CN104934327A - 一种基于氧化钪高k介电层薄膜晶体管的制备方法 - Google Patents

一种基于氧化钪高k介电层薄膜晶体管的制备方法 Download PDF

Info

Publication number
CN104934327A
CN104934327A CN201510260595.9A CN201510260595A CN104934327A CN 104934327 A CN104934327 A CN 104934327A CN 201510260595 A CN201510260595 A CN 201510260595A CN 104934327 A CN104934327 A CN 104934327A
Authority
CN
China
Prior art keywords
izo
thin
spin coating
film transistor
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510260595.9A
Other languages
English (en)
Inventor
单福凯
刘奥
刘国侠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201510260595.9A priority Critical patent/CN104934327A/zh
Publication of CN104934327A publication Critical patent/CN104934327A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明属于半导体薄膜晶体管制备技术领域,涉及一种基于氧化钪高k介电层薄膜晶体管的制备方法;先将硝酸钪溶于去离子水中并搅拌形成前驱体溶液后旋凃于清洗过的低阻硅衬底表面,旋涂厚度5-10nm,再将旋涂产生的薄膜烘焙和退火得到Sc2O3薄膜样品,然后将硝酸锌和硝酸铟分别溶于去离子中并搅拌形成IZO水性溶液后旋涂于Sc2O3薄膜样品表面,再将旋涂后的薄膜样品固化处理后低温退火,得到IZO沟道层;最后采用真空热蒸发法利用不锈钢掩膜版在IZO沟道层上制备金属源、漏电极,即得到薄膜晶体管;其总体实施方案成本低,工艺简单,原理可靠,产品性能好,制备环境友好,应用前景广阔,可大面积制备高性能薄膜晶体管。

