CN104975323B - 制备纳米材料的正弦曲面形氧化铝模板及其制备方法 - Google Patents

制备纳米材料的正弦曲面形氧化铝模板及其制备方法 Download PDF

Info

Publication number
CN104975323B
CN104975323B CN201410152802.4A CN201410152802A CN104975323B CN 104975323 B CN104975323 B CN 104975323B CN 201410152802 A CN201410152802 A CN 201410152802A CN 104975323 B CN104975323 B CN 104975323B
Authority
CN
China
Prior art keywords
sine surface
surface shape
aluminium flake
sine
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410152802.4A
Other languages
English (en)
Other versions
CN104975323A (zh
Inventor
庞岩涛
赵俊卿
张美生
张宝金
李鲁艳
庄世栋
王婕
王惠临
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jianzhu University
Original Assignee
Shandong Jianzhu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Jianzhu University filed Critical Shandong Jianzhu University
Priority to CN201410152802.4A priority Critical patent/CN104975323B/zh
Publication of CN104975323A publication Critical patent/CN104975323A/zh
Application granted granted Critical
Publication of CN104975323B publication Critical patent/CN104975323B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种制备纳米材料的正弦曲面形氧化铝模板及其制备方法。其特征是模板的内外两面均为正弦曲面,圆锥形纳米孔洞阵列沿正弦曲面垂直方向辐射状有序排列,圆锥形纳米孔的孔径大小及孔径变化率沿正弦线切向渐变,并且还可以通过改变正弦曲面的周期、振幅和阳极氧化时间调节。其制备方法是将正弦曲面形高纯铝片经过抛光、阳极氧化、去除阻碍层后得到。本发明中的正弦曲面形氧化铝模板对纳米材料的合成提供一种便利的途径,其制备方法简单可行。

