CN105001870A - Microwave preparation method for water-soluble Cu-doped Cu:CdTe quantum dots - Google Patents

Microwave preparation method for water-soluble Cu-doped Cu:CdTe quantum dots Download PDF

Info

Publication number
CN105001870A
CN105001870A CN201510422177.5A CN201510422177A CN105001870A CN 105001870 A CN105001870 A CN 105001870A CN 201510422177 A CN201510422177 A CN 201510422177A CN 105001870 A CN105001870 A CN 105001870A
Authority
CN
China
Prior art keywords
water
solution
quantum dot
soluble
cdte quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510422177.5A
Other languages
Chinese (zh)
Inventor
肖琦
黄珊
谢江宁
梁瑜
黄初升
盛家荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Teachers College
Original Assignee
Guangxi Teachers College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Teachers College filed Critical Guangxi Teachers College
Priority to CN201510422177.5A priority Critical patent/CN105001870A/en
Publication of CN105001870A publication Critical patent/CN105001870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

The invention discloses a microwave preparation method for water-soluble Cu-doped Cu:CdTe quantum dots. The method comprises the steps of adding sodium borohydride and tellurium powders in the mol ratio of 5.1:1 in water, placing the obtained product in a microwave synthesizer under the protection of nitrogen, heating at the temperature of 70-80 DEG C, stirring to react for 1-2 minutes, then heating again at the temperature of 90-95 DEG C, stirring to react for 2-3 minutes to obtain the tellurium sodium hydride solution, then adding a cadmium salt, a cerium salt and a modified water-soluble N-acetyl-L-cysteine solution in a container, injecting the above tellurium sodium hydride solution, and pumping nitrogen into the solution from top to bottom for 2-3 minutes to obtain a Cu-doped Cu:CdTe quantum dot precursor solution. The above method is energy-saving, high in efficiency, free of pollution and easy to control, wherein the heating is quick and uniform in effect.

Description

A kind of microwave preparation of Cu:CdTe quantum dot of water-soluble Cu doping
Technical field
The present invention relates to Illuminant nanometer material and biochemical analysis field, specifically, relate to a kind of microwave preparation of Cu:CdTe quantum dot of water-soluble Cu doping.
Background technology
Quantum dot is a kind of by II-VI group or iii-v is elementary composition, the inorganic semiconductor nanocrystal of diameter between 2 ~ 10nm.Because quantum dot has many superior fluorescence properties, make it obtain at biochemical analysis and biomedical sector and apply quite widely.Meanwhile, the synthesis of high quality, Multifunction fluorescent quantum dot also arouses great concern gradually.
At present, people mainly use conventional hydrothermal method to synthesize quantum dot, but the usual quantum yield of quantum dot of conventional hydrothermal method synthesis is lower, and the quantum dot required time that red fluorescence is launched in synthesis is longer, and peak width at half height is wider.The conventional hydrothermal method synthesis particle size growth speed of quantum dot and the poor major cause of crystal property are conventional hydrothermal methods is a kind of slowly heat-processed, dependence thermal conduction, thermal convection realize, heating feature is from sample surfaces, heat energy ecto-entad is propagated, and causes sample to be heated uneven.And research uses microwave method to prepare small particle size, during the uniform nanoparticle of form, microwave method has the incomparable superiority of other method.
Summary of the invention
An object of the present invention is to solve at least the problems referred to above and/or defect, and the advantage will illustrated at least is below provided.
A further object of the invention is just to provide a kind of microwave preparation of Cu:CdTe quantum dot of water-soluble Cu doping.
In order to realize according to these objects of the present invention and other advantages, provide a kind of microwave preparation of Cu:CdTe quantum dot of water-soluble Cu doping.It is as follows that the method comprising the steps of:
Step one, by mol ratio be 5.1: 1 sodium borohydride and tellurium powder be placed in water; Under nitrogen protection, this aqueous solution of sodium borohydride and tellurium powder is placed in Microwave synthesize instrument, is heated to 70 ~ 80 DEG C of stirring reaction 1-2 minute, be then heated to 90-95 DEG C of stirring reaction 2-3 minute, obtain sodium hydrogen telluride solution;
Step 2, add the water-soluble N-acetyl-L-cysteine solution of cadmium salt, mantoquita and modifier in a reservoir, wherein Cd 2+concentration be 0.12mol/L, Cd 2+: Cu 2+mol ratio be 1: 0.2, the pH value of regulator solution is 13.1, under nitrogen protection, be in the sodium hydrogen telluride solution prepared of this solution-injecting step one of 13.1 by pH value, be that the ullage of this solution of 13.1 passes into nitrogen 2-3 minute below liquid level again from pH value, obtain the Cu:CdTe quantum dot precursor solution of Cu doping;
Step 3, the Cu:CdTe quantum dot precursor solution that Cu adulterates is placed in microwave reactor, under power 100W, is heated to 100-120 DEG C of reaction 5-10 second, obtains the Cu:CdTe quantum dot solution that water-soluble Cu adulterates;
Wherein, in step one and step 2, Cd in reactant 2+: Cu 2+: the mol ratio of N-acetyl-L-cysteine: NaHTe is 1: 0.2: 3.6: 0.09.
Preferably, the mass parts of the water of step one is 6-20 part.
Preferably, cadmium salt is Cadmium chloride fine powder, and described mantoquita is cupric nitrate.
Preferably, tellurium powder content is 99.9%, and the specification of described tellurium powder is 120-150 mesh sieve.
Preferably, in step 3, the Cu:CdTe quantum dot precursor solution that Cu adulterates being placed in the type of heating of microwave reactor, can be after being first heated to 100 DEG C of reaction 1-2 seconds, is converted to 120 DEG C of reaction 5-6 seconds.
Preferably, also comprise step 4, the Cu:CdTe quantum dot solution sealing of being adulterated by water-soluble Cu is placed in microwave reactor and is heated to 75-85 DEG C, keep taking out for 2-3 minute.
Beneficial effect of the present invention: the present invention adopts the mode of microwave radiation to heat, makes heat-up rate in reaction process fast, easy to operate, the generation of Reaction time shorten and minimizing byproduct, and cost is low, simple to operate, is suitable for suitability for industrialized production.The present invention utilizes the penetrativity of microwave comparatively strong, and can be radiated by the inside of heated sample, first raised temperature from sample center, heat energy is propagated from inside to outside, and system of being heated homogeneous temperature makes obviously to accelerate the reaction times, improves heating efficiency.Thus possess its more particular advantages have (1) microwave method to be the body heating that material causes because of the loss of self medium, can realize the stirring on molecular level, heat-up rate is fast, homogeneous heating; (2) because the dielectric characteristics of material of the present invention self determines the ability that it absorbs microwave, therefore microwave method can carry out selectivity heating to each component in inventive mixture material; (3) the microwave method heating induction phase is extremely short, does not even almost have inductive phase, and then effectively prevent the generation of other crystalline phase; (4) microwave method is without lag-effect, overcomes conventional hydrothermal container and heats unequal shortcoming, safety non-pollution, energy-efficient.
Accompanying drawing explanation
Fig. 1 is the fluorescence spectrum figure of the Cu:CdTe quantum dot of the Cu doping that the present invention prepares.
Embodiment
Following examples further illustrate of the present invention, but absolutely not limit the scope of the present invention.Elaborate the present invention further referring to embodiment, but it will be appreciated by those skilled in the art that the present invention is not limited to the preparation method of these embodiments and use.
Embodiment 1
A kind of microwave preparation of Cu:CdTe quantum dot of water-soluble Cu doping comprises the following steps:
Step one, by mol ratio be 5.1: 1 sodium borohydride and content be 99.9% tellurium powder be placed in water, the consumption of water is 10 parts of mass parts, and under nitrogen protection, be placed in Microwave synthesize instrument, be heated to 75 DEG C of stirring reactions 1 minute, then be heated to 92 DEG C of stirring reactions 3 minutes, obtain sodium hydrogen telluride solution; Wherein, tellurium powder specification is 120 mesh sieves;
Step 2, add the water-soluble N-acetyl-L-cysteine solution of Cadmium chloride fine powder, cupric nitrate and modifier in a reservoir, wherein Cd 2+concentration be 0.12mol/L, Cd 2+: Cu 2+mol ratio be 1: 0.2, the pH value of regulator solution is 13.1, under nitrogen protection, in implantation step one preparation sodium hydrogen telluride solution, then above solution toward below pass into nitrogen 3 minutes, obtain Cu doping Cu:CdTe quantum dot precursor solution;
Step 3, by Cu adulterate Cu:CdTe quantum dot precursor solution be placed in microwave reactor, be first heated under power 100W 100 DEG C reaction 2 seconds after, be converted to 120 DEG C reaction 5 seconds, obtain water-soluble Cu adulterate Cu:CdTe quantum dot solution;
Step 4, the Cu:CdTe quantum dot solution sealing of being adulterated by water-soluble Cu are placed in microwave reactor and are heated to 80 DEG C, keep taking out for 3 minutes;
Wherein, in step one and step 2, Cd in reactant 2+: Cu 2+: the mol ratio of N-acetyl-L-cysteine: NaHTe is 1: 0.2: 3.6: 0.09.
Embodiment 2
A kind of microwave preparation of Cu:CdTe quantum dot of water-soluble Cu doping comprises the following steps:
Step one, by mol ratio be 5.1: 1 sodium borohydride and content be 99.9% tellurium powder be placed in water, the consumption of water is 20 parts of mass parts, under nitrogen protection, be placed in Microwave synthesize instrument, be heated to 70 DEG C of stirring reactions 2 minutes, then be heated to 90 DEG C of stirring reactions 3 minutes, obtain sodium hydrogen telluride solution; Wherein, tellurium powder specification is 120 mesh sieves;
Step 2, add the water-soluble N-acetyl-L-cysteine solution of Cadmium chloride fine powder, cupric nitrate and modifier in a reservoir, wherein Cd 2+concentration be 0.12mol/L, Cd 2+: Cu 2+mol ratio be 1: 0.2, the pH value of regulator solution is 13.1, under nitrogen protection, in implantation step one preparation sodium hydrogen telluride solution, then above solution toward below pass into nitrogen 2 minutes, obtain Cu doping Cu:CdTe quantum dot precursor solution;
Step 3, the Cu:CdTe quantum dot precursor solution that Cu adulterates is placed in microwave reactor, under power 100W, is heated to 100 DEG C of reaction 5-10 seconds, obtains the Cu:CdTe quantum dot solution that water-soluble Cu adulterates;
Wherein, in step one and step 2, Cd in reactant 2+: Cu 2+: the mol ratio of N-acetyl-L-cysteine: NaHTe is 1: 0.2: 3.6: 0.09.
Embodiment 3
A kind of microwave preparation of Cu:CdTe quantum dot of water-soluble Cu doping comprises the following steps:
Step one, by 0.2067gTe powder and 0.3125g NaBH 4put in container, add 5mL distilled water, under nitrogen protection, be placed in Microwave synthesize instrument, at heating 70 DEG C, stirring reaction 2 minutes, is then heated to 95 DEG C of stirring reactions 3 minutes, obtains sodium hydrogen telluride NaHTe solution; Wherein, tellurium powder specification is 150 mesh sieves;
Step 2, by 0.8221g CdCl 2, 0.1739g Cu (NO 3) 2be dissolved in 30mL distilled water with 2.1149gN-acetyl-Cys, wherein Cd 2+concentration be 0.12mol/L, Cd 2+: Cu 2+mol ratio be 1: 0.2, the pH value of regulator solution is 13.1, under nitrogen protection, in implantation step one preparation sodium hydrogen telluride NaHTe solution, then above solution toward below pass into nitrogen 2 minutes, obtain Cu doping Cu:CdTe quantum dot precursor solution;
Step 3, by Cu adulterate Cu:CdTe quantum dot precursor solution be placed in microwave reactor, be heated under power 100W 100 DEG C reaction 5 seconds, obtain water-soluble Cu adulterate Cu:CdTe quantum dot solution;
Wherein, in step one and step 2, Cd in reactant 2+: Cu 2+: the mol ratio of N-acetyl-L-cysteine: NaHTe is 1: 0.2: 3.6: 0.09.
Above-mentioned reaction modifier used is that stability is high, the N-acetyl-L-cysteine of environmental friendliness, good biocompatibility.
Embodiment 4
A kind of microwave preparation of Cu:CdTe quantum dot of water-soluble Cu doping comprises the following steps:
Step one, by mol ratio be 5.1: 1 sodium borohydride and content be 99.9% tellurium powder be placed in water, the consumption of water is 6 parts of mass parts, under nitrogen protection, be placed in Microwave synthesize instrument, be heated to 80 DEG C of stirring reactions 1 minute, then be heated to 95 DEG C of stirring reactions 2 minutes, obtain sodium hydrogen telluride solution; Wherein, tellurium powder specification is 140 mesh sieves;
Step 2, add the water-soluble N-acetyl-L-cysteine solution of Cadmium chloride fine powder, cupric nitrate and modifier in a reservoir, wherein Cd 2+concentration be 0.12mol/L, Cd 2+: Cu 2+mol ratio be 1: 0.2, the pH value of regulator solution is 13.1, under nitrogen protection, in implantation step one preparation sodium hydrogen telluride solution, then above solution toward below pass into nitrogen 3 minutes, obtain Cu doping Cu:CdTe quantum dot precursor solution;
Step 3, by Cu adulterate Cu:CdTe quantum dot precursor solution be placed in microwave reactor, be heated under power 100W 120 DEG C reaction 10 seconds, obtain water-soluble Cu adulterate Cu:CdTe quantum dot solution;
Wherein, in step one and step 2, Cd in reactant 2+: Cu 2+: the mol ratio of N-acetyl-L-cysteine: NaHTe is 1: 0.2: 3.6: 0.09.
The Cu:CdTe quantum dot productive rate of the water-soluble Cu doping of above-described embodiment gained is high, fluorescence property is excellent, good water solubility, fluorescence emission wavelengths is adjustable, good biocompatibility, toxicity are low, can be used as novel fluorescence nano-probe, is widely used in biochemical analysis and biomedical sector.Shown in Figure 1, the fluorescence emission wavelengths of the Cu:CdTe quantum dot solution of the water-soluble Cu doping that the present embodiment obtains is adjustable, and variable range reaches 500-650nm.
Although embodiment of the present invention are open as above, but it is not restricted to listed in specification sheets and embodiment utilization, it can be applied to various applicable the field of the invention completely, for those skilled in the art, can easily realize other amendment, therefore do not deviating under the universal that claim and equivalency range limit, the present invention is not limited to specific details and shown here embodiment.

Claims (6)

1. a microwave preparation for the Cu:CdTe quantum dot of water-soluble Cu doping, is characterized in that, comprise the following steps:
Step one, by mol ratio be 5.1: 1 sodium borohydride and tellurium powder be placed in water; Under nitrogen protection, this aqueous solution of sodium borohydride and tellurium powder is placed in Microwave synthesize instrument, is heated to 70 ~ 80 DEG C of stirring reaction 1-2 minute, be then heated to 90-95 DEG C of stirring reaction 2-3 minute, obtain sodium hydrogen telluride solution;
Step 2, add the water-soluble N-acetyl-L-cysteine solution of cadmium salt, mantoquita and modifier in a reservoir, wherein Cd 2+concentration be 0.12mol/L, Cd 2+: Cu 2+mol ratio be 1: 0.2, the pH value of regulator solution is 13.1, under nitrogen protection, be in the sodium hydrogen telluride solution prepared of this solution-injecting step one of 13.1 by pH value, be that the ullage of this solution of 13.1 passes into nitrogen 2-3 minute below liquid level again from pH value, obtain the Cu:CdTe quantum dot precursor solution of Cu doping;
Step 3, the Cu:CdTe quantum dot precursor solution that Cu adulterates is placed in microwave reactor, under power 100W, is heated to 100-120 DEG C of reaction 5-10 second, obtains the Cu:CdTe quantum dot solution that water-soluble Cu adulterates;
Wherein, in step one and step 2, Cd in reactant 2+: Cu 2+: the mol ratio of N-acetyl-L-cysteine: NaHTe is 1: 0.2: 3.6: 0.09.
2. the microwave preparation of the Cu:CdTe quantum dot of water-soluble Cu doping according to claim 1, it is characterized in that, the mass parts of the water of described step one is 6-20 part.
3. the microwave preparation of the Cu:CdTe quantum dot of water-soluble Cu doping according to claim 1, it is characterized in that, described cadmium salt is Cadmium chloride fine powder, and described mantoquita is cupric nitrate.
4. the microwave preparation of the Cu:CdTe quantum dot of water-soluble Cu doping according to claim 1, it is characterized in that, described tellurium powder content is 99.9%, and the specification of described tellurium powder is 120-150 mesh sieve.
5. according to the microwave preparation of the Cu:CdTe quantum dot of the water-soluble Cu doping described in any one of claim 1-4, it is characterized in that, in described step 3, the Cu:CdTe quantum dot precursor solution that Cu adulterates is placed in microwave reactor, after being heated to 100 DEG C of reaction 1-2 seconds, be converted to 120 DEG C of reaction 5-6 seconds.
6. the microwave preparation of the Cu:CdTe quantum dot of water-soluble Cu doping according to claim 5, it is characterized in that, also comprise step 4, the Cu:CdTe quantum dot solution sealing of being adulterated by water-soluble Cu is placed in microwave reactor and is heated to 75-85 DEG C, keep taking out for 2-3 minute.
CN201510422177.5A 2015-07-17 2015-07-17 Microwave preparation method for water-soluble Cu-doped Cu:CdTe quantum dots Pending CN105001870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510422177.5A CN105001870A (en) 2015-07-17 2015-07-17 Microwave preparation method for water-soluble Cu-doped Cu:CdTe quantum dots

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510422177.5A CN105001870A (en) 2015-07-17 2015-07-17 Microwave preparation method for water-soluble Cu-doped Cu:CdTe quantum dots

Publications (1)

Publication Number Publication Date
CN105001870A true CN105001870A (en) 2015-10-28

Family

ID=54374743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510422177.5A Pending CN105001870A (en) 2015-07-17 2015-07-17 Microwave preparation method for water-soluble Cu-doped Cu:CdTe quantum dots

Country Status (1)

Country Link
CN (1) CN105001870A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1693206A (en) * 2005-04-28 2005-11-09 复旦大学 Process for preparing water soluble cadmium telluride quantum point with program controlling microwave
CN101941682A (en) * 2010-09-17 2011-01-12 朱明强 Organic phase preparation method of CdSe quantum dot by microwave assisted synthesis
US20120103789A1 (en) * 2010-10-28 2012-05-03 Syracuse University Greener Synthesis of Nanoparticles Using Fine Tuned Hydrothermal Routes
CN103059871A (en) * 2012-12-19 2013-04-24 广西师范学院 Preparation method of water-soluble Cu-doped CdxCu1-xTe quantum dot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1693206A (en) * 2005-04-28 2005-11-09 复旦大学 Process for preparing water soluble cadmium telluride quantum point with program controlling microwave
CN101941682A (en) * 2010-09-17 2011-01-12 朱明强 Organic phase preparation method of CdSe quantum dot by microwave assisted synthesis
US20120103789A1 (en) * 2010-10-28 2012-05-03 Syracuse University Greener Synthesis of Nanoparticles Using Fine Tuned Hydrothermal Routes
CN103059871A (en) * 2012-12-19 2013-04-24 广西师范学院 Preparation method of water-soluble Cu-doped CdxCu1-xTe quantum dot

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R. KAVITHA等: "Influence of Zn2+ doping on the crystal structure and optical–electrical properties of CdTe thin films", 《SUPERLATTICES AND MICROSTRUCTURES》 *

Similar Documents

Publication Publication Date Title
Zhang et al. Carbon dots exhibiting concentration-dependent full-visible-spectrum emission for light-emitting diode applications
CN108246331B (en) ZnS micron composite material modified by graphene nitrogen carbide quantum dots and preparation method and application thereof
CN106947476B (en) Nitrogen-doped fluorescent graphene quantum dot and preparation method thereof
CN108187716A (en) A kind of N doping Carbon Materials Multi-metal supported catalyst and its preparation method and application
Yang et al. A review on sustainable synthetic approaches toward photoluminescent quantum dots
CN104959153A (en) Auxiliary agent for photocatalytic production of hydrogen, and photocatalyst and preparation method and application thereof
CN107651708A (en) A kind of method that microwave hydrothermal prepares 1T@2H MoS2
CN104059644A (en) Simple and quick preparation method of nitrogen-doped carbon quantum dots
CN108479833A (en) A kind of preparation method and applications of oxygen doping carbonitride aerogels
CN108314077A (en) The simple method for preparing full-inorganic perovskite nanostructure
CN109317182A (en) A kind of g-C3N4The preparation method of/Au@Pt heterojunction photocatalysis material
CN105819439A (en) Method for preparing carbon nitride quantum dot and graphene hydrogel nano composite material
CN109748322A (en) The synthetic method and application of α-MnS nanoparticle and α-MnS/rGO composite material
CN106978170B (en) A kind of preparation method of water-solubility fluorescent carbon quantum dot
Yao et al. Advances in green colloidal synthesis of metal selenide and telluride quantum dots
CN109941989A (en) A kind of method that hydro-thermal method prepares nitrogen-doped graphene quantum dot
Li et al. Interfacial Nucleation Mechanism of Water-Soluble Ag–In–S Quantum Dots at Room Temperature and Their Visible Light Catalytic Performance
CN101891236A (en) Method for synthesizing monodisperse samarium-doped rare earth cerium oxide nanocrystal
CN101941682B (en) Organic phase preparation method of CdSe quantum dot by microwave assisted synthesis
CN105001869A (en) Microwave preparation method for water-soluble Ce-doped Ce:CdTe quantum dots
CN102994093A (en) Method for synthesizing Co-doped CdxCo1-xTe quantum dot by hydrothermal method
CN105018094A (en) Microwave preparation method of water soluble Pr doped Pr:CdTe quantum dots
CN104974760A (en) Microwave preparation method of water-soluble Zn-doped Zn:CdTe quantum dots
CN102583556B (en) Preparation method of pencil-shaped gamma-MnS microcrystal
Chen et al. Ligand-induced, magic-size clusters enabled formation of colloidal all-inorganic II–VI nanoplatelets with controllable lateral dimensions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20151028