Description

一种基于氧化钪高k介电层薄膜晶体管的制备方法
技术领域:
本发明属于半导体薄膜晶体管制备技术领域,涉及一种基于绿色环保水性溶胶的薄膜晶体管的制备方法,以水性超薄氧化钪(Sc2O3)为高k介电层、水性氧化铟锌(InZnO)为半导体沟道层制备薄膜结构的晶体管。
背景技术:
目前,薄膜晶体管(Thin Film Transistor,TFT)在有源矩阵驱动液晶显示器件(Active Matrix Liquid Crystal Display,AMLCD)中发挥了重要作用。从低温非晶硅TFT到高温多晶硅TFT,技术越来越成熟,应用对象也从只能驱动LCD(Liquid Crystal Display)发展到既可驱动LCD又可驱动OLED(Organic Light Emitting Display)和电子纸。TFT在过去的十多年中已经成为平板显示行业的核心部件,每台显示器都集成了数百万甚至上亿个TFT器件。随着大规模集成电路的发展,作为硅基集成电路核心器件的TFT的特征尺寸一直不断减小,其减小规律遵循摩尔定律。这种缩减的结果不仅可以增加器件密度,降低单位成本,更重要的是其每次开关操作所消耗的功率也随之减少(IBM Journal of Research and Development,43 245,1999)。当超大规模集成电路的特征尺寸小于0.1μm时,二氧化硅(SiO2)介电层的厚度必须小于1.5nm,因此很难控制SiO2薄膜的针孔密度,从而导致较大的漏电流。研究表明SiO2厚度由3.5nm减至1.5nm时栅极漏电流由10-12A/cm2增大到10A/cm2(IEEE Electron DeviceLetters,18 209,1997)。较大的漏电流会引起高功耗及相应的散热问题,这对于器件集成度、可靠性和寿命都造成不利的影响。目前,在集成电路工艺中广泛采用高介电常数(高k)栅介电来增大电容密度和减少栅极漏电流,高k材料因其大的介电常数,在与SiO2具有相同等效栅氧化层厚度(EOT)的情况下,其实际厚度比SiO2大的多,从而解决了SiO2因接近物理厚度极限而产生的量子遂穿效应(Journal of Applied Physics,89 5243,2001)。因此制备新型、高性能高k材料替代SiO2成为实现大规模集成电路的首要任务。
由于TFT器件是薄膜型结构,其栅介电层的介电常数、致密性和厚度对晶体管的电学性能有重要的影响。目前成为研究热点的高k介电材料包括ATO(Advanced Materials,24 2945,2012)、Al2O3(Nature,489 128,2012)、ZrO2(Advanced Materials,23 971,2011)、HfO2(Journal of Materials Chemistry,22 17415,2012)和Y2O3(AppliedPhysics Letters,98 123503,2011)等。通过查阅相关专利、文献,目前还未发现有基于氧化钪(Sc2O3)高k介电层的TFT器件的相关报道。Sc2O3具有较大的介电常数(14-16)、较宽的带隙(6.0-6.3eV)、较大的导带补偿,对电子较高的通道势垒高度(大于2eV)。因此,Sc2O3有望取代传统SiO2栅介电材料,成为新一代TFT高k栅介电材料的有力候选者。迄今为止,Sc2O3薄膜的制备均采用基于高真空制备环境的技术,例如原子束外延、化学气相沉积、电子束蒸发、高压溅射。这类高真空制备方法需要依托昂贵的设备且难以实现大面积成膜,制约了低成本电子器件的生产。考虑到将来电子器件发展的新方向—印刷电子器件,利用化学溶液技术制备薄膜将是一个更好的选择,化学溶液技术在超细粉末、薄膜涂层、纤维等材料的制备工艺中受到广泛应用,它具有其独特的优点:其反应中各组分的混合在分子间进行,因而产物的粒径小、均匀性高;反应过程易于控制,可得到一些用其他方法难以得到的产物,另外反应在低温下进行,避免了高温杂相的出现,使得产物的纯度高。
目前采用化学溶液技术制备薄膜时多采用有机系溶液作为前驱体,该方法不仅增加实验成本,其废液破坏自然环境,不利于可持续、绿色发展的宗旨。在前期工作我们提出一种利用“水性溶胶”方法制备超薄高k介电薄膜的新思路,并成功制备高性能的氧化钇高k介电薄膜(Advanced Functional Materials,25 2564,2015)。在“水性溶胶”前驱体溶液中,只有金属硝酸盐和去离子水作为反应源。采用去离子水替代传统的有机溶液(乙二醇甲醚等)作为溶剂,因此“水性溶胶”技术相比于常规有机溶胶方法具有无毒、环保、廉价等优点;此外由于水性溶液中金属阳离子与水分子间为静电结合,相比于有机溶液中共价键结合方式具有更弱的结合能,因此采用水性溶液方法旋涂的薄膜具有更低的分解温度,利用水性溶液技术制备可靠性高、重复性好、低温分解的半导体薄膜正成为工业界和科研界正在深入研究的技术领域。
目前,采用氧化铟(In2O3)、氧化物铟锌氧(IZO)和铟镓锌氧(IGZO)材料作为薄膜晶体管沟道层的制备和应用技术已有公开文献,美、日、韩等国做了大量研究。IZO凭借其高迁移率、非晶态、高透过率(可见光>80%)成为半导体沟道层材料的有力候选者。我们通过相关专利、文献的查阅,利用“水性溶胶”方法制备TFT沟道层鲜有报道,基于水性Sc2O3高k介电层的全水性TFT器件更是无人涉足。上述工艺制备的IZO/Sc2O3结构的TFT器件不仅具有较高的载流子迁移率,而且具有极低的操作电压,其作为AMLCD的像素开关,将大大提高有源矩阵的开口率,提高亮度,同时降低功耗;另外其全溶液制备工艺不依赖昂贵的真空镀膜设备,使得制作成本进一步降低,这些优点使其在未来的低能耗电子显示领域有很广阔的潜在市场。
发明内容:
本发明的目的在于克服现有技术存在的缺点,寻求设计和提供一种基于高k氧化钪(Sc2O3)介电层薄膜晶体管的制备方法,结合水性氧化铟锌(IZO)半导体沟道层制备全水性薄膜晶体管(TFT),选用低阻硅作为基底和栅电极,分别采用水性溶胶方法和热退火相结合的方式制备超薄Sc2O3(<20nm)栅介电层和高透过率、高迁移率的IZO半导体沟道层,进一步制备高性能、低能耗的TFT器件。
为了实现上述目的,本发明的具体工艺包括以下步骤:
(1)、Sc2O3前驱体溶液的制备:先将硝酸钪Sc(NO3)3·H2O溶于去离子水中,在20-90℃下磁力搅拌1-24小时形成澄清透明的Sc2O3前驱体溶液,其中Sc2O3前驱体溶液的浓度为0.01-0.5mol/L;
(2)、Sc2O3薄膜样品的制备:采用等离子体清洗方法清洗低阻硅衬底表面,在清洗后的低阻硅衬底上采用常规的旋涂技术旋涂步骤(1)配制的Sc2O3前驱体溶液,先在400-600转/分下匀胶4-8秒,再在3000-6000转/分下匀胶15-30秒,旋涂次数为1-3次,每次旋涂厚度5-10nm;将旋涂后的薄膜放到烤胶台上控温100-200℃进行烘焙,得固化薄膜样品;再将烘焙后的固化薄膜样品在控制温度为200-600℃条件下退火1-3小时,实现脱羟基作用及金属氧化物致密化,得到Sc2O3薄膜样品;
(3)、IZO沟道层的制备:将硝酸锌Zn(NO3)2和硝酸铟In(NO3)3分别溶于去离子中,在室温下搅拌1-24小时形成澄清透明的浓度为0.01-0.5mol/L的IZO水性溶液,其中水性溶液中In3+:Zn2+为1-9:1;然后在步骤(2)得到的Sc2O3薄膜样品表面利用旋涂技术旋涂IZO水性溶液,先在400-600转/分下匀胶4-8秒,再在2000-5000转/分下匀胶15-30秒,旋涂次数为1-3次,每次旋涂厚度5-10nm;将旋涂后的薄膜样品放到120-150℃烤胶台进行固化处理后再放入马弗炉中进行200-300℃低温退火处理1-5小时,即制备得到IZO沟道层;
(4)、源、漏电极的制备:利用常规的真空热蒸发法利用不锈钢掩膜版在IZO沟道层上面制备金属源、漏电极,即得到基于超薄Sc2O3高k介电层的全水性IZO薄膜晶体管;所制备的薄膜晶体管的电极沟道长宽比为1:4-20,热蒸发电流为30-50A;制得的源、漏电极为金属Al、Ti或Ni电极,电极厚度为50-200nm。
本发明的步骤(1)中涉及的去离子水的电阻率>18MΩ·cm;步骤(2)中涉及的等离子体清洗法采用氧气或氩气作为清洗气体,其功率为20-60Watt,清洗时间为20-200s,工作气体的通入量为20-50SCCM。
本发明与现有技术相比,一是采用水性溶胶方法制备新型Sc2O3高k栅介电材料,为基于高k介电材料的电子元器件提供新的选择;二是制得的Sc2O3高k栅介电层的物理厚度小于20nm,其同时具有的低漏电流、大电容密度可满足微电子集成化对于器件尺寸的需求;Sc2O3薄膜本身具有的高透过率(可见光波段>90%),符合透明电子器件对材料自身的要求;制得的Sc2O3薄膜为非晶态,可实现薄膜大面积、均一制备;三是Sc2O3薄膜采用水性溶胶工艺制备得到,以硝酸钪盐和去离子水作为反应源,其过程廉价、绿色环保,符合可持续发展战略;四是薄膜晶体管中的IZO半导体沟道层及Sc2O3介电层均利用水性溶胶方法制备,制备过程不需要高真空环境,在空气中即可进行,降低生产成本;同时由于去离子水没有腐蚀性,当旋涂到Sc2O3栅介电层上时,不会侵蚀Sc2O3表面,利于形成更加清晰的界面;其总体实施方案成本低,工艺简单,原理可靠,产品性能好,制备环境友好,应用前景广阔,可大面积制备高性能薄膜晶体管。
附图说明:
图1为本发明制备的基于高k Sc2O3介电层的全水性薄膜晶体管的结构原理示意图。
图2为本发明涉及的水性Sc2O3高k介电层的漏电流测试曲线图。
图3为本发明涉及的水性Sc2O3高k介电层的电容测试曲线图。
图4为本发明制备的全水性IZO/Sc2O3薄膜晶体管的输出特性曲线图,其中栅极偏压VGS=1.5V。
图5为本发明制备的全水性IZO/Sc2O3薄膜晶体管的转移特性曲线图,其中源漏电压VDS=1.5V。
图6为本发明制备的全水性IZO/Sc2O3薄膜晶体管的偏压稳定性特性曲线图,其中源漏电压VDS=1.5V。
具体实施方式:
下面通过具体实施例并结合附图进一步说明本发明。
实施例:
本实施例中涉及的硝酸钪、硝酸锌和硝酸铟粉末均购于Aldrich公司,纯度大于98%;其底栅结构以超薄氧化钪(Sc2O3)为高k介电层和以氧化铟锌(IZO)薄膜为沟道层的全水性薄膜晶体管的制备过程为:
(1)采用水性溶胶方法旋涂制备超薄Sc2O3高k介电薄膜:
步骤1:选用商业购买的单面抛光低阻硅作为衬底(电阻值小于0.0015Ω·cm)和栅电极,对低阻硅衬底依次用氢氟酸、丙酮、酒精超声波清洗衬底各10分钟,再用去离子水反复冲洗后,高纯氮气吹干;
步骤2:称量去离子水10mL,将硝酸钪按照0.15M溶于水溶液中,混合后在磁力搅拌的作用下室温搅拌5.5小时形成澄清、无色透明的Sc2O3前驱体液体;
步骤3:将洁净的低阻硅衬底放入等离子体清洗腔内,待腔室抽真空至0.5Pa后通入高纯(99.99%)氧气,控制其功率为30Watt,清洗时间为120s,工作时氧气的通入量为30SCCM;
步骤4:制备Sc2O3样品:将步骤2中配制的前驱体溶液旋涂在清洗过的低阻硅衬底上,旋涂次数为2次,旋涂前驱体溶液时匀胶机的参数设置为:先在500转/分匀胶5秒,然后在5000转/分匀胶20秒;旋涂结束后,将样品放到烤胶台上150℃烘焙10min,将固化处理后的Sc2O3样品放入马弗炉中低温退火处理,退火温度为350℃,退火时间1小时,得到Sc2O3薄膜样品;
(2)利用水性溶胶方法旋涂制备IZO沟道层:
步骤1:将硝酸铟和硝酸锌粉末分别溶于蒸馏水中,In3+:Zn2+=7:3,金属阳离子总浓度为0.2M;称量蒸馏水10mL,分别称取硝酸铟、硝酸锌为0.42g、0.18g,混合后在磁力搅拌的作用下室温搅拌5.5小时形成澄清、无色透明的IZO水性溶液;
步骤2:制备IZO沟道层:将步骤1中配制的IZO水性溶液旋涂在等离子体处理过的Sc2O3薄膜样品上,旋涂时匀胶机的参数设置为:5000转/分匀胶20秒,旋涂结束后,将薄膜样品放入马弗炉中低温退火处理,退火温度为300℃,退火时间后2小时;
(3)采用真空热蒸发法制备源、漏金属电极:
通过热蒸发的方式,在IZO沟道层上用宽长比为1000/250μm的不锈钢掩膜版制备100nm厚的金属Al作为源、漏电极,热蒸发电流为40A,制备得到Al/IZO/Sc2O3/Si结构的薄膜晶体管;
(4)对制成的Al/IZO/Sc2O3/Si结构(图1)的薄膜晶体管进行测试;得到的水性Sc2O3介电层的漏电流测试及电容测试曲线分别如图2、图3所示;制得的薄膜晶体管输出特性曲线如图4所示;制备的薄膜晶体管对应的转移特性曲线如图5所示;制备的薄膜晶体管的偏压稳定性特性曲线如图6所示;图2、图4、图5、图6曲线由吉时利2634B半导体源表测试得到;图3曲线由安捷伦4294A测试得到。

Claims (2)

1.一种基于氧化钪高k介电层薄膜晶体管的制备方法,其特征在于具体工艺包括以下步骤:
(1)、Sc2O3前驱体溶液的制备:先将硝酸钪Sc(NO3)3·H2O溶于去离子水中,在20-90℃下磁力搅拌1-24小时形成澄清透明的Sc2O3前驱体溶液,其中Sc2O3前驱体溶液的浓度为0.01-0.5mol/L;
(2)、Sc2O3薄膜样品的制备:采用等离子体清洗方法清洗低阻硅衬底表面,在清洗后的低阻硅衬底上采用常规的旋涂技术旋涂步骤(1)配制的Sc2O3前驱体溶液,先在400-600转/分下匀胶4-8秒,再在3000-6000转/分下匀胶15-30秒,旋涂次数为1-3次,每次旋涂厚度5-10nm;将旋涂后的薄膜放到烤胶台上控温100-200℃进行烘焙,得固化薄膜样品;再将烘焙后的固化薄膜样品在控制温度为200-600℃条件下退火1-3小时,实现脱羟基作用及金属氧化物致密化,得到Sc2O3薄膜样品;
(3)、IZO沟道层的制备:将硝酸锌Zn(NO3)2和硝酸铟In(NO3)3分别溶于去离子中,在室温下搅拌1-24小时形成澄清透明的浓度为0.01-0.5mol/L的IZO水性溶液,其中水性溶液中In3+:Zn2+为1-9:1;然后在步骤(2)得到的Sc2O3薄膜样品表面利用旋涂技术旋涂IZO水性溶液,先在400-600转/分下匀胶4-8秒,再在2000-5000转/分下匀胶15-30秒,旋涂次数为1-3次,每次旋涂厚度5-10nm;将旋涂后的薄膜样品放到120-150℃烤胶台进行固化处理后再放入马弗炉中进行200-300℃低温退火处理1-5小时,即制备得到IZO沟道层;
(4)、源、漏电极的制备:利用常规的真空热蒸发法利用不锈钢掩膜版在IZO沟道层上面制备金属源、漏电极,即得到基于超薄Sc2O3高k介电层的全水性IZO薄膜晶体管;所制备的薄膜晶体管的电极沟道长宽比为1:4-20,热蒸发电流为30-50A;制得的源、漏电极为金属Al、Ti或Ni电极,电极厚度为50-200nm。
2.根据权利要求1所述的基于氧化钪高k介电层薄膜晶体管的制备方法,其特征在于所述步骤(1)中涉及的去离子水的电阻率>18MΩ·cm;步骤(2)中涉及的等离子体清洗法采用氧气或氩气作为清洗气体,其功率为20-60Watt,清洗时间为20-200s,工作气体的通入量为20-50SCCM。
CN201510260595.9A 2015-05-20 2015-05-20 一种基于氧化钪高k介电层薄膜晶体管的制备方法 Pending CN104934327A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510260595.9A CN104934327A (zh) 2015-05-20 2015-05-20 一种基于氧化钪高k介电层薄膜晶体管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510260595.9A CN104934327A (zh) 2015-05-20 2015-05-20 一种基于氧化钪高k介电层薄膜晶体管的制备方法

Publications (1)

Publication Number Publication Date
CN104934327A true CN104934327A (zh) 2015-09-23

Family

ID=54121436

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510260595.9A Pending CN104934327A (zh) 2015-05-20 2015-05-20 一种基于氧化钪高k介电层薄膜晶体管的制备方法

Country Status (1)

Country Link
CN (1) CN104934327A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428247A (zh) * 2016-01-18 2016-03-23 青岛大学 一种基于水性超薄ZrO2高k介电层的薄膜晶体管制备方法
CN105489486A (zh) * 2016-01-18 2016-04-13 青岛大学 一种基于超薄氧化镁高k介电层薄膜晶体管的制备方法
CN106601803A (zh) * 2016-12-13 2017-04-26 青岛大学 一种uv光前处理制备氧化铟/氧化铝纳米纤维场效应晶体管的方法
WO2019134394A1 (en) * 2018-01-03 2019-07-11 Boe Technology Group Co., Ltd. Oxide semiconductor composition, manufacturing method thereof, thin film transistor and display apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101501787A (zh) * 2006-07-17 2009-08-05 麻省理工学院 制造高Jc超导膜的方法和用于其的聚合物-硝酸盐溶液
CN102668095A (zh) * 2009-10-30 2012-09-12 株式会社半导体能源研究所 晶体管
CN102787309A (zh) * 2012-08-07 2012-11-21 清华大学 一种氧化铝薄膜及制备方法及其应用
CN102943253A (zh) * 2012-11-30 2013-02-27 中国科学院深圳先进技术研究院 一种掺铝氧化锌透明导电薄膜及其制备方法
CN104009093A (zh) * 2014-06-13 2014-08-27 青岛大学 一种高k介电层水性氧化铟薄膜晶体管的制备方法
CN104081531A (zh) * 2012-02-27 2014-10-01 应用材料公司 用于金属栅极电极的原子层沉积方法
CN104201112A (zh) * 2014-09-28 2014-12-10 青岛大学 一种基于水溶液薄膜晶体管的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101501787A (zh) * 2006-07-17 2009-08-05 麻省理工学院 制造高Jc超导膜的方法和用于其的聚合物-硝酸盐溶液
CN102668095A (zh) * 2009-10-30 2012-09-12 株式会社半导体能源研究所 晶体管
CN104081531A (zh) * 2012-02-27 2014-10-01 应用材料公司 用于金属栅极电极的原子层沉积方法
CN102787309A (zh) * 2012-08-07 2012-11-21 清华大学 一种氧化铝薄膜及制备方法及其应用
CN102943253A (zh) * 2012-11-30 2013-02-27 中国科学院深圳先进技术研究院 一种掺铝氧化锌透明导电薄膜及其制备方法
CN104009093A (zh) * 2014-06-13 2014-08-27 青岛大学 一种高k介电层水性氧化铟薄膜晶体管的制备方法
CN104201112A (zh) * 2014-09-28 2014-12-10 青岛大学 一种基于水溶液薄膜晶体管的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428247A (zh) * 2016-01-18 2016-03-23 青岛大学 一种基于水性超薄ZrO2高k介电层的薄膜晶体管制备方法
CN105489486A (zh) * 2016-01-18 2016-04-13 青岛大学 一种基于超薄氧化镁高k介电层薄膜晶体管的制备方法
CN105428247B (zh) * 2016-01-18 2018-08-10 青岛大学 一种基于水性超薄ZrO2高k介电层的薄膜晶体管制备方法
CN106601803A (zh) * 2016-12-13 2017-04-26 青岛大学 一种uv光前处理制备氧化铟/氧化铝纳米纤维场效应晶体管的方法
CN106601803B (zh) * 2016-12-13 2019-07-05 青岛大学 一种uv光前处理制备氧化铟/氧化铝纳米纤维场效应晶体管的方法
WO2019134394A1 (en) * 2018-01-03 2019-07-11 Boe Technology Group Co., Ltd. Oxide semiconductor composition, manufacturing method thereof, thin film transistor and display apparatus

Similar Documents

Publication Publication Date Title
CN104009093B (zh) 一种高k介电层水性氧化铟薄膜晶体管的制备方法
CN105428247B (zh) 一种基于水性超薄ZrO2高k介电层的薄膜晶体管制备方法
Zhang et al. Ultraviolet-assisted low-thermal-budget-driven α-InGaZnO thin films for high-performance transistors and logic circuits
CN104201112A (zh) 一种基于水溶液薄膜晶体管的制备方法
Wei et al. High-mobility pentacene-based thin-film transistors with a solution-processed barium titanate insulator
Zheng et al. All-sputtered, flexible, bottom-gate IGZO/Al 2 O 3 bi-layer thin film transistors on PEN fabricated by a fully room temperature process
CN105489486A (zh) 一种基于超薄氧化镁高k介电层薄膜晶体管的制备方法
Zhu et al. Eco-Friendly, Water-Induced In 2 O 3 Thin Films for High-Performance Thin-Film Transistors and Inverters
CN104934327A (zh) 一种基于氧化钪高k介电层薄膜晶体管的制备方法
Liu et al. Solution-processed lithium-doped zinc oxide thin-film transistors at low temperatures between 100 and 300° C
Zhang et al. Balanced performance improvement of a-InGaZnO thin-film transistors using ALD-derived Al2O3-passivated high-k HfGdOx dielectrics
CN103928350B (zh) 一种双沟道层薄膜晶体管的制备方法
CN110416087A (zh) 具有钝化增强层的金属氧化物薄膜晶体管及其制作方法
Lee et al. Enhancement of the electrical performance and bias stability of RF-sputtered indium tin zinc oxide thin-film transistors with vertical stoichiometric oxygen control
Zhang et al. Impact of ZrO2 dielectrics thickness on electrical performance of TiO2 thin film transistors with sub-2 V operation
Wang et al. Solution-driven HfLaO x-based gate dielectrics for thin film transistors and unipolar inverters
He et al. Potential solution-induced HfAlO dielectrics and their applications in low-voltage-operating transistors and high-gain inverters
Zhu et al. Water-derived all-oxide thin-film transistors with ZrAlO x gate dielectrics and exploration in digital circuits
Shan et al. Multi-stacking indium zinc oxide thin-film transistors post-annealed by femtosecond laser
Zhang et al. Eco-friendly fully water-driven metal–oxide thin films and their applications in transistors and logic circuits
Fang et al. High-Performance and Radiation-Hardened Solution-Processed ZrLaO Gate Dielectrics for Large-Area Applications
Jhu et al. Reduction of defect formation in amorphous indium-gallium-zinc-oxide thin film transistors by N2O plasma treatment
Song et al. Improved electrical performance of oxide transistor utilizing gallium doping both in channel and dielectric layers
Thomas et al. Be-doped ZnO thin-film transistors and circuits fabricated by spray pyrolysis in air
CN105679680A (zh) 一种高k氧化镱介电薄膜的制备方法及其在薄膜晶体管中的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150923