Description

制备纳米材料的正弦曲面形氧化铝模板及其制备方法
技术领域:
本发明涉及用于制备纳米材料的正弦曲面形氧化铝模板以及该模板的制备方法。
背景技术:
随着科学技术的不断发展,许多新的学科不断兴起。纳米材料学便是其中一例。纳米材料的制备是纳米材料应用的基础。目前制备纳米材料多采用的方法有:模板法、气相沉积法、光刻法、液相法、离子束刻蚀法等等。而其中的模板法是一种最基本的方法。目前较成熟的模板大约有四种:碳纳米管、离子束刻蚀碳膜、生物微胶束和氧化铝模板。氧化铝模板由于具有孔密度大、纳米孔长径比(孔长度/孔直径)可调等特点,使其成为目前应用最为广泛的模板之一。它是将99.99%的纯铝片放在适当的酸性溶液(如草酸、硫酸或磷酸等)中,通过阳极氧化得到的纳米孔洞阵列体系。上世纪90年代初以来,人们已经利用氧化铝模板成功合成了许多纳米结构材料,如:纳米纤维、纳米棒、纳米管和纳米线等。这些纳米材料展现出令人心仪的应用前景,有些甚至已经走出实验室阶段,如碳纳米管用于场发射、半导体纳米线激光器等。
但是,关于氧化铝模板,目前得到应用的是平面形氧化铝模板,即它的上下两个表面都是平面,不利于纳米材料实现功能的器件化。不仅如此,平面形氧化铝模板中的纳米孔洞呈现直筒状并且平行排列,利用这种模板组装的纳米材料的功能单一。依照现有的方法,实现圆锥形纳米孔洞辐射状有序排列的氧化铝模板是不可能的。
发明内容:
本发明为了解决现有技术的不足,提供一种制备纳米材料的正弦曲面形氧化铝模板及其制备方法。为纳米材料的合成提供一种便利的途径。
本发明解决技术问题所采用的技术方案是:
本发明正弦曲面形氧化铝模板的特点是模板的内外两面均为正弦曲面,圆锥形纳米孔洞沿正弦曲面垂直方向辐射状有序排列,并且圆锥形纳米孔孔径大小及变化率沿正弦线切向渐变,并且还可以通过改变阳极氧化时间调节。正弦曲面形铝片经过抛光、阳极氧化、去除阻碍层后得到正弦曲面形氧化铝模板。
本发明的具体制备方法包括如下顺序的步骤:
①将平面形高纯铝片覆盖在正弦曲面模具表面,经过锻压定型后得到正弦曲面形铝片,或者在正弦曲面模具表面真空蒸镀铝后再去掉正弦曲面模具得到正弦曲面形铝片;
②正弦曲面形铝片在乙醇与高氯酸的混合液中抛光4-5分钟;
③取出铝片用去离子水冲洗3-5次;
④将正弦曲面形铝片放入草酸溶液中阳极氧化20小时;
⑤去掉正弦曲面形铝片上的氧化层;
⑥正弦曲面形铝片在草酸溶液中进行第二次阳极氧化8小时;
⑦去掉未氧化的铝层以及阻碍层,
⑧用去离子水冲洗3-5次,在室温下晾干。
与已有技术相比,本发明有以下技术效果:
1、几何特性。正弦曲面形氧化铝模板的内外表面都是正弦曲面,相对于平面模板在纳米材料的器件化方面具有较大优势,比如由正弦曲面形模板可以制成正弦曲面光栅、光波导等。
2、电学性质。平行排列、直径均匀的纳米线(管、棒)和辐射状有序排列、圆锥形纳米线(管、棒)的电学性质有很大的差异。已经发现,不同直径铋纳米线的电子输运性质不同,或为半金属或为半导体,利用正弦曲面形氧化铝模板可以组装得到辐射状有序排列且直径渐变的纳米线(管、棒)阵列,从而可以在一根纳米线上实现半金属到半导体的转变,为纳米材料的器件化奠定了基础。
3、光学性质。理论和实验都已证明,辐射状有序排列、直径渐变的纳米线(管、棒)具有奇异的光学性质。比如,辐射状排列的银纳米线阵列可以实现亚波长超分辨放大成像等。利用正弦曲面形氧化铝模板可以组装得到辐射状有序排列且直径渐变的纳米线(管、棒)阵列,可以实现纳米材料优异的光学性能。
本制备方法的有益效果体现在:
正弦曲面形氧化铝模板的制备方法操作简单、可靠、锥形孔径大小及孔径变化率可以通过改变正弦曲面的周期、振幅和阳极氧化时间调节。
附图说明:
图为本发明正弦曲面形铝片经过阳极氧化后的实物图。
具体实施方式:
本实施例中的正弦曲面形氧化铝模板的内外两面都是正弦曲面,圆锥形纳米孔洞沿正弦曲面垂直方向辐射状有序排列,圆锥形纳米孔的孔径大小及孔径变化率沿正弦线切向渐变,并且还可以通过改变正弦曲面的周期、振幅和阳极氧化时间调节。图中的虚线箭头表示模板正弦线切向。
针对本实施例中的氧化铝模板,其制备方法的具体步骤为:
(1)将平面形高纯铝片覆盖在正弦曲面模具表面,经过锻压定型后得到正弦曲面形铝片,或者在正弦曲面模具表面真空蒸镀铝后再去掉正弦曲面模具得到正弦曲面形铝片;
(2)正弦曲面形铝片在乙醇与高氯酸(体积比为5∶1)的混合液中抛光4-5分钟,电压为14-15伏特,温度为10摄氏度;
(3)取出铝片用去离子水冲洗3-5次;
(4)将正弦曲面形铝片放入0.3M草酸溶液中阳极氧化20小时,氧化电压为40伏特,温度为5摄氏度;
(5)将(4)得到的铝片放入按体积比1∶1混合的磷酸(1.6%wt)和铬酸(6%wt)的溶液中,在60摄氏度下,放置2个小时,去掉椭球面形铝片上的氧化层;
(6)正弦曲面形铝片在0.3M草酸溶液中进行第二次阳极氧化8小时,电压为40伏特,温度为5摄氏度;
(7)将(6)得到的正弦曲面形氧化铝片放入饱和氯化汞溶液中2小时,去掉未氧化的铝层;
(8)将(7)得到的正弦曲面形氧化铝片用去离子水冲洗3-5次;
(9)将(8)得到正弦曲面形氧化铝片放入0.1M的磷酸溶液中,在30摄氏度下放置20分钟,去掉阻碍层;
(10)将(9)得到的正弦曲面形氧化铝片用去离子水冲洗3-5次,在室温下晾干。
实验表明:
在相应条件的草酸溶液中阳极氧化得到的正弦曲面形氧化铝模板完成以上步骤后,锥形孔洞沿正弦曲面垂直方向呈现辐射状有序排列。在图所示的A点附近,其锥形孔沿模板表面垂线方向的最小和最大直径分别为:50nm和74nm,纳米孔径的变化率为0.60nm/μm,在图所示的B点附近,其锥形孔沿模板表面垂线方向的最小和最大直径分别为:55nm和70nm,纳米孔径的变化率为0.50nm/μm,即沿模板正弦线切向和模板表面垂线方向,纳米孔的孔径及孔径变化率渐变,也可以通过改变阳极氧化时间和正弦曲面模板的周期以及振幅调节锥形孔孔径的大小和孔径变化率,扫描电子显微镜的直接观察可以证实方法的可行性。

