内的潜(热)交换器54内冷凝。将得到的液氩流分成塔回流流58和不纯的液氩流60,将以下文欲描述的方式进一步纯化该不纯的液氩流60。从氩塔50的底部,将除尽氩的富氧流62通过机械泵64加压并引回到塔24用于进一步精馏。将塔顶馏分氩冷凝的潜热赋予釜液流68的一部分66,所述部分66通过阀70被引入壳56中。引导剩余的釜液流70通过阀72并进入塔24中。在交换器-容器56内,发生池沸腾(pool boiling),伴随自然循环(热虹吸)流经多通路(铝钎焊(brazed aluminum))交换器54。随后将得到的蒸发的釜液和残留的富氧排出物作为蒸汽流和液相流74和76导入低压塔24中。
釜液流68在低温冷却热交换器40内与回流流39一起通过与作为低压塔24的塔顶馏分而产生的富氮蒸汽流78的间接热交换而被低温冷却。富氮蒸汽流78随后在主热交换器12内被加热,以产生氮产品流80。
将具有氧杂质的不纯的液氩流60引入设计用于从液氩流中除去氧的氩纯化***2中,所述氩纯化***2具有含有吸附剂91的吸附床90。氧杂质的吸附产生构成纯化的液氩产品的纯化的液氩流92。氩纯化***2,以将要讨论的方式,能够使吸附床90经受具有在线阶段和离线阶段的交替循环,在在线阶段中在吸附床90内纯化不纯的液氩流60,且在离线阶段中,通过先前吸附的氧杂质的脱附使含于吸附床90中的吸附剂91再生。在在线阶段期间,通过将要讨论的从吸附床90至液态冷却剂流104的间接交换热使吸附床90维持在低温下。该低温防止吸附床90内液氩的蒸发和构成纯化的液氩产品的纯化的液氩流92的产生。这样做的优势在于可直接储存所得到的纯化液体,与用于此类目的的重新液化氩蒸汽中将招致的能量消耗形成对照。在交替循环的离线阶段期间,终止将不纯的液氩流60引入吸附床90中,且使吸附床90排出含于吸附床90中的残留的液氩,以产生残留的液氩流111(其将被讨论),可在氩塔50或低压塔24内回收该液氩流111。这里的优势在于本发明设想的集成减少了在吸附床90的再生中以其它方式失去的氩的量。如将要讨论的,在离线阶段期间通过脱附氧杂质来使吸附剂 91至少部分再生,通过使再生气流126穿过吸附床90来脱附氧杂质,及再生之后,通过使氩蒸汽流从储存源130穿过吸附床来从吸附床90置换残留的再生气体,所述氩蒸汽流形成自纯化的液氩产品。在交替循环的在线阶段之前,用由液氩产品组成的纯化的氩液重新填充吸附床。优选地并如阐述的实施方案中所示,吸附剂 91的再生依照变温吸附循环进行,并因此再生气体是经加热的再生气体,其将使吸附剂91能够被加热并因此释放先前吸附的氧杂质。但是,化学吸附剂也是可能的,其中吸附剂91例如为金属氧化物,例如以上讨论的CuO或MnO2,且通过使用还原气体(例如氢气)在介于约150和250℃之间的适度温度下完成再生。同样如上讨论的,此类吸附剂的使用是比设想使用分子筛的(例如以下将讨论的)更加复杂且昂贵的集成。
虽然将关于单床操作描述该工艺,但是应当理解也可采用多床。在此类情形中,至少一个床可正在纯化液氩,而其它床可处于再生的各种阶段。在所示的实施方案中显示了单吸附***。为了完成这个,将不纯的液氩流60引向批量(batch)储存槽94,所述储存槽94可在高压(介于20.0和100.0 psig之间)下操作用于储存不纯的氩的目的。可通过压力控制阀95控制储存槽94的压力,所述阀95可将蒸汽流97引回到氩塔50的塔顶。应当注意,批量储存槽94可由连接在一起的数个储存容器组成。
优选用吸附剂 91填充吸附床90,所述吸附剂91优选在液相中吸附氩中的氧。为吸附床90提供冷却套96,该冷却套96转移来自吸附床90中经纯化的液氩的热,以使氩维持在液态。如可意识到的,代替冷却套,吸附床90可具有类似于壳和管热交换器的构造,其中壳侧用来提供用于冷却流体通过的手段。分子筛吸附剂(例如沸石4A和锂交换4A)已显示是用于本主题方法的有效吸附剂。特别地,对于氩进料流纯化至残留的氧含量不大于百万分之十的氧,并最优选(含有)不大于百万分之一的氧杂质,优选的沸石是A型沸石,所述沸石在15%至55%和/或82%至86%的范围、在等电荷的基础上、与锂阳离子进行离子交换。在该情况中,替代的剩余物(balance)是钠。在纯化期间,将不纯的液氩流98通过流控制阀100持续进料,所述不纯的液氩流98获得自通过批量槽94的液氩流60,含有介于10和10,000 ppm 之间的O2,并优选(含有)100至1,000 ppm的O2。吸附床除去痕量氧,并将经纯化的液体从吸附床90中移出(通常含有低于1ppm O2)。随后将经纯化的液氩流92通过阀102引到合适的储存器(未显示)中。
在吸附期间,外部热量泄漏进入吸附床,氧气吸附的热量将倾向于加热不纯的液氩流,因而床/流体需要冷却。提供外部冷却套96,以致能够引导冷却剂流通过阀106并蒸发,用于冷却吸附床90的目的,所述冷却剂流可为由回流流39的另一部分组成的液氮流104。蒸发的氮气作为(气)流107将优选被引导通过压力控制阀105,并随后与来自主塔***的低压氮气流78合并。通常通过阀106的流将响应与冷却套96相连的液位传感器(未显示)而受控制。吸附过程将典型地在介于1.0和10.0 巴之间的表压力下操作,且制冷套(refrigerating jacket)将在介于1.0和4.0巴之间的表压力下操作。应当注意,可使用除了液氮以外的制冷流体来冷却吸附***。其它候选物包括液态空气、釜(液)(kettle)、氧、氩或任意数目的级间塔混合物(或甚至是低温、非空气制冷剂)。虽然不优选,但是低温气体(如更低的塔贮存蒸汽)的使用可用来代替液态制冷剂。应当注意,用来通过套96提供制冷的液氮可从单独的槽(或来源或其它设备)中获得。此类液体容器设备可处于高压下以促进流体流动。
充足的氧已被装载到吸附床上之后,必须将吸附剂91再生并促进(infurtherance thereof)吸附床 90经受离线阶段。要指出的是,在在线阶段期间,当氧被吸附在吸附剂91中时,阀100、102、106和105全都是开启的,以允许液氩流进入吸附床并被纯化,且允许冷却剂流进入冷却套96中并被排出。此时,蒸发的冷却剂的压力由控制阀105控制。另外,如将要讨论的,阀116也被设置在开启位置,以储存不纯的氩。显示在图中的其它阀,即,阀110、112、118、124、132和134全都是关闭的。
当欲使吸附床处于离线时,作为第一步,关闭阀100和102并持续使吸附床91再生的时间段,不纯的液氩在散装槽94中聚集,假定存在单个吸附床。在离线时,将阀106设置在关闭位置,并使冷却套96排出冷却剂并通过阀108送至未显示的合适的储存器(或排出液蒸发器)中。在排出冷却剂之前或在排出冷却剂期间,考虑到相当大量的液氩含于床内(及其相关价值),将阀110设置在开启位置,并将残留的液氩作为残留的液氩流111引回到氩塔50中(优选将液体引向高于抽空泵64的点)。为了有效从床90中除去不纯的液氩,可采用置换气体。可通过以下方式来形成该置换气体:在吸附床90处于在线的时间期间通过开启阀116将不纯的液氩流通过输送管线113引入储存槽114中并吸附氧杂质。因此,在离线阶段期间,阀116也设置在闭合位置。通过以下方式产生置换气体:开启阀118以引起通过常压蒸发器120的氩流,通过管线122将所述氩流引入吸附床90中。该置换气体将协助促进残留的液氩流111从吸附床90返回至氩塔50中。
为了使床90再生,有必要将其温度通常升高至接近200K的温度。排出之后,按顺序关闭阀110和118(无流量)。通过开启阀124,优选使经加热的氮流穿过吸附床90。阀124的开启允许由热的低压氮产品80组成的再生气流126作为再生气体穿过吸附床90并因此加热所述床并使先前吸附的氧脱附。所述氮用于通过直接接触来加热床。可随后通过阀112将所述氮引向排气口或使所述氮与取自氩塔50塔顶馏分的热的氮流合并。或者,可采用经蒸发并加热的贮存氮流来加热床或可使用鼓风机以增加流经床的氮的压力。
在使用经加热的氮气使吸附剂再生之后,关闭阀124。随后可通过开启阀132将产生自纯化的液氩产品的来自储存器130的富氩气体引入吸附床90中,以在蒸发器136中蒸发所述(气)流,以便置换/吹扫床的残留氮。富氩气体流经输送管线113。一旦氮被除去,可通过关闭阀112将吸附床90与排气口隔离。可采用N2组成分析仪(未显示)用于分析残留的N2含量的目的。随后可用液氮填充冷却套96(开启阀106并关闭阀108)。通过开启阀132并关闭阀134,可随后将氩产品液流经由输送管线113从储存器130进料至床90。随后用取自塔50(或如所示通过阀100取自容器94)的不纯的氩对如此被纯的液氩填充的吸附床90进料。应注意,通过用纯的液氩重新填充吸附床90并允许液氩在完成吸附床的冷却之前蒸发可能延迟冷却套96的重新填充。在此类情况中,得到的蒸汽可通过被重新引入低温空气分离设备(优选氩塔50)中而得到回收。吸附床冷却之后,可随后对冷却套96进行重新填充。在任何情况下,在循环的基础上重复该纯化和再生过程,通常总循环时间将大约为一周。
本主题发明适用于三塔***的众多实施方案。可采用许多工艺或设备修改。塔***本身可采用规整填料和/或塔板的任意组合。可采用众多处理构造(processarrangements)(在三塔***的范围内)。
在阐述的实施方案中,从氩塔50的冷凝的塔顶馏分蒸汽获得不纯的液氩流60。但是应理解,可在低于氩塔50的顶部数级,低于所述塔的顶部3至6级取出待纯化的液氩流,以帮助氮在排气口集中。待纯化的不纯的液氩流将因此从氩塔50的级间位置,而不是通过来自交换器54的冷凝液被除去。本主题塔***的另一种重要的变型可涉及“高比利塔(high-ratio column)”的使用。在如图1所示的构造中,在至塔50的进料流中达到了ppm水平的氮。此类构造将要求在塔24的介于氩提取点和最低的釜/蒸汽进料点之间的部分中使用20级至25级。在基于高比例的设备的情况中,可将超过约500ppm的N2进料至氩塔50中。产自塔50的塔顶馏分液体将含有高达约1.0%或更多的N2。因而可采用二级精炼塔(“高比例塔”)。该塔用于从氩中除去N2。可使用此类选择有效实践本主题发明。高比例塔将优选定位介于超级塔50和吸附***之间。
经常在不同的位置对塔50进行分割。例如,有时抽空泵64实际上使级间液体返回到氩塔50的第二部分。本主题发明将优选使不纯的残留的液氩排出流返回到存在严密匹配的组成的塔位置。另外,为了使资本最少化,可将吸附***升高(高于塔50进料)用于产生充足的静压头以促进液体从床90至塔50的目的。或者,可采用专用的液泵,以使不纯的氩排出液返回到塔***。在这方面,可将残留的液氩排出流在从低压塔24至氩塔50的提取点引入低压塔24中。虽然不是最佳的,但是有可能在引入塔***(或甚至是进料空气压缩***)之前完全或部分重新蒸发排出液。
富氩源114优选是低压储存槽(或槽群(tank farm))。或者,一些部分氩可在压力下储存并从槽汽相空间(vapor space)直接获得气态氩(即,所述槽可具有增压盘管(pressure building coils))。对于被引导通过阀118的纯液氩流(对于完成床冷却是必要的)可作类似考虑。置换气体也可由富氧流组成。可从氩塔50进料或从塔24的底部或从主热交换器12的热端获得此类流。在此类情形中,可随后将不纯的氩排出液和相关的排气口气体引向塔24的更低的位置(其中实施氩汽提操作—且仅有氩和氧存在于塔中)。
通常的实践是递送产品氮流(从塔24的顶帽部分(top hat section))和废氮流。可在低温冷却器38和主热交换器12的单独通道内将两股氮流并行加热。类似地,多纯度贮存流可产生自塔14的更低处。这些流的任何一股一经加热(和/或经蒸发)即可用于提供加热吸附床90所必需的加热介质的目的。还有可能采用一部分预纯化的进料空气,用于加热床的目的。
应当注意,典型地将流量控制阀与流量测量元件(孔板或文丘里流量计未显示)结合使用。可以该方式来控制行进通过阀124和118的气体再生流。类似地,水平控制阀与液位的静压头测量(例如在床90和冷却套96上)结合使用。充分理解实现水平或流量控制所要求的控制逻辑。附图中显示的许多阀可与相关的单向阀适配,以便防止进入相关工艺设备中的回流。
在加热步骤期间,也可在套96中采用加热流体,用于加速床加热的目的。此类流在穿过套96之后可被排至大气中或与废氮流合并。
在其中行进通过排出口阀112的排气口流具有的氩含量大于空气中氩含量的情况中,其可被有利地引入塔***中或被引回到进料空气压缩***中(以便增加回收)。若足够冷,行进通过阀112的再生流可与废氮流合并,以补偿其制冷价值。
可将本主题吸附***合并入含有主塔***(或主热交换器12)的冷箱。或者,可将吸附器(一个或更多个)置于单独的冷箱或真空绝缘容器中。吸附床的几何结构可为管包管或管束(即,壳和管交换器)。制冷套优选关于主题管配置。
尽管已参照优选的实施方案描述了本发明,但是应理解,可作出许多增加及省略,而不偏离如所附权利要求书所述的本发明的精神和范围。

Claims (7)

1.生产纯化的液氩产品的方法,其包括以下步骤:
在低温空气分离设备内,在氩塔中将氩与氧分离,其中所述氩塔配置为产生具有氧杂质的液氩流;
将一部分的具有氧杂质的液氩流引入吸附床中;
在具有吸附剂的吸附方法中从所述液氩流吸附氧杂质,以生产构成纯化的液氩产品的纯化的液氩流;
使吸附床经受具有在线阶段和离线阶段的交替循环,在所述在线阶段中,在所述吸附床内,从该部分的具有氧杂质的液氩流吸附氧杂质,在所述离线阶段中,使含于所述吸附床中的吸附剂再生;
在所述交替循环的所述在线阶段期间,从所述吸附床到冷却剂流进行间接交换热,以将所述吸附床维持在降低的温度下,所述降低的温度足以防止所述液氩流和所述液氩产品流的蒸发;
在所述交替循环的所述离线阶段期间,终止向所述吸附床引入一部分的具有氧杂质的液氩流的步骤;
在所述交替循环的所述离线阶段期间,排出所述吸附床的含于所述吸附床中的残留的液氩,以产生残留的液氩流;
将所述残留的液氩流作为液体或蒸汽或液体和蒸汽的混合物引入所述氩塔或所述低温空气分离设备的低压塔中;
通过从所述吸附剂中除去所述氧杂质使所述吸附剂再生;
用纯化的液氩产品重新填充所述吸附床;及
使所述吸附床重新经受所述交替循环的所述在线阶段。
2.权利要求1所述的方法,其中所述吸附剂为分子筛,且所述吸附方法为变温吸附方法,且其中所述再生吸附剂的步骤进一步包括以下步骤:
终止所述吸附床与所述冷却剂流之间的间接热交换;及
使经加热的再生气流穿过所述吸附床,以使吸附的氧杂质脱附。
3.权利要求2所述的方法,其中在来自所述低温空气分离设备的低压塔的富氮蒸汽塔顶馏分流已在所述低温空气分离设备的主热交换器中被至少部分加热之后,从一部分所述富氮蒸汽塔顶馏分流形成所述再生气流。
4.权利要求1所述的方法,其中所述冷却剂流形成自在所述低温空气分离设备的高压塔中产生的贮存液体。
5.权利要求2所述的方法,其进一步包括在用所述纯化的氩液重新填充所述吸附床的步骤之前,恢复所述吸附床与所述冷却剂流之间的间接热交换的步骤。
6.权利要求1所述的方法,其中从所述液氩流中吸附氧杂质,以产生纯化的液氩流的步骤进一步包括产生所述纯化的液氩流和辅助液氩流,且其中将所述辅助液氩流引入储存槽中。
7.权利要求6所述的方法,其进一步包括以下步骤:
从所述储存槽中去除一部分的液氩;
蒸发从所述储存槽中去除的液氩,以形成置换气流;及
在所述交替循环的所述离线阶段期间,将所述置换气流引入所述吸附床中,以协助从所述吸附床排出残留的液氩流。
CN201480011819.6A 2013-03-01 2014-02-28 氩生产方法及装置 Active CN105008272B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361771468P 2013-03-01 2013-03-01
US61/771468 2013-03-01
US14/192003 2014-02-27
US14/192,003 US9644890B2 (en) 2013-03-01 2014-02-27 Argon production method and apparatus
PCT/US2014/019225 WO2014134383A1 (en) 2013-03-01 2014-02-28 Argon production method and apparatus

Publications (2)

Publication Number Publication Date
CN105008272A CN105008272A (zh) 2015-10-28
CN105008272B true CN105008272B (zh) 2016-11-23

Family

ID=51420212

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480011819.6A Active CN105008272B (zh) 2013-03-01 2014-02-28 氩生产方法及装置

Country Status (6)

Country Link
US (2) US9644890B2 (zh)
EP (1) EP2961687B1 (zh)
CN (1) CN105008272B (zh)
CA (1) CA2893197C (zh)
ES (1) ES2750477T3 (zh)
WO (1) WO2014134383A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9644890B2 (en) 2013-03-01 2017-05-09 Praxair Technology, Inc. Argon production method and apparatus
US9457337B2 (en) 2013-03-01 2016-10-04 Praxair Technology, Inc. Adsorbent composition for argon purification
US9222727B2 (en) 2013-03-01 2015-12-29 Praxair Technology, Inc. Purification of argon through liquid phase cryogenic adsorption
US9676629B2 (en) 2015-06-09 2017-06-13 Praxair Technology, Inc. Helium enhanced heat transfer in adsorptive liquid or gas phase argon purification processes
US10018413B2 (en) 2015-07-31 2018-07-10 Praxair Technology, Inc. Method and apparatus for increasing argon recovery in a cryogenic air separation unit integrated with a pressure swing adsorption system
US10066871B2 (en) 2015-07-31 2018-09-04 Praxair Technology, Inc. Method and apparatus for argon rejection and recovery
US10012438B2 (en) 2015-07-31 2018-07-03 Praxair Technology, Inc. Method and apparatus for argon recovery in a cryogenic air separation unit integrated with a pressure swing adsorption system
US10012437B2 (en) 2015-07-31 2018-07-03 Praxair Technology, Inc. Method and apparatus for argon recovery in a cryogenic air separation unit integrated with a pressure swing adsorption system
WO2019053710A1 (en) 2017-09-14 2019-03-21 Oridion Medical 1987 Ltd. SYSTEMS AND METHODS FOR OPERATING AN ALERT SYSTEM OF MEDICAL DEVICES
US11262125B2 (en) 2018-01-02 2022-03-01 Praxair Technology, Inc. System and method for flexible recovery of argon from a cryogenic air separation unit
US10663223B2 (en) * 2018-04-25 2020-05-26 Praxair Technology, Inc. System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit
US10663224B2 (en) 2018-04-25 2020-05-26 Praxair Technology, Inc. System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit
US10816263B2 (en) 2018-04-25 2020-10-27 Praxair Technology, Inc. System and method for high recovery of nitrogen and argon from a moderate pressure cryogenic air separation unit
US10981103B2 (en) * 2018-04-25 2021-04-20 Praxair Technology, Inc. System and method for enhanced recovery of liquid oxygen from a nitrogen and argon producing cryogenic air separation unit
US10663222B2 (en) 2018-04-25 2020-05-26 Praxair Technology, Inc. System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit
KR20230008178A (ko) 2020-05-11 2023-01-13 프랙스에어 테크놀로지, 인코포레이티드 중압 극저온 공기 분리 유닛에서 질소, 아르곤, 및 산소의 회수를 위한 시스템 및 방법
CN115485519A (zh) 2020-05-15 2022-12-16 普莱克斯技术有限公司 用于产生氮和氩的低温空气分离单元的集成式氮液化器
CN111578622A (zh) * 2020-06-16 2020-08-25 大连三木气体有限公司 一种氩气的生产制备***
US11619442B2 (en) 2021-04-19 2023-04-04 Praxair Technology, Inc. Method for regenerating a pre-purification vessel
CN116177504A (zh) * 2021-11-28 2023-05-30 石兴平 一种氩气回收装置纯化***置换方法
CN114522508B (zh) * 2022-04-24 2022-07-05 北京中科富海低温科技有限公司 一种氢气吸附器再生***及其方法
CN116332139A (zh) * 2023-03-08 2023-06-27 上海联风气体有限公司 一种集成高纯氮并增效的氩气回收装置及其使用方法
CN117504525B (zh) * 2023-09-18 2024-04-12 上海联风气体有限公司 可减少深冷污氩排放量的污氩分离***和方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1272322B (de) 1964-01-15 1968-07-11 Linde Ag Vorrichtung zur Erzeugung von Nebenprodukten, insbesondere fluessigem Rohargon, bei der Tieftemperaturluftzerlegung
SU516410A1 (ru) 1973-12-06 1976-06-05 Ленинградский технологический институт холодильной промышленности Способ очистки аргона
US4477265A (en) 1982-08-05 1984-10-16 Air Products And Chemicals, Inc. Argon purification
US4717406A (en) 1986-07-07 1988-01-05 Liquid Air Corporation Cryogenic liquified gas purification method and apparatus
US4734199A (en) * 1986-11-19 1988-03-29 Union Carbide Corporation Liquid phase adsorption process
US5174979A (en) 1989-10-06 1992-12-29 Uop Mixed ion-exchanged zeolites and processes for the use thereof in gas separations
US5159816A (en) 1991-05-14 1992-11-03 Air Products And Chemicals, Inc. Method of purifying argon through cryogenic adsorption
US5114445A (en) 1991-06-18 1992-05-19 Atlantic Richfield Company Flare vent head
US5601634A (en) * 1993-09-30 1997-02-11 The Boc Group, Inc. Purification of fluids by adsorption
GB9405161D0 (en) 1994-03-16 1994-04-27 Boc Group Plc Method and apparatus for reboiling a liquified gas mixture
US5707425A (en) 1994-10-21 1998-01-13 Nitrotec Corporation Helium recovery from higher helium content streams
FR2735990B1 (fr) 1995-06-30 1997-08-14 Air Liquide Procede et dispositif pour la preparation d'un flux substantiellement epure en l'une au moins des impuretes oxygene et monoxyde de carbone
JP3268193B2 (ja) * 1996-01-25 2002-03-25 エア・ウォーター株式会社 炉雰囲気排ガスからの溶接用シールドアルゴン製造方法
FR2749575B1 (fr) * 1996-06-07 1998-07-10 Air Liquide Procede et dispositif de preparation d'azote liquide de haute purete
US5730003A (en) 1997-03-26 1998-03-24 Praxair Technology, Inc. Cryogenic hybrid system for producing high purity argon
DE19731574A1 (de) 1997-07-23 1999-01-28 Bayer Ag Verfahren zur Herstellung eines mit Lithium Ionen und zweiwertigen Ionen ausgetauschten bindemittelhaltigen Zeolithgranulats des Typs A und dessen Verwendung zur adsorptiven Lufttrennung
JPH1183309A (ja) * 1997-09-04 1999-03-26 Nippon Air Rikiide Kk アルゴン精製方法及び装置
FR2771943B1 (fr) * 1997-12-05 2000-01-14 Air Liquide Procede de purification de fluides inertes par adsorption sur zeolite lsx
US5946942A (en) 1998-08-05 1999-09-07 Praxair Technology, Inc. Annular column for cryogenic rectification
US6250106B1 (en) 1999-12-13 2001-06-26 Air Products And Chemicals, Inc. Process for separation of multicomponent fluids using a multizone distallation column
US6240744B1 (en) 1999-12-13 2001-06-05 Air Products And Chemicals, Inc. Process for distillation of multicomponent fluid and production of an argon-enriched stream from a cryogenic air separation process
US6351971B1 (en) 2000-12-29 2002-03-05 Praxair Technology, Inc. System and method for producing high purity argon
US7169210B2 (en) 2001-07-31 2007-01-30 Praxair Technology, Inc. Control system for helium recovery
MXPA04000965A (es) 2001-07-31 2005-02-22 Praxair Technology Inc Recuperacion de helio.
US20030037672A1 (en) 2001-08-27 2003-02-27 Shivaji Sircar Rapid thermal swing adsorption
GB2386889B (en) 2002-03-25 2006-01-11 Council Scient Ind Res Process for the preparation of molecular sieve adsorbent for selective adsorption of nitrogen and argon
US7234691B2 (en) 2005-05-20 2007-06-26 Air Products And Chemicals, Inc. Radial-crossflow distillation trays for divided wall column applications
US7452407B2 (en) 2006-02-28 2008-11-18 Air Products And Chemicals, Inc. Production of carbon monoxide-free hydrogen and helium from a high-purity source
US7501009B2 (en) 2006-03-10 2009-03-10 Air Products And Chemicals, Inc. Combined cryogenic distillation and PSA for argon production
DE102007035619A1 (de) 2007-07-30 2009-02-05 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
US8480860B2 (en) 2008-10-22 2013-07-09 Air Products And Chemicals, Inc. Divided wall columns for smaller sized plants
US9084980B2 (en) 2009-08-28 2015-07-21 Tosoh Corporation Zeolite for treatment of nonaqueous electrolytic solution and treatment method of nonaqueous electrolytic solution
US20110138856A1 (en) * 2009-12-10 2011-06-16 Henry Edward Howard Separation method and apparatus
US9644890B2 (en) 2013-03-01 2017-05-09 Praxair Technology, Inc. Argon production method and apparatus
US9457337B2 (en) 2013-03-01 2016-10-04 Praxair Technology, Inc. Adsorbent composition for argon purification
US9222727B2 (en) 2013-03-01 2015-12-29 Praxair Technology, Inc. Purification of argon through liquid phase cryogenic adsorption

Also Published As

Publication number Publication date
CN105008272A (zh) 2015-10-28
US9644890B2 (en) 2017-05-09
EP2961687A1 (en) 2016-01-06
EP2961687B1 (en) 2019-08-07
ES2750477T3 (es) 2020-03-25
US20170198968A1 (en) 2017-07-13
US9759482B2 (en) 2017-09-12
US20140245782A1 (en) 2014-09-04
WO2014134383A1 (en) 2014-09-04
CA2893197C (en) 2020-11-24
CA2893197A1 (en) 2014-09-04

Similar Documents

Publication Publication Date Title
CN105008272B (zh) 氩生产方法及装置
CN107850388B (zh) 在与变压吸附***集成的低温空气分离单元中用于增加氩回收的方法和装置
KR102258570B1 (ko) 질소 생성 극저온 공기 분리 유닛으로부터의 아르곤 및 산소의 향상된 회수율을 위한 시스템 및 방법
CA3097150C (en) System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit
CA3097179C (en) System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit
KR20200130478A (ko) 중압 극저온 공기 분리 유닛으로부터의 질소 및 아르곤의 고 회수율을 위한 시스템 및 방법
CN108027201A (zh) 用于除氩和回收氩的方法和装置
CN107850387B (zh) 在与变压吸附***集成的低温空气分离单元中用于氩回收的方法和装置
US10981103B2 (en) System and method for enhanced recovery of liquid oxygen from a nitrogen and argon producing cryogenic air separation unit
US20110138856A1 (en) Separation method and apparatus
CN107850386B (zh) 在与变压吸附***集成的低温空气分离单元中回收氩的方法和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant