CN105007073A - 高性能可重构电压缓冲器 - Google Patents

高性能可重构电压缓冲器 Download PDF

Info

Publication number
CN105007073A
CN105007073A CN201510198369.2A CN201510198369A CN105007073A CN 105007073 A CN105007073 A CN 105007073A CN 201510198369 A CN201510198369 A CN 201510198369A CN 105007073 A CN105007073 A CN 105007073A
Authority
CN
China
Prior art keywords
voltage
transistor
source
terminal
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510198369.2A
Other languages
English (en)
Other versions
CN105007073B (zh
Inventor
A·M·A·阿里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Analog Devices Inc
Original Assignee
Analog Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Analog Devices Inc filed Critical Analog Devices Inc
Publication of CN105007073A publication Critical patent/CN105007073A/zh
Application granted granted Critical
Publication of CN105007073B publication Critical patent/CN105007073B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3205Modifications of amplifiers to reduce non-linear distortion in field-effect transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/50Amplifiers in which input is applied to, or output is derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
    • H03F3/505Amplifiers in which input is applied to, or output is derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/261Amplifier which being suitable for instrumentation applications
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45726Indexing scheme relating to differential amplifiers the LC comprising more than one switch, which are not cross coupled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45728Indexing scheme relating to differential amplifiers the LC comprising one switch
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7203Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched on or off by a switch in the bias circuit of the amplifier controlling a bias current in the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/017509Interface arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Amplifiers (AREA)

Abstract

本发明涉及高性能可重构电压缓冲器。在本发明中对用于高性能电压缓冲器(源极跟随器和射极跟随器)的新结构进行了描述。该结构能够实现高性能(线性)并降低功耗。此外,它们依赖于输入频率范围可重构以优化性能和功耗。