Claims (1)

1.一种制备纳米材料的正弦曲面形氧化铝模板的制备方法,其特征在于,(1)将平面形高纯铝片覆盖在正弦曲面模具表面,经过锻压定型后得到正弦曲面形铝片,或者在正弦曲面模具表面真空蒸镀铝后再去掉正弦曲面模具得到正弦曲面形铝片;(2)正弦曲面形铝片在体积比为5∶1的乙醇与高氯酸的混合液中抛光4-5分钟,电压为14-15伏特,温度为10摄氏度;(3)取出铝片用去离子水冲洗3-5次;(4)将正弦曲面形铝片放入0.3M草酸溶液中阳极氧化20小时,氧化电压为40伏特,温度为5摄氏度;(5)将(4)得到的铝片放入按体积比1∶1混合的1.6%wt磷酸和1.6%wt铬酸的溶液中,在60摄氏度下,放置2个小时,去掉椭球面形铝片上的氧化层;(6)正弦曲面形铝片在0.3M草酸溶液中进行第二次阳极氧化8小时,电压为40伏特,温度为5摄氏度;(7)将(6)得到的正弦曲面形氧化铝片放入饱和氯化汞溶液中2小时,去掉未氧化的铝层;(8)将(7)得到的正弦曲面形氧化铝片用去离子水冲洗3-5次;(9)将(8)得到正弦曲面形氧化铝片放入0.1M的磷酸溶液中,在30摄氏度下放置20分钟,去掉阻碍层;(10)将(9)得到的正弦曲面形氧化铝片用去离子水冲洗3-5次,在室温下晾干。
CN201410152802.4A 2014-04-13 2014-04-13 制备纳米材料的正弦曲面形氧化铝模板及其制备方法 Expired - Fee Related CN104975323B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410152802.4A CN104975323B (zh) 2014-04-13 2014-04-13 制备纳米材料的正弦曲面形氧化铝模板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410152802.4A CN104975323B (zh) 2014-04-13 2014-04-13 制备纳米材料的正弦曲面形氧化铝模板及其制备方法

Publications (2)

Publication Number Publication Date
CN104975323A CN104975323A (zh) 2015-10-14
CN104975323B true CN104975323B (zh) 2018-02-23

Family

ID=54272275

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410152802.4A Expired - Fee Related CN104975323B (zh) 2014-04-13 2014-04-13 制备纳米材料的正弦曲面形氧化铝模板及其制备方法

Country Status (1)

Country Link
CN (1) CN104975323B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110528045A (zh) * 2019-08-21 2019-12-03 歌尔股份有限公司 金属材料的表面处理方法
CN114990663A (zh) * 2022-05-17 2022-09-02 山东建筑大学 一种用于制备纳米材料的抛物柱面形氧化铝模板、制备方法及应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063731A (ja) * 1983-09-19 1985-04-12 Pilot Pen Co Ltd:The 磁気記録材料の製造方法
JP4913925B2 (ja) * 2010-03-25 2012-04-11 三菱レイヨン株式会社 インプリント用ロール状モールドの製造方法
CN101838834B (zh) * 2010-05-21 2012-01-25 中国科学院苏州纳米技术与纳米仿生研究所 阳极氧化铝模板孔洞形状渐变的调制方法
CN101831682A (zh) * 2010-06-09 2010-09-15 中南大学 非对称二次阳极氧化制备高度有序氧化铝模板的方法
CN102041540A (zh) * 2011-01-13 2011-05-04 中国科学院苏州纳米技术与纳米仿生研究所 三维渐变孔阵列纳米结构阳极氧化铝模板及其制备方法
US20130264744A1 (en) * 2011-07-19 2013-10-10 Mitsubishi Rayon Co., Ltd. Production method of mold for nanoimprinting
CN102925947B (zh) * 2011-08-09 2015-07-08 中国科学院化学研究所 具有梯度纳米孔径的阳极氧化铝模板的制备方法

Also Published As

Publication number Publication date
CN104975323A (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
Lee et al. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures
Lee et al. Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium
Yuan et al. Solid-state nanopore
CN104975320B (zh) 制备纳米材料的柱面形氧化铝模板及其制备方法
CN104949957A (zh) 嵌入式纳米点阵列表面增强拉曼活性基底及其制备方法
CN106404738B (zh) 一种氧化石墨烯/银纳米颗粒/金字塔形硅三维拉曼增强基底及制备方法和应用
CN104975323B (zh) 制备纳米材料的正弦曲面形氧化铝模板及其制备方法
CN103318875B (zh) 自组装纳米金属或半导体颗粒掺杂石墨烯微片的制备方法及其用途
Esmaeily et al. Diameter-modulated ferromagnetic CoFe nanowires
Vojkuvka et al. Self-ordered porous alumina membranes with large lattice constant fabricated by hard anodization
CN103451610A (zh) 新型仿生表面增强拉曼光谱基底及其制备方法
CN104975319B (zh) 制备纳米材料的柱面螺旋形氧化铝模板及其制备方法
CN104975321B (zh) 制备纳米材料的椭球面形氧化铝模板及其制备方法
Smith et al. Highly ordered diamond and hybrid triangle-diamond patterns in porous anodic alumina thin films
ai Hu et al. Template preparation of high-density, and large-area Ag nanowire array by acetaldehyde reduction
CN104975349B (zh) 制备纳米材料的圆锥面形氧化铝模板及其制备方法
CN104975342B (zh) 制备纳米材料的球面形氧化铝模板及其制备方法
CN104975322B (zh) 制备纳米材料的圆锥面螺旋形氧化铝模板及其制备方法
Zheng et al. Large-scale pattern transfer based on non-through-hole AAO self-supporting membranes
Lee et al. Nanotip fabrication by anodic aluminum oxide templating
Lim et al. Controlling pore geometries and interpore distances of anodic aluminum oxide templates via three-step anodization
Bannigidad et al. Effect of time on anodized Al2O3 nanopore FESEM images using digital image processing techniques: A study on computational chemistry
Ahmadzadeh et al. Self-ordered porous anodic alumina templates by a combinatory anodization technique in oxalic and selenic Acids
CN106319600A (zh) 一种超长细钛管内表面二氧化钛纳米管阵列的制备方法
Yang et al. The precise preparation of anodic aluminum oxide template based on the current-controlled method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180223

Termination date: 20190413

CF01 Termination of patent right due to non-payment of annual fee