Description

高性能可重构电压缓冲器
相关申请交叉引用
本非临时专利申请根据35U.S.C§119(e),要求提交于2014年4月25日的美国临时专利申请序列号61/984,557并题为“高性能可重构电压缓冲器”(代理人编号26256.0265-P)的利益或优先权,其中通过引用将其整体并入。
技术领域
本发明一般涉及电子电路,并且更具体地说,涉及高性能电压缓冲器。
背景技术
电子装置常常包括将模拟信号转换成数字信号的组件。一旦该模拟信号被转换成数字信号,计算机处理器可以有效地处理该数字信号以提供各种有价值的功能。这些组件统称为转换器,并且更具体地,模数转换器(ADCs)或取样器。ADCs被用于无数应用中,例如电信、汽车技术、医疗设备、音频技术、视频技术等等。根据这些应用,不同类型的ADCs被使用。ADCs的设计可以大幅改变并随着这些ADCs要求上升改进这些ADCs的需要也继续上升。
发明内容
在本发明中对用于高性能电压缓冲器(源极跟随器和射极跟随器)的新结构进行了描述。该结构实现了高性能(线性)和降低了功耗。此外,它们依赖于输入频率范围可重构以优化性能和功耗。
附图说明
图1是根据本发明的一些实施方案的缩减了各种输入频率范围的示例性电压缓冲器的电路示意图;
图2是根据本发明的一些实施方案的被用于最高500MHz的相对低的输入频率优化的示例性电压缓冲器的电路示意图;
图3是根据本发明的一些实施方案的被用于高于500MHz的高输入频率优化的示例性电压缓冲器的电路示意图;
图4是根据本发明的一些实施方案的被用于高于500MHz的高输入频率并为最大输入带宽优化的示例性电压缓冲器的电路示意图;
图5是根据本发明的一些实施方案的被配置以实现在图1-4中所示结构的示范性电压缓冲器的电路示意图;
图6根据本发明的一些实施方案示出用于控制图5中所示配置的电压缓冲器示例***的方框图;
图7根据本发明的一些实施方案示出用于控制图5中所示配置的电压缓冲器示例方法的流程图;
图8根据本发明的一些实施方案示出使用低频结构和高频结构的示例性表现;
图9根据本发明的一些实施方案示出引导装置的示例性实现;
图10根据本发明的一些实施方案示出引导装置的另一示例性实现;
图11根据本发明的一些实施方案示出引导装置的又一示例性实现;
图12根据本发明的一些实施方案示出有源共源共栅装置的示例性实现;和
图13根据本发明的一些实施方案示出有源共源共栅装置的另一示例性实现。
具体实施方式
了解电压缓冲器
电压缓冲器(诸如射极跟随器或源极跟随器)通常用作上游和下游电路之间的隔离缓冲器。例如,电压缓冲器可以用在取样电路中通过分离来自取样开关的开关效应的输入以维持输出信号的良好的线性。从理论上讲,理想的电压缓冲器具有无限的输入阻抗和零输出阻抗在无限带宽来驱动下游电路的特性。因此,电压缓冲器可以供给负载装置负载电流同时由于非常低的输出阻抗而保持输出电压的固定。然而,在实践中,电压缓冲器并不总是具有这些理想的特性。
电压缓冲器通常被使用在采样器中以实现在高输入频率的良好线性。它们还有助于从取样开关的开关效应隔离输入端。输入电压缓冲器设计的挑战之一对于一定的频率范围(例如:对于中频采样在200-300MHz)是最佳设计而对于另一个频率范围(如用于在1-2GHz射频采样)可能不是最佳的。当对于一个频率范围一种设计可实现近乎理想的特性,该设计对于另一频率范围表现不佳。
在本发明的上下文中,相对的术语“低频”和“高频”可以指实际的量化频率范围。“低频”是指输入频率高至约500MHz(例如,100-500MHz)。“高频”是指输入频率约在500MHz至2GHz。
一个示范性实施:覆盖很宽的输入频率范围的权衡
图1是根据本发明的一些实施方案的缩减了各种输入频率范围的示例性电压缓冲器的电路示意图。在此图中所示的电路设计示出了源极跟随器以及设计代表覆盖很宽的输入频率范围的权衡。此外,这种设计可以实现合理的功耗。虽然图1示出了源极跟随器,本领域的普通技术人员将理解相同的拓扑结构可以被用于实现使用一个或多个双极结晶体管(BJTs)的等效射极跟随器。
这种设计具有四个晶体管器件,M2、M1、M3和M4串联连接(例如,堆叠在这个特定的顺序),其中M2的漏极连接到Vdd并且M4的源极接地。在这个示例中,四个晶体管器件是n型金属氧化物半导体晶体管(NMOS)装置。具体地讲,M2的源极连接到M1的漏极、M1的源极连接到M3的漏极并且M3的源极连接到M4的漏极。Vin被提供到M1的栅极(即,M1的栅极连接到该电压输入节点)并且Vout的被取得在M1的源极(M3的漏极)(即,M1的源极连接到该电压输出节点)。
一种电压缓冲器具有电压输入节点和电压输出节点。电压缓冲器可以包括具有连接到电压输入节点的第一端和连接到电压输出节点的第二端的源极跟随器。在一些实施方案中,源极跟随器包括第一晶体管器件,第一端子是第一晶体管器件的栅极并且第二端子是第一晶体管器件的源极。
另外,电压缓冲器可以包括连接到源极跟随器的第二端子的共源共栅电流源装置。共源共栅电流源装置可包括第二晶体管器件和第三晶体管器件(在共源共栅结构内)并且第二晶体管器件的源极可以连接到第三晶体管器件的漏极。
在图1的图示中,器件M1是源极跟随器。在这种结构中,M1的栅极连接到电压输入节点Vin并且M1的源极被连接到电压输出节点Vout。源极跟随器装置通常具有晶体管器件其栅极连接到电压输入Vin且其源极用作输出。源极跟随器可以协助变换阻抗,诸如提供大输入阻抗和小输出阻抗。从广义上讲,源极跟随器可以缓冲并从输出隔离输入并且在某些情况下提供更高的输入阻抗。装置M3和M4形成共源共栅电流源装置,其中M3的源极被连接到M4的漏极。共源共栅电流源装置能够提供装置M1所需要的电流。从广义上讲,共源共栅电流源可以提供具有相对高的输出阻抗的必要偏置电流。
Vout通常驱动负载(未示出)。电容C1(连接在电压输入节点Vin和M3的源极/M4的漏极之间)被提供用于前馈失真消除。C1的使用在从电压输入节点Vin至M3的源极、向上通过M3、向外通过M3的漏极朝向Vout和朝向负载的路径中供给复制品电流。在这种方式中,电流通过该路径(从Vin到M3的源极)被供给而不是由源极跟随器M1提供。其结果是,源极跟随器M1的电流变化被最小化并且在Vout的失真得到了改善。
除了具有源极跟随器和共源共栅电流源装置,电压缓冲器还可以包括引导装置。引导装置可以以不同的方式来实现,并且图1示出了示例性的实现(其他示例性实现方式相对于图9-11被描述)。在本实现中,引导装置被连接在电压输入节点和源极跟随器装置的第三端子之间(即,M1的漏极)。具体地,引导装置被配置以减少和控制横跨第三端子和源极跟随器的第二端子的电压变化。横跨源极跟随器的电压变化的控制(即,在输出节点电压)可以以不同的方式实现而图1仅仅示出了提供它的一种方式。
概括地说,该引导装置可包括具有连接到源极跟随器装置的第三端子的源极和有助于引导源极跟随器装置到输出接近电压输入节点或电压输出节点电压的栅极的第四晶体管器件,从而减少/控制横跨第三端子和源极跟随器的第二端子的电压变化。在一些情况下,栅极被连接(直接或间接)到电压输入节点或到电压输出节点。第四晶体管器件的栅极到电压输入节点或电压输出节点之间的连接可以包括电平移位器,或在连接中略去电平移位器。在任何情况下,第四晶体管器件的源极连接到第一晶体管器件的第三端子(例如,M1的漏极)。
在图1所示的示例中,第四晶体管器件的栅极(M2)通过第一电容器(例如,电容器C2)被连接到输入节点作为电平移位器,也就是,第一电容器C2的一个端子被连接到电压输入节点Vin并且第一电容器C2的另一端子被连接到M2的栅极。引导装置通过C2连接M2的栅极到电压输入节点。C2被提供作为电平移位器以确保M1的偏置电压是正确的(用于移位适当电压的其它类型的电平移位器也被设想,或电平移位器可以省略)。在操作过程中,M2的源极倾向于跟随输入电压Vin。M1的源极也倾向于跟随输入电压Vin。因此,装置M2(和电容C2)是引导装置其通过迫使M1的漏极跟随输入电压Vin和M1的源极来减少和控制M1装置的漏极-源极电压Vds的变化。其结果是,Vds是固定的并且M1的线性度得到改善。
这种结构的限制是电流源的输出阻抗可能没有足够大适用于精细几何处理(如65纳米和28纳米)。尤其在低于500MHz的频率的情况下这限制了缓冲器的线性。
一个示例性实现:加入有源共源共栅装置以覆盖很宽的输入频率范围
另一种结构可以被用来改善低于500MHz缓冲器的线性度。图2是根据本发明的一些实施方案的被用于最高500MHz的相对低的输入频率优化的示例性电压缓冲器的电路示意图。在该电路中,有源共源共栅用于增加电流源的输出阻抗。这可以通过约6-10dB在200MHz和300MHz的输入频率改善失真。
图2中所示的电路类似图1所示的电路,也有若干不同之处。M3不是作为共源共栅电流源装置的一部分,M3成为有源共源共栅装置。有源共源共栅装置可具有不同的实现并且在图2所示的示例中有源共源共栅装置由M3和另一个晶体管器件M5的形成。有源共源共栅装置的其他实现示于图12和13中。在图2所示的示例中,有源共源共栅装置是通过增加另一个晶体管器件M5(和电流源I1)被提供的。M5可以是NMOS装置。M5的源极连接到地、M5的栅极连接至M3的源极并且M5的漏极连接到M3的栅极。电流源的输出端连接到M3的栅极和M5的漏极。M5的偏置被提供使得M5的栅极电压是M3源极电压的放大版本。M3的有效增益是从M3的gmro增加到M3的gmro乘以M5的gmro。电流源的输出阻抗是约等于M4的ro乘以M3的gmro。如果M3的有效增益增大,输出阻抗也会增加。M3增加的增益增大输出阻抗并且提高了电压缓冲器的线性度。
但该有源共源共栅结构在非常高的输入频率下倾向于具有速度限制,其限制了它的实用性和/或效率。具体地,具有M3和M5的有源共源共栅环路需要稳定(花费时间这样做)并且因为它的需要阻抗并不高。由于这些原因,当电压输入频率过高时该环可引起问题。相同的限制适用于前馈失真消除盖C1。
一个示范性的实现:高频旁路电容
对于在1-2GHz的频率范围,不同的电路设计可能是必要的。图3是根据本发明的一些实施方案的被用于高于500MHz的高输入频率优化的示例性电压缓冲器的电路示意图。如果有源共源共栅被移除(图2中所示的装置M5和电流源)并且前馈C1失真消除环路被移除(在图3中C1连接到Vin与接地之间来代替),那么电路高频率表现良好。在本示例中,C1提供旁路电容。旁路电容C1有助于降低从负载到达电压输入的反冲影响。
一个示范性的实现:移除旁路电容用以更宽带宽
图4是根据本发明的一些实施方案的被用于高于500MHz的高输入频率并为最大输入带宽优化的示例性电压缓冲器的电路示意图。旁路电容C1虽然有助于失真但显著地限制电压缓冲器的带宽。如果更宽的输入带宽优选超过优越的失真,或用户希望在较低的采样率使用缓冲器其中在图3中旁路盖C1的益处并不需要,那么如图4中所示旁路电容C1可以是完全被移除。
一个示范性的实现:可重构缓冲器
利用上述示例性实现的所有优点,带有开关的战略放置的全面的设计可以结合所有设计成一个灵活和可配置的设计。以这种方式,可重构缓冲器提出了可以为低频、高频和输入带宽进行优化。图5是根据本发明的一些实施方案的被配置以实现在图1-4中所示结构的示范性电压缓冲器的电路示意图。
一组开关,sw_cap_ff、sw_cap_gnd、sw_act(2个开关)和sw_noact(2个开关)可被提供给配置可重构缓冲器。如果开关开启sw_cap_ff开关连接C1的端子之一(不是连接C1至Vin的C1的端子)至M3的源极。如果C1前馈消除是被期望的sw_cap_ff开关被接通。如果开关开启sw_cap_gnd开关连接C1的端子之一(不是连接C1至Vin的C1的端子)到地。如果C1旁路电容是被期望的sw_cap_gnd开关被接通。如果开关开启sw_act开关之一连接M5的栅极到M3的源极。如果开关开启sw_act开关的另一个连接电流源的输出到M5的漏极。如果有源共源共栅(具有电流源和装置M5)是被期望的sw_act开关被接通。如果开关开启sw_noact开关之一连接M5的栅极接地。如果开关开启sw_noact开关的另一个连接M3的栅极到偏置电压Vb3。如果有源共源共栅是不被期望的sw_noact开关被接通。用于控制sw_act的信号可以被反向(使用逆变器),以控制sw_noact开关。
下表说明了开关的状态(由控制信号所控制)和可重构缓冲器的相应配置。正如该表中所示,可重构缓冲器提供无数可能的配置其可以提供极大的灵活性供用户选择要使用的结构。利用开关并控制它们以提供可重构电压缓冲器可应用于本发明所公开的任何电压缓冲器的设计,即使当引导装置的设计是多种多样的和/或有源共源共栅设计是多样的。
图6根据本发明的一些实施方案示出用于控制图5中所示配置的电压缓冲器示例***的方框图。为适应不同用户的不同需要,可重构电压缓冲器602(具有图5的结构)可以由控制器604进行配置使用开关实现在图1-4中所示任何结构。基于所期望的特性,例如输入频率、带宽等,控制器606可以生成控制信号604以翻转图5中所示开关的开启或关闭。需要注意的是在所有条件下仅使用那些结构中的一个试图达到最佳性能是具有挑战性的并会导致更高的功率消耗。
控制器可实现基于电压缓冲器的所需特性配置可重构缓冲器602的方法。图7根据本发明的一些实施方案示出用于控制图5中所示配置的电压缓冲器示例方法的流程图。该方法可以包括接收用户输入或信息用于指示对可重构缓冲器(框702)的一个或多个期望的特性。在一些情况下,该方法可包括接收表示一个或多个所需特征的信号。所需的特性可以指定定性信息或与输入带宽、输入频率、输入阻抗、采样率等相关的定性信息。基于用户输入或信息,控制器可产生控制信号以选择用于可重构缓冲器的配置(框704)。例如,所需的特性可以被映射到用于控制可重构缓冲器中开关的一组信号。映射可以使用一个或多个功能或者一个或多个查询表被执行。该控制信号而后被提供至可重构缓冲器的开关来控制这些开关(框706)状态的开启和关闭。开关的状态可以改变可重构电压缓冲器特定所需配置以满足一个或多个期望的特性。
在一些情况下,用户可以通过指定对应于所需拓扑的控制信号选择所需的拓扑。在其他情况下,用户可以提供一个或多个所需特征给控制器其轮流确定对应于所希望的拓扑匹配所希望的特性的适当的控制信号。
用于提供图6和7所示的可重构电压缓冲器的途径可应用于本发明所公开的任何电压缓冲器设计,即使当引导装置的设计是多种多样的和/或有源共源共栅设计是多样的。
典型性能测试结果
图8根据本发明的一些实施方案示出使用低频结构和高频结构的示例性表现。性能是由无杂散动态范围(SFDR)测量的。低频曲线图示出由图2中的结构来实现的性能。高频曲线图示出由图3中的结构来实现的性能。交叉点大约是500MHz。对于频率低于500MHz时,用户可以选择低频结构其比高频结构能实现更好的性能(即更高的SFDR)。对于频率高于500MHz时,用户可以选择高频结构其比低频结构能实现更好的性能(即更高的SFDR)。
引导设备的变化
图1示出了一种引导装置可能的实现。在该实现方式中,引导装置通过连接M2的源极到M1的漏极并且通过连接M2的栅极到通过C2上输入节点电压来控制M1的漏极到源极的电压。图9-11描述了对于在电压缓冲器设计和/或在可重构电压缓冲器的设计中使用的引导装置其它可能的实现。
应注意的是在图1中C2是可选的或C2的电平移位功能可通过其它方式来提供。图9示出了根据本发明的一些实施方案示出引导装置的示例性实现。在本实现中,M2的栅极经由电平移位装置连接到电压输入节点。应当指出,在一些情况下,电平移位装置可被完全排除在外。电平移位装置需求依赖于M2所需的工作/偏置点。移除电平移位器可以去除其输入的负载效应。在一些实现中,如果需要的话,C1可以省略,或如果需要的话,C1可作为前馈电容器被提供以连接电压输入节点Vin到M3的源极。
图10根据本发明的一些实施方案示出引导装置的另一示例性实现。在该变化中代替连接M2的栅极到电压输入节点,M2的栅极被连接(通过电平移位器或没有电平移位器)到M1的源极(也是电压输出节点,或换言之,源极跟随器的输出)。这种拓扑结构对于输入具有能够降低负载的优点。可以理解,这种配置也受益于具有能够减少/控制M1的漏极到源极电压的引导效应。特别是,M2的源极趋向于跟随M2的栅极。M1的源极也趋向于跟随M1的栅极,其为Vin。通过连接M2的栅极到M1的源极,M2的源极将被迫跟踪M1源极和Vin。这实现了保持M1的漏极-源极电压基本上恒定的影响,即引导M1去控制M1的漏极-源极电压Vds的变化。Vds变得基本上固定并且M1的线性度得到改善。在一些实施方案中,如果需要的话,C1可以省略,或如果需要的话,C1作为前馈失真消除电容器可被提供以连接电压输入节点Vin到M3的源极。
图11根据本发明的一些实施方案示出引导装置的又一示例性实现。在该变化中,代替连接M2的栅极直接到电压输入节点,M2的栅极可以是间接地被连接到经由另外的源极跟随器的电压输入节点。使用另外的源极跟随器的作用允许引导设备间接地连接到电压输入节点(即,通过另外的源极跟随器)。这种拓扑结构对于输入具有能够降低负载的优点。
在图11所示的示例中,另外的源极跟随器装置具有连接到电压输入节点Vin的第一端子(T1)和具有电压跟随在电压输入节点Vin电压的第二端子(T2)。在这种情况下,示例性另外的源极跟随器至少包括晶体管M7、源极跟随器其栅极被连接到Vin并且跟随栅极的源极被连接到第二端子。示例性另外的源极跟随器还可以包括晶体管M8和M9,由偏置电压Vb8和Vb9分别偏置,作为共源共栅电流源用于提供经过M7的电流。M2的栅极到另外的源极跟随器的第二端子的连接可以通过电平移位器或没有电平移位器来完成。在一些实施方案中,如果需要的话,C1可以省略,或如果需要的话,C1作为前馈失真消除电容器可被提供以连接电压输入节点Vin到M3的源极。
有源共源共栅装置的变化
图2和5都仅示出对于有源共源共栅装置的一个可能的实现。可以设想其他实现方式是可能的。有源共源共栅装置上这些变化被示于图12和13,其示出了在电压缓冲器设计和/或可重构电压缓冲器设计上可用的其它结构。
图12示出根据本发明的一些实施方案示出有源共源共栅装置的示例性实现。在此变化中,替代连接晶体管M5装置的源极到地,电平移位器可被提供为M5正确调整直流电压。用于可重构电压缓冲器(本文所述)相同的方法也适用于在图12中示出的实施方案。
图13示出根据本发明的一些实施方案示出有源共源共栅装置的另一示例性实现。在这个变化中,有源共源共栅装置是差分有源共源共栅装置。第一电流源I1和第五晶体管器件M5形成差分有源共源共栅装置(电流源I1送至M5的漏极)两个分支的第一分支。有源共源共栅装置还包括第二电流源I1、第六晶体管器件M6和第三电流源I3。第二电流源I2和第六晶体管器件M6形成差分有源共源共栅装置(I2送至M6的漏极)两个分支的第二分支。第三电流源I3从差分有源共源共栅的两个分支拉取电流。第五晶体管器件M5的源极被连接到第三电流源I3和第六晶体管M6装置的源极。涉及差分有源共源共栅装置的实现具有更好的地面噪声抑制和对过程变化更好的灵敏度,因为操作M3源极的偏置电压由可以是固定的“V偏压”电压确定,代替依赖于在过程中可变化的M5装置的Vgs(栅极到源极电压)。
用于可重构电压缓冲器(本文所述)的方法也适用于图12所示的实施方案。另一个开关(sw_act)可以被提供当有源共源共栅装置被使用(开关断开)时断开第二电流源并且当有源共源共栅装置被使用(开关导通)时第二电流源连接到M6的漏极。
其他注意事项、示例和实现
在所有本文描述的结构中可以有一些修改以提高性能。例如,多于一个共源共栅电平可以通过添加与M2(伴随适当的电平转换)串联或与M3串联的另一个装置来实现。
虽然本发明/权利要求中描述了使用NMOS晶体管器件的实现方式,可以设想使用PMOS晶体管(s)(P型金属氧化物半导体晶体管(s))或等效双极结型晶体管(BJTs)的互补配置也可以代替一个或更多个NMOS晶体管(或晶体管器件)以提供所公开的电压缓冲器。本领域技术人员会理解晶体管器件可以概括为具有三个(主)端子装置。此外,本领域技术人员会理解晶体管器件在运行期间可具有对应于诸如NMOS、PMOS、NPNBJT、PNP BJT装置的特性行为(和任何其他等效的晶体管器件)。
例如,在本发明/权利要求中包括的实现其中所有的NMOS装置由PMOS装置代替。使用PMOS装置的电路将被配置在“颠倒”方法相比于本发明中所使用NMOS装置(Vdd和接地被交换)。在一个示例中,图1的M2将在M1和接地之间而M3和M4将在M1和Vdd之间。多种多样的实现对于使用NMOS晶体管器件的本发明的实现是相当的,因为不同的实施方式以大致相同的方式基本上执行相同功能进而得到基本上相同的结果。
补充或等效的配置(使用BJTs代替NMOS晶体管)对于本领域的普通技术人员将被认为是可与本文所述的使用NMOS晶体管的实施方案通用。例如,当本发明/权利要求中提到金属氧化物场效应晶体管(MOSFET)装置“漏极”,本发明/权利要求还设想了等效的实现其中“漏极”对应于BJT的“集电极”。同样地适用于MOSFET的“源极”对应于BJT的“发射极”,并且对于MOSFET的“栅极”对应于BJT的“基极”。“源极跟随器”装置可以对应于“发射极跟随器”装置等等。
另外在上述各实施方案的讨论中,电容器、时钟、DFFs、分频器、电感器、电阻器、放大器、开关、数字核心、晶体管和/或其他组件可以很容易地被替换、取代或以其它方式修改以适应特定的电路需求。此外,应该指出的是使用互补的电子设备、硬件、软件等提供同样可行的选择用于实现本发明的教导。
在一个示例实施方案中,任何数量的电路图可在相关联的电子设备的电路板上来实现。该板可以是普通的电路板其可以装载电子设备的内部电子***的各种组件并进一步为其他***设备提供连接器。更具体地,该板可提供的电连接通过该板***的其它部件可电通信。任何合适的处理器(包括数字信号处理器、微处理器、支持芯片组等)、计算机可读非临时性存储器元件等根据特定配置的需求、处理需求、计算机设计等可以适当地耦合到电路板。其它组件如外部存储器、附加传感器、用于音频/视频显示的控制器以及***设备可以通过***式卡、电缆或集成到该板本身连接到电路板。在各种实施方案中,本文所描述的功能可以以仿真的形式被实现为一个或多个可配置的(如可编程)元件被布置在结构上以支持这些功能运行的软件或固件。提供仿真的软件或固件可以被提供在包括指令以允许处理器执行这些功能的非临时性计算机只读存储介质上。
在另一示例实施方案中,图中的电路可以被实现为单独的模块(例如,具有相关元件和电路被配置以执行特定应用程序或功能的装置)或被实现为插件模块到应用电子设备的特定硬件。需要注意的是,本发明的具体实施方案可以容易地包括在芯片(SOC)包的***中,无论是部分或全部。SOC表示计算机或其它电子***的组件集成到单个芯片的IC。它可能包含数字、模拟、混合信号和通常的射频功能:所有这些可设置在单个芯片基板。其他实施方案可以包括多芯片模块(MCM),具有多个位于单一电子封装内并能够紧密地彼此通过电子封装相互作用单独集成电路。在各种其他实施方案中,扩展功能可以在特定用途集成电路(ASICs)、现场可编程门阵列(FPGAs)和其他的半导体芯片的一个或多个硅芯中实现。
此外还必须要注意的是所有的规格、尺寸且本文所述的关系(例如,处理器的数目、逻辑运算等)只被提供用于示例和教导的目的。这样的信息可以变化相当大但不脱离本发明的精神或任何附加的权利要求和/或特征概要的范围。该规范仅适用于一个非限制性实例,因此它们应被这样理解。在前面的描述中,示例实施方案已经参考特定的处理器和/或组件的安排被描述。各种修改和改变可以适用这样的实施方案而不脱离任何所附的权利要求和/或特征概要的范围。说明书和附图相应地应被认为是说明性的而不具有限制性。
需要注意的是上面参考附图讨论的活动均适用于任何涉及高速数据转换器、信号处理,特别是那些可以执行特殊的软件程序或算法的集成电路,其中一些可能与处理数字化的实时数据相关联。某些实施方案可以涉及多DSP信号处理、浮点处理、信号/控制处理、固定功能处理、微控制器应用等。
本说明书某些段落所讨论的功能可以适用于医疗***、科学仪器、无线和有线通信、雷达、工业过程控制、音频和视频设备、电流检测、仪表(其可以是高度精确的)和其它基于数字处理的***。
此外,以上所讨论的某些实施方案中可以置备在数字信号处理技术中用于医学成像、病人监护、医疗仪器和家庭医疗保健。这可能包括肺显示器、加速度计、心率监测仪、心脏起搏器等。其它应用可能涉及汽车技术的安全***(例如,稳定控制***、驾驶辅助***、制动***、信息娱乐和任何类型的内部应用)。此外,动力***(例如,混合动力汽车和电动汽车)可以使用高精度数据转换产品在电池监测、控制***、报告控制、维护活动等。
在另外的实施方案中,本发明的教导可以适用于工业市场其包括可以帮助驱动产量、能量效率和可靠性的过程控制***。在消费者应用中,上面讨论的信号处理电路的教导可被用于图像处理、自动聚焦和图像稳定(例如,对于数码相机、摄像机等等)。其他消费者应用可以包括用于家庭影院***、DVD录像机和高清电视的音频和视频处理器。其他消费应用也可以包括先进的触摸屏控制器(例如,对于任何类型的便携式媒体设备)。因此,这种技术可以很容易地成为智能手机、平板电脑、安防***、个人电脑、游戏技术、虚拟现实,模拟训练等的一部分。
需要注意的是对于本说明书所提供的许多实施方案中两个、三个、四个或更多个电子部件可以相互作用。该做法仅为了清晰地说明示例。应当理解的是该***可以以任何合适的方式进行合并。沿着类似的设计替代方案,任何示出的组件、模块和附图的元件可以以各种可能的配置相结合,所有这些都清楚地在本规范的范围之内。在某些情况下,仅参考有限数量的电子元件描述一个或多个一组给定流量的功能可能会更容易。应当理解的是附图的电路和它的教导很容易被扩展并且可以容纳大量的组件以及更复杂/精密的安排和配置。因此,被提供的示例不应该限制范围或抑制电路的广泛教导因为其可能应用于无数的其它结构中。
注意,在本说明书中引用的各种特征(例如,元件、结构、模块、组件、步骤、操作、特性等)包含在“一个实施方案”、“示例实施方案”、“实施方案”、“另一实施方案”、“一些实施方案”、“各种实施方案”、“其他实施方案”、“替代实施方案”和意在指任何这样的功能都包含在本发明的一个或更多的实施方案中,而在相同的实施方案中一定或不一定被组合。
同样重要的是要注意与图6中的控制器或图7中所示的方法相关功能/方法仅示出了一些可能被执行或可能在图6中示出的***中的功能。在适当情况下一些这些操作可能会被删除或移除或者在不脱离本发明的范围的情况下这些操作可以相当地被修改或改变。另外,这些操作的定时可以较大改变。前面的操作流程已经被提供用于示例和讨论的目的。大量的灵活性是通过本发明所描述的实施方案被提供其中任何合适的布置、年表、配置和定时机制在不脱离本发明的教导的情况下可以被提供。
许多其它的改变、替换、变化、变动和修改可以被本领域的技术人员确定,在所附权利要求和/或特征概要的范围内本发明拥有包括所有这样的改变、替换、变化、变动和修改的专利。为了协助美国专利和商标局(USPTO),此外,在解释所附权利要求发出此申请任何专利的任何读者,申请人谨指出,申请人:(a)不打算任何所附的权利要求援引美国法典第35第112条第六段,因为它存在于申请日,除非“手段”或“步骤”专门在特定的权利要求和/或权利要求的特征概要中使用;(b)本说明书中的任何陈述不打算以未体现在所附的权利要求和/或特征概要的任何方式限制本专利。
需要注意的是上述描述的装置的所有可选功能都可在文中所描述的方法或过程中实现,并且具体实施的过程可以在一个或多个实施方案中使用。
第一示例提供了***(其可以包括任何适当的电路、分频器、电容器、电阻器、电感器、模数转换器、DFFs、逻辑门电路、软件、硬件、链接等),它可以是任何类型计算机的一部分,它可以包括耦合上述多个电子部件的电路板。该***包括从数字内核发出定时数据到宏中的第一数据输出端使用第一个时钟,这个时钟就是宏时钟;从宏的第一数据输出端输出数据到物理接口使用的第二时钟,第二时钟为物理接口时钟;从数字内核发出的第一复位信号到宏的一个复位信号输出使用宏时钟,第一复位信号输出作为第二复位信号的宏的复位输出;为了采样第二复位信号使用第三时钟,它提供了比第二时钟速率快的时钟速度以便产生采样的复位信号;在物理接口中复位第二个时钟到预定状态以便响应该采样复位信号的过渡。
在说明书中“装置”可包括(但不限于)使用本说明书所讨论的任何合适的组件,以及任何合适的软件、电路、集线器、计算机代码、逻辑、算法、硬件控制器、接口、链路、总线、通信通道等。在第二个示例中,该***包括存储机器可读指令的存储器,当这些指令被执行时,***可以完成上述所讨论的任何行为。
特征概要
示例1包括具有电压输入端和电压输出端的电压缓冲器,该电压缓冲器包括:具有第一端子(栅极)连接到电压输入端和用于提供的电压输出端的第二端子(源极)的源极跟随器(M1);共源共栅电流源装置(M3和M4)连接到源极跟随器的第二端子(源极),共源共栅电流源装置包括串联的第一晶体管器件(M3)和第二晶体管器件(M4);引导装置(M2)连接在电压输入端和源极跟随器的第三端子(漏极)之间;其中引导装置被构造成减少和控制横跨第三端子(漏极)与源极跟随器的第二端子(源极)的电压变化。这个示例的进一步实施方案至少在图1中被说明。
示例2包括具有电压输入端和电压输出端的电压缓冲器。电压缓冲器包括:具有第一端子(栅极)连接到电压输入端和用于提供电压输出端的第二端子(源极)的源极跟随器(M1);共源共栅电流源装置(M3和M4)连接源极跟随器的第二端子(栅极),共源共栅电流源装置包括串联的第一晶体管器件(M3)和第二晶体管器件(M4);其中第一晶体管器件构成带有第三晶体管器件(M5)的有源共源共栅。这个示例的进一步实施方案至少在图2中被说明。
示例3能够结合示例1和示例2。该实施方案结合引导装置和有源共源共栅,这些至少在图2中被说明。
在示例4中,示例1、2或3可任选地包括电容(C1)其在共源共栅源装置中被连接在电压输入端和第一晶体管器件的端子(M3的源极)之间以提供前馈失真消除。
在示例5中,示例1、2或3可任选地包括连接在电压输入端和地之间的电容(C1)。这个示例的进一步实施方案至少在图3中被说明。一个实施方案可一起排除电容。
在示例6中,上述示例的任何一个可包括一个或多个开关以提供可重构电压缓冲器。这个示例的进一步实施方案至少在图5和图6中被说明。
示例7是可重构电压缓冲器***,该***包括用于接收输入指定一种或多种用于电压缓冲器的所需特性并基于一个或多个所需特征产生控制信号的控制器;和示例6中的可重构电压缓冲器。这些特性可以包括输入频率和/或带宽。控制信号可用于控制可重构电压缓冲器的一个或多个开关。
示例8是用于配置电压缓冲***的方法,该方法包括:接收输入指定用于如示例6中的电压缓冲器的一个或多个期望的特性;产生基于一个或多个所需特征的控制信号。该方法还包括提供控制信号来控制电压缓冲器的一个或多个开关。

Claims (21)

1.一种具有电压输入端和电压输出端的电压缓冲器,所述电压缓冲器包括:
源极跟随器具有连接到所述电压输入端的第一端子和连接到所述电压输出端的第二端子;
共源共栅电流源装置连接到所述源极跟随器的所述第二端子;和
引导装置被配置以控制横跨所述第三端子和所述源极跟随器的第二端子的电压变化。
2.如权利要求1所述的电压缓冲器,其中:
源极跟随器装置包括第一晶体管器件;
第一端子是所述第一晶体管器件的栅极;和
第二端子是第一晶体管器件的源极。
3.如权利要求1所述的电压缓冲器,其中:
所述共源共栅电流源设备包括第二晶体管器件和第三晶体管器件;和
所述第二晶体管器件的源极连接到所述第三晶体管器件的漏极。
4.如权利要求1所述的电压缓冲器,其中:
源极跟随器装置包括第一晶体管器件;和
所述引导装置包括第四晶体管器件,其具有连接到所述第一晶体管器件漏极的源极,和连接到所述电压输入节点的栅极。
5.如权利要求4所述的电压缓冲器,其中所述第四晶体管的栅极经由电平移位器被连接到所述电压输入节点。
6.如权利要求1所述的电压缓冲器,其中:
源极跟随器装置包括第一晶体管器件;和
所述引导装置包括第四晶体管器件,其具有连接到所述第一晶体管器件漏极的源极,和连接到所述电压输出节点的栅极。
7.如权利要求6所述的电压缓冲器,其中所述第四晶体管的栅极经由电平移位器被连接到所述电压输出节点。
8.如权利要求1所述的电压缓冲器,还包括:
另一源极跟随器装置具有连接到所述电压输入节点的第一端子和具有跟随所述电压输入节点电压的电压的第二端子;和
其中所述源极跟随器装置包括第一晶体管器件;和
所述引导装置包括第四晶体管器件,其具有连接到所述第一晶体管器件漏极的源极,和连接到所述另一源极跟随器装置的第二端子的栅极。
9.如权利要求8所述的电压缓冲器,其中所述第四晶体管的栅极经由电平移位器连接到所述另一源极跟随器的所述第二端子。
10.如权利要求3所述的电压缓冲器,其中:
所述共源共栅电流源装置的所述第二晶体管器件形成带有第一电流源和第五晶体管器件的有源共源共栅装置。
11.如权利要求10所述的电压缓冲器,其中:
所述第五晶体管器件的源极经由电平移位器连接到地。
12.如权利要求10所述的电压缓冲器,其中:
所述有源共源共栅装置是差分有源共源共栅装置;
所述第一电流源和所述第五晶体管器件形成所述差分有源共源共栅装置的两个分支的第一分支;
所述有源共源共栅装置还包括第二电流源、第六晶体管器件和第三电流源;
所述第二电流源和第六晶体管器件形成所述差分有源共源共栅装置的两个分支的第二分支;和
所述第五晶体管器件的源极被连接到所述第三电流源以及到所述第六晶体管器件的源极。
13.如权利要求1所述的电压缓冲器,其中:
所述共源共栅电流源装置包括第二晶体管器件和第三晶体管器件;
所述第二晶体管器件的源极被连接到所述第三晶体管器件的漏极;和
所述电压缓冲器还包括连接在所述电压输入节点和所述第二晶体管器件的源极之间的第一电容器。
14.如权利要求1所述的电压缓冲器,还包括:
第二电容器连接在所述电压输入节点和地之间。
15.一种具有电压输入端和电压输出端的可重构电压缓冲器,所述可重构电压缓冲器包括:
源极跟随器具有连接到所述电压输入节点的第一端子和连接到所述电压输出节点的第二端子;
共源共栅电流源装置,包括在共源共栅结构中的第一晶体管器件和第二晶体管器件,其中所述第一晶体管器件的源极被连接到所述第二晶体管器件的漏极,且所述第一晶体管器件的漏极被连接到所述源极跟随器的第二端子;
引导装置被配置以控制横跨所述第三端子和所述源极跟随器的第二端子的电压变化;
第一电容器具有连接到所述电压输入节点的第一端子;
第三晶体管器件具有连接到所述第一晶体管器件栅极的源极;
电流源;和
一个或多个开关用于重新配置所述第一电容器、所述第三晶体管器件和所述电流源的一个或多个连接以改变所述可重构电压缓冲器的拓扑结构。
16.如权利要求15所述的可重构电压缓冲器,其中所述一个或多个开关包括第一开关,其中当所述第一开关接通时,第一开关连接第一电容的第二端子接地。
17.如权利要求15所述的可重构电压缓冲器,其中一个或多个开关包括第二开关,其中当所述第二开关接通时,所述第二开关连接所述第一电容器的第二端子到所述第一晶体管器件的源极和所述第二晶体管器件的漏极。
18.如权利要求15所述的可重构电压缓冲器,其中:
所述一个或多个开关包括第三开关和第四开关;
所述第三开关,当第三开关接通时连接所述第三晶体管器件的栅极到所述第一晶体管器件的源极和所述第二晶体管器件的漏极;和
所述第四开关,当第四开关接通时连接所述第三晶体管器件的漏极到所述电流源。
19.如权利要求15所述的可重构电压缓冲器,其中:
所述一个或多个开关包括第五开关和第六开关;
所述第五开关,当第五开关接通时连接所述第三晶体管器件的栅极接地;和
所述第六开关,当第六开关接通时连接偏置电压到所述第一晶体管器件的栅极。
20.一种可重构电压缓冲器***,其中所述***包括:
控制器用于接收输入指定用于所述电压缓冲器的一种或多种所需特性和用于产生基于所述输入的控制信号;
可重构电压缓冲器包括:
源极跟随器具有连接到所述电压输入节点的第一端子和连接到所述电压输出节点的第二端子;
共源共栅电流源装置,包括在共源共栅结构中的第一晶体管器件和第二晶体管器件,其中所述第一晶体管器件的源极被连接到所述第二晶体管器件的漏极,且所述第一晶体管器件的漏极被连接到所述源极跟随器的第二端子;
引导装置被配置以控制横跨所述第三端子和所述源极跟随器的第二端子的电压变化;
第一电容器具有连接到所述电压输入节点的第一端子;
第三晶体管器件具有连接到所述第一晶体管器件栅极的源极;
电流源;和
一个或多个开关,可由所述控制信号控制,用于重新配置所述第一电容器、所述第三晶体管器件和所述电流源的一个或多个连接以改变所述可重构电压缓冲器的拓扑结构。
21.如权利要求20所述的可重构电压缓冲器***,其中所述电压缓冲器的一种或多种所需特性包括以下的一个或多个:输入频率、输入带宽、输入阻抗和采样率。
CN201510198369.2A 2014-04-25 2015-04-24 高性能可重构电压缓冲器 Active CN105007073B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201461984557P 2014-04-25 2014-04-25
US61/984,557 2014-04-25
US14/307,467 2014-06-17
US14/307,467 US9425797B2 (en) 2014-04-25 2014-06-17 High performance reconfigurable voltage buffers

Publications (2)

Publication Number Publication Date
CN105007073A true CN105007073A (zh) 2015-10-28
CN105007073B CN105007073B (zh) 2018-05-15

Family

ID=52824159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510198369.2A Active CN105007073B (zh) 2014-04-25 2015-04-24 高性能可重构电压缓冲器

Country Status (3)

Country Link
US (1) US9425797B2 (zh)
EP (2) EP3780389A1 (zh)
CN (1) CN105007073B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106788393A (zh) * 2017-03-15 2017-05-31 浙江集速合芯科技有限公司 一种增强电压缓冲器线性度的电路
CN107390765A (zh) * 2017-06-30 2017-11-24 中国北方车辆研究所 一种用于设计缓冲电路的装置
CN110546882A (zh) * 2017-04-06 2019-12-06 派赛公司 具有新型栅极电容拓扑结构的器件堆叠

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9425797B2 (en) 2014-04-25 2016-08-23 Analog Devices, Inc. High performance reconfigurable voltage buffers
US10833584B2 (en) * 2015-11-12 2020-11-10 Empower Semiconductor, Inc. Boot-strapping systems and techniques for circuits
US9893738B2 (en) 2016-05-11 2018-02-13 Samsung Electronics Co., Ltd. Analog-to-digital converter and communication device including the same
CN113225083B (zh) * 2016-09-12 2024-03-29 美国亚德诺半导体公司 自举开关电路
US10256811B2 (en) * 2016-11-22 2019-04-09 Electronics And Telecommunications Research Institute Cascode switch circuit including level shifter
CN111245413B (zh) * 2020-01-20 2023-05-26 电子科技大学 一种高速高线性度的栅压自举开关电路
US11043948B1 (en) * 2020-02-27 2021-06-22 Qualcomm Incorporated Bandwidth enhanced amplifier for high frequency CML to CMOS conversion
US11121713B1 (en) * 2020-08-14 2021-09-14 Analog Devices, Inc. Boosted switch drivers for high-speed signal switching
CN112260681B (zh) * 2020-10-26 2022-04-15 成都华微电子科技股份有限公司 高频高线性输入缓冲器和高频高线性输入缓冲器差分电路
US20220200545A1 (en) * 2020-12-23 2022-06-23 Intel Corporation Signal envelope detector, overload detector, receiver, base station and mobile device
US11728838B2 (en) * 2021-09-21 2023-08-15 Qualcomm Incorporated Isolating down-conversion mixer for a radio frequency (RF) transceiver

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020032893A1 (en) * 2000-09-11 2002-03-14 Broadcom Corporation Linear buffer
US20030030617A1 (en) * 2000-08-11 2003-02-13 Han Chul Hi Analog buffer and method of driving the same
US20090315594A1 (en) * 2008-06-23 2009-12-24 Texas Instruments Incorporated Source/Emitter Follower Buffer Driving a Switching Load and Having Improved Linearity
CN102931972A (zh) * 2012-11-14 2013-02-13 中国电子科技集团公司第二十四研究所 Cmos输入缓冲器
US20130141140A1 (en) * 2011-12-02 2013-06-06 Stmicroelectronics Pvt Ltd. Stress reduced cascoded cmos output driver circuit
JP2013150229A (ja) * 2012-01-23 2013-08-01 Sony Corp ソースフォロワ回路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6778013B1 (en) 2003-02-21 2004-08-17 Analog Devices, Inc. Buffer amplifier structures with enhanced linearity
US7119584B1 (en) 2004-07-23 2006-10-10 Analog Devices, Inc. Signal samplers and buffers with enhanced linearity
US7378883B1 (en) 2007-01-03 2008-05-27 Tpo Displays Corp. Source follower and electronic system utilizing the same
US8339161B2 (en) 2009-07-07 2012-12-25 Analog Devices, Inc. High performance voltage buffers with distortion cancellation
US9425797B2 (en) 2014-04-25 2016-08-23 Analog Devices, Inc. High performance reconfigurable voltage buffers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030030617A1 (en) * 2000-08-11 2003-02-13 Han Chul Hi Analog buffer and method of driving the same
US20020032893A1 (en) * 2000-09-11 2002-03-14 Broadcom Corporation Linear buffer
US20090315594A1 (en) * 2008-06-23 2009-12-24 Texas Instruments Incorporated Source/Emitter Follower Buffer Driving a Switching Load and Having Improved Linearity
US20130141140A1 (en) * 2011-12-02 2013-06-06 Stmicroelectronics Pvt Ltd. Stress reduced cascoded cmos output driver circuit
JP2013150229A (ja) * 2012-01-23 2013-08-01 Sony Corp ソースフォロワ回路
CN102931972A (zh) * 2012-11-14 2013-02-13 中国电子科技集团公司第二十四研究所 Cmos输入缓冲器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106788393A (zh) * 2017-03-15 2017-05-31 浙江集速合芯科技有限公司 一种增强电压缓冲器线性度的电路
CN106788393B (zh) * 2017-03-15 2023-04-28 浙江集速合芯科技有限公司 一种增强电压缓冲器线性度的电路
CN110546882A (zh) * 2017-04-06 2019-12-06 派赛公司 具有新型栅极电容拓扑结构的器件堆叠
CN107390765A (zh) * 2017-06-30 2017-11-24 中国北方车辆研究所 一种用于设计缓冲电路的装置
CN107390765B (zh) * 2017-06-30 2021-08-27 中国北方车辆研究所 一种用于设计缓冲电路的装置

Also Published As

Publication number Publication date
EP3780389A1 (en) 2021-02-17
CN105007073B (zh) 2018-05-15
US20150311895A1 (en) 2015-10-29
US9425797B2 (en) 2016-08-23
EP2937994A1 (en) 2015-10-28
EP2937994B1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
CN105007073A (zh) 高性能可重构电压缓冲器
CN105917285B (zh) 与数字功率门驱动器集成的低压差电压调节器
US8441382B2 (en) Current steering DAC with switched cascode output current source/sink
TWI654821B (zh) 用於射頻系統之充電泵之裝置及方法
US9641166B2 (en) Bootstrapped switching circuit with fast turn-on
CN107819468A (zh) 自举开关电路
CN106575962A (zh) 用于控制射频开关的装置和方法
CN104052479A (zh) 数模转换器中的时钟信号误差校正
JP5759581B2 (ja) サンプリング回路のタイミング不整合を減少させるための装置および方法
CN105556666A (zh) 用于集成电路的静电放电保护
US20160080007A1 (en) Apparatus and method for adaptive common mode noise decomposition and tuning
CN107147391A (zh) 随机四元切换
CN105247436B (zh) 具有前馈和反馈控制的电压调节器
CN104300963A (zh) 用于减少mosfet闪烁噪声的模块化方法
CN105007078A (zh) 具有宽微调范围的参考缓冲器
CN104375557B (zh) 低噪声电流源
CN107005246B (zh) 用于模拟输入缓冲器的负载电流补偿
CN216901471U (zh) 可调节的电压源及芯片
CN113424440A (zh) 缓冲翻转电压跟随器和低压差稳压器的概念
CN105490652A (zh) 高增益、高回转速率放大器
US8300148B2 (en) Video processing device
CN215871371U (zh) 一种按键控制电路和电子设备
CN219143340U (zh) 一种电流镜电路、芯片及电子设备
US20230328439A1 (en) Integrated Circuits for Driving Transducers
US11601121B2 (en) Bootstrapped switch circuit, a track-and-hold circuit, an analog-to-digital converter, a method for operating a track-and-hold circuit, a base station and a mobile device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant