CN104933859A - 一种基于宏观基本图的确定网络承载力的方法 - Google Patents

一种基于宏观基本图的确定网络承载力的方法 Download PDF

Info

Publication number
CN104933859A
CN104933859A CN201510257873.5A CN201510257873A CN104933859A CN 104933859 A CN104933859 A CN 104933859A CN 201510257873 A CN201510257873 A CN 201510257873A CN 104933859 A CN104933859 A CN 104933859A
Authority
CN
China
Prior art keywords
road network
network
road
parent map
scatter diagram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510257873.5A
Other languages
English (en)
Other versions
CN104933859B (zh
Inventor
马莹莹
王宇俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201510257873.5A priority Critical patent/CN104933859B/zh
Publication of CN104933859A publication Critical patent/CN104933859A/zh
Application granted granted Critical
Publication of CN104933859B publication Critical patent/CN104933859B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种基于宏观基本图的确定网络承载力的方法,包括以下步骤:1)选定路网研究范围,获取路网几何信息、节点放行策略和路网交通组织;2)绘制研究区域的宏观基本图MFD,基于现实环境设置检测器,获取交通数据进行绘制,完成散点图绘制后,判断宏观基本图MFD是否满足要求,满足则直接过渡至步骤3),若不完整,采用微观仿真进行补充绘制,绘制完整后再进入步骤3);3)对散点图进行划分为3个区间,采用最小二乘法绘制个区间段拟合线段,将3个线段延长,和横坐标轴形成梯形,绘制完成最终的宏观基本图;4)根据步骤3)绘制的宏观基本图确定区域路网的网络承载力。本发明克服了以往严重依赖大量数据的计算方法,交通状态估算准确性较低等缺点。

Description

一种基于宏观基本图的确定网络承载力的方法
技术领域
本发明涉及城市道路交通网络规划与管理的技术领域,尤其是指一种基于宏观基本图的确定网络承载力的方法。
背景技术
随着城市化进程的不断推进和加速,机动车保有量的持续增长,城市道路不断新建和完善,交通管理和规划的合理性显得日趋重要。网络承载力表示满足一定交通服务水平和效率的条件下,区域路网所能支持的最大标准机动车出行量。目前路网承载力的计算方法,从微观上主要结合图论采用各种线型规划模型,可参考杨晓萍等发表的《基于网络最大流的城市道路交通网络容量计算》等内容,这类方法算法和计算过程显得复杂繁琐,计算实际路网时复杂的路网拓扑结构给计算带来更多的干扰。从宏观上主要考虑机动车时空占有的时空消耗法,可参考郝燕学者《城市道路网容量分析和估算方法研究》等内容,该方法缺少从***整体方面的分析与认识,并依赖过多的数据监测。
经发明人多年的研究发现,任何道路网络都有对应的宏观基本图(Macroscopic Fundamental Diagram,MFD),可以反应路网交通的基本属性,是独立于交通需求存在的。对区域在道路网络的交通量达到一定程度后,将会保持一段时间的高效稳定运行,之后出现拐点,整个路网的运行效率开始降低,在拐点处,较小的干扰就可能导致局部乃至大片区域的拥堵。
通过绘制特定区域的宏观基本图,可以得到网络的MFD基本参数之间的关系,更为科学地了解网络交通流变化的规律。发明人通过研究表明路网内交通流量在一定范围内时,区域中的输出车辆数保持不变,所展现的MFD图形呈现类梯形,通过对图形的分析,可推断图形的后拐点处可作为网络承载力的取值,确定区域的道路交通网络承载力后,通过在路网区域边界设置相应的交通控制手段,将路网内车辆数维持在其合理可行范围内,可提高路网整体的运行效率,避免局部拥堵和大面积瘫痪。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供一种基于宏观基本图的确定网络承载力的方法,突破常规的计算路网承载力的方式。
为实现上述目的,本发明所提供的技术方案为:一种基于宏观基本图的确定网络承载力的方法,包括以下步骤:
1)选定路网研究范围,对基础资料进行针对性获取,总共包括三方面的资料,分别为路网几何信息、节点放行策略和路网交通组织;
2)绘制研究区域的宏观基本图MFD,首先,基于现实环境设置检测器,获取交通数据进行绘制,完成散点图绘制后,判断宏观基本图MFD是否满足要求,满足则直接过渡至步骤3),若不完整,采用微观仿真进行补充绘制,绘制完整后再进入步骤3);
3)对散点图进行划分为3个区间,采用最小二乘法绘制个区间段拟合线段,将3个线段延长,和横坐标轴形成梯形,绘制完成最终的宏观基本图;
4)根据步骤3)绘制的宏观基本图确定区域路网的网络承载力。
在步骤(1)中,所述路网几何信息包括道路长度、道路宽度和车道数设置,所述节点放行策略包括无控制节点的让行方式和信号控制节点相位相序,所述路网交通组织包括单行线设置、转向限制,车种限制和专用道设置。
在步骤(2)中,基于现实环境绘制的宏观基本图的散点图,包括以下步骤:
2.1)以网络内预设的时间间隔Δt的车辆总数(Net Volume,N)为横坐标;以网络内预设的时间间隔Δt驶离路网的车辆总数为纵坐标,记为G;
2.2)根据区域内路网流量观察,从车流低峰期开始采集数据,获取区域内主要通道车辆数即可满足绘制宏观基本图的条件,采用路段视频检测器拍照功能,在t0时刻对区域内所有主要通道全程拍照,统计出t0时刻路网区域内的运行车辆数为N0
2.3)确定选定区域路网边界的所有进口和出口,并在各进出口设置流量检测器,总结所有的进口建立进口编号集合R-Entrance{R1,R2···Rm···},所有出口建立出口编号集合S-Exit{S1,S2···Sn···},Rm表示第m个进口,Sn表示第n个出口;
2.4)流量监测和统计,确定固定时间间隔Δt,总结所有时间节点建立时间节点集合T-interval{t0,t1,t2···tj···},其中tj=tj-1+Δt;与各个时间节点相对应的进出口的流量变化值对应集合如下:
Rj-Entrance{R1j,R2j···Rmj···}
Sj-Exit{S1j,S2j···Snj···}
其中,Rmj表示第m个进口在tj-1至tj时间段内统计的车辆数,Snj表示第n个出口在tj-1至tj时间段内统计的车辆数;
2.5)数据处理阶段,获取有效的宏观基本图样本值,记录为Oj(Nj,Gj),其中Nj表示j时间点路网内的车辆数,Gj表示j时间点,如下:
N j = N j - 1 + ( Σ m = 1 R mj - Σ n = 1 S nj )
G j = Σ n = 1 S nj
其中,初始值N0已在上面步骤2.2)中获取,根据上述关系,得j组有效的样本值;
2.6)根据处理后的样本数据,绘制散点图;
在步骤(2)中,基于微观仿真绘制的宏观基本图,包括以下步骤:
2.1)路网搭建前期准备,获取路网交通数据特征,对选取的区域进行调查分析,对仿真的参数进行校正,设置交通构成比例;
2.2)根据实际道路长度和宽度,设置不同道路的属性;搭建路网和节点,根据实际节点的转向设置,设置转向车道、交叉口进口排队区域;
2.3)根据实际交叉口放行方式,无控交叉口设置让行规则,信控交叉口设置相应的相位相序或者自适应的控制方案;
2.4)路网所有出入口设置流量检测器,并设置相应的检测间隔,确保输出数据的完整和有序;
2.5)仿真环境可直接从路网交通量为0开始仿真,并输出预设时间间隔Δt的交通数据检测量,得到足够数量的Oj(Nj,Gj);
2.6)根据处理后的样本数据,利用MATLAB绘制散点图。
在步骤(3)中,对散点图进行拟合的方法,包括以下步骤:
3.1)将散点图划分为三个区间,分别是上升趋势区间、平稳区间和下降趋势区间;
3.2)分别针对三处区间进行最小二乘法的拟合,拟合出三条线段;
3.3)将拟合好的三条线段进行延长,结合横坐标轴形成一个梯形,完成宏观基本图MFD的绘制。
在步骤4)中,根据绘制完成的宏观基本图MFD,确定该区域网络承载力,横坐标为路网处理的车辆数n,纵坐标为路网驶离的车辆数g,当路网中运行的车辆数之间时,网络的输出流量稳定在预定值γ,其中,下限值为所确定的该区域的网络承载力。
本发明与现有技术相比,具有如下优点与有益效果:
本发明充分利用了宏观基本图的性质,从路网基本属性方面确定路网承载力的取值,根据取值可以判断路网可以正常处理的最大车辆数目,可以为交通控制和交通管理提供依据,本发明提供了详细的绘制宏观基本图的步骤和方法,可操作性强。
附图说明
图1为本发明宏观基本图的示意图。
图2为本发明流程总图。
图3为本发明基于现实环境绘制MFD散点图的流程图。
图4为本发明采用微观仿真绘制MFD散点图的流程图。
图5为本发明实施例区域路网和出入口示意图。
图6为基于现实环境绘制而成的MFD散点图。
图7为基于现实环境和仿真环境绘制成的MFD路网承载力判断图。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
本实施例所述的基于宏观基本图的确定网络承载力的方法,基本思路是通过结合现场环境和仿真环境,对选定的路网绘制宏观基本图,并根据宏观基本图确定区域路网承载力。如图1至图4所示,其情况如下:
1)选定路网研究范围,对基础资料进行针对性获取,总共包括三方面的资料,分别为路网几何信息、节点放行策略和路网交通组织;
2)绘制研究区域的宏观基本图MFD,首先,基于现实环境设置检测器,获取交通数据进行绘制,完成散点图绘制后,判断宏观基本图MFD是否满足要求,满足则直接过渡至步骤3),若不完整,采用微观仿真进行补充绘制,绘制完整后再进入步骤3);
3)对散点图进行划分为3个区间,采用最小二乘法绘制个区间段拟合线段,将3个线段延长,和横坐标轴形成梯形,绘制完成最终的宏观基本图;
4)根据步骤3)绘制的宏观基本图确定区域路网的网络承载力。
在步骤(1)中,所述路网几何信息包括道路长度、道路宽度和车道数设置,所述节点放行策略包括无控制节点的让行方式和信号控制节点相位相序,所述路网交通组织包括单行线设置、转向限制,车种限制和专用道设置。
在步骤(2)中,基于现实环境绘制的宏观基本图的散点图,包括以下步骤:
2.1)以网络内预设的时间间隔Δt的车辆总数(Net Volume,N)为横坐标;以网络内预设的时间间隔Δt驶离路网的车辆总数为纵坐标,记为G;
2.2)根据区域内路网流量观察,从车流低峰期开始采集数据,获取区域内主要通道车辆数即可满足绘制宏观基本图的条件,采用路段视频检测器拍照功能,在t0时刻对区域内所有主要通道全程拍照,统计出t0时刻路网区域内的运行车辆数为N0
2.3)确定选定区域路网边界的所有进口和出口,并在各进出口设置流量检测器,总结所有的进口建立进口编号集合R-Entrance{R1,R2···Rm···},所有出口建立出口编号集合S-Exit{S1,S2···Sn···},Rm表示第m个进口,Sn表示第n个出口;
2.4)流量监测和统计,确定固定时间间隔Δt,总结所有时间节点建立时间节点集合T-interval{t0,t1,t2···tj···},其中tj=tj-1+Δt;与各个时间节点相对应的进出口的流量变化值对应集合如下:
Rj-Entrance{R1j,R2j···Rmj···}
Sj-Exit{S1j,S2j···Snj···}
其中,Rmj表示第m个进口在tj-1至tj时间段内统计的车辆数,Snj表示第n个出口在tj-1至tj时间段内统计的车辆数;
2.5)数据处理阶段,获取有效的宏观基本图样本值,记录为Oj(Nj,Gj),其中Nj表示j时间点路网内的车辆数,Gj表示j时间点,如下:
N j = N j - 1 + ( Σ m = 1 R mj - Σ n = 1 S nj )
G j = Σ n = 1 S nj
其中,初始值N0已在上面步骤2.2)中获取,根据上述关系,得j组有效的样本值;
2.6)根据处理后的样本数据,绘制散点图;
在步骤(2)中,基于微观仿真绘制的宏观基本图,包括以下步骤:
2.1)路网搭建前期准备,获取路网交通数据特征,对选取的区域进行调查分析,对仿真的参数进行校正,设置交通构成比例;
2.2)根据实际道路长度和宽度,设置不同道路的属性;搭建路网和节点,根据实际节点的转向设置,设置转向车道、交叉口进口排队区域;
2.3)根据实际交叉口放行方式,无控交叉口设置让行规则,信控交叉口设置相应的相位相序或者自适应的控制方案;
2.4)路网所有出入口设置流量检测器,并设置相应的检测间隔,确保输出数据的完整和有序;
2.5)仿真环境可直接从路网交通量为0开始仿真,并输出预设时间间隔Δt的交通数据检测量,得到足够数量的Oj(Nj,Gj);
2.6)根据处理后的样本数据,利用MATLAB绘制散点图。
在步骤(3)中,对散点图进行拟合的方法,包括以下步骤:
3.1)将散点图划分为三个区间,分别是上升趋势区间、平稳区间和下降趋势区间;
3.2)分别针对三处区间进行最小二乘法的拟合,拟合出三条线段;
3.3)将拟合好的三条线段进行延长,结合横坐标轴形成一个梯形,完成宏观基本图MFD的绘制。
在步骤4)中,根据绘制完成的宏观基本图MFD,确定该区域网络承载力,横坐标为路网处理的车辆数n,纵坐标为路网驶离的车辆数g,当路网中运行的车辆数之间时,网络的输出流量稳定在γ,其中,下限值为所确定的该区域的网络承载力。
下面结合附图5至附图7对本发明方法进行具体说明:
1)选取某区域路网,获取基础数据,包括区域路网几何信息(各等级道路的长度,道路宽度,车道数);节点放行策略(信号控制的相位相序);区域交通组织形式(单行道设置、转向限制,车种限制和专用道设置)。如图5所示,该网络东西向长度3000余米,南北向长度2000余米,共有十字交叉口16个,丁字交叉口2个,五路交叉口2个。路段为单向两车道,交叉口拓宽为3车道。十字交叉口为四相位控制,丁字交叉口为三相位控制,五路交叉口为五相位控制。并在各路段设置出入口,车辆通过出入口进入网络或到达终点。
2)绘制宏观基本图散点图
2.1)本发明绘制的宏观基本图以网络内一定时间间隔Δt的车辆总数(NetVolume,N)为横坐标;以网络内一定时间间隔Δt驶离路网的车辆总数为纵坐标,记为G。
2.2)根据区域内路网流量观察,从车流低峰期(选取凌晨时间)开始采集数据,研究表明,获取区域内主要通道车辆数即可满足绘制宏观基本图的条件,采用路段视频检测器拍照功能,在t0时刻对区域内所有主要通道全程拍照,统计出t0时刻路网区域内的运行车辆数为N0等于365辆。
2.3)确定选定区域路网边界的所有进口和出口,并在各进出口设置流量检测器,本例总共设置18个进出口,编号如图5所示,总结所有的进口建立进口编号集合R-Entrance{R1,R2···Rm···R18},所有出口建立出口编号集合S-Exit{S1,S2···Sn···S18}。Rm表示第m个进口,Sn表示第n个出口。
2.4)流量监测和统计,确定固定时间间隔Δt,本例Δt取值为15分钟,可根据具体情况进行调整。建立时间节点集合T-interval{t0,t1,t2···tj···},其中tj=tj-1+Δt。与各个时间节点相对应的进出口的流量值对应集合如下:
Rj-Entrance{R1j,R2j···Rmj···}
Sj-Exit{S1j,S2j···Snj···}
其中,Rmj表示第m个进口在tj-1至tj时间段内统计的车辆数。Snj表示第n个出口在tj-1至tj时间段内统计的车辆数。为保证样本数目,建议从t0时刻开始,后续持续采集数据7个工作日。
2.5)数据处理阶段,获取有效的宏观基本图样本值,记录为Oj(Nj,Gj)。其中Nj表示j时间点路网内的车辆数,Gj表示j时间点驶离网络车辆数。
N j = N j - 1 + ( Σ m = 1 R mj - Σ n = 1 S nj )
G j = Σ n = 1 S nj
其中,初始值N0已在2.2)中获取,根据上述关系,可得j组有效的样本值。
2.6)根据处理后的样本数据,绘制散点图,如图6所示,对散点图进行观察发现,散点图不存在完整的上升和下降的趋势,需要执行下面步骤2.7)进行仿真补充绘制;若绘制的散点图有完整的上升和下降趋于,可直接执行步骤3)。
2.7)基于现实环境绘制完成的MFD一般不完整,交通需求受到现状交通量的限制,不能完全反应在MFD图形上。解决方法是构建路网仿真环境,采用微观仿真可以解决上述问题,并具备以下优势:第一,通过仿真绘制的宏观基本图比较完整;第二,对于实际路网中未曾达到交通需求,如低需求状态,拥堵状态甚至堵塞状态,可以通过微观仿真获取相应的数据;第三,仿真的输出数据获取较为简单且准确,提高MFD的绘制效率。具体操作步骤如下:
2.7.1)路网搭建前期准备,获取路网交通数据特征。对选取的区域进行调查分析,对仿真的参数进行校正,设置交通构成比例等。
2.7.2)根据实际道路长度和宽度,设置不同道路的属性;搭建路网和节点,根据实际节点的转向设置,设置转向车道、交叉口进口排队区域等。
2.7.3)根据实际交叉口放行方式,无控交叉口设置让行规则,信控交叉口设置相应的相位相序或者自适应的控制方案。
2.7.4)路网所有出入口设置流量检测器,并设置相应的检测间隔,确保输出数据的完整和有序。
2.7.5)仿真环境可直接从路网交通量为0开始仿真,并输出一定时间间隔Δt的交通数据检测量,得到足够数量的Oj(Nj,Gj),返回步骤2.6)。
3)根据绘制的散点图,如图7所示,拟合数据的趋势线,具体操作步骤如下:
3.1)将散点图划分为三个区间,分别是上升趋势区间、平稳区间和下降趋势区间。
3.2)分别针对三处区间进行最小二乘法的拟合,拟合出三条线段。
3.3)将拟合好的三条线段进行适当延长,结合横坐标轴形成一个梯形,完成MFD的绘制,如图7所示。
4)根据绘制完成的宏观基本图(MFD),确定该区域网络承载力。如图1所示,横坐标为路网处理的车辆数n,纵坐标为路网驶离的车辆数g。当路网中运行的车辆数之间时,网络的输出流量稳定在预定值γ,其中下限值为本发明所确定的该区域的网络承载力。对应到本例图7所对应的区域,可判断该区域路网承载力
综上所述,本发明运用宏观基本图确定路网的承载力,克服以往严重依赖大量数据的计算方法,交通状态估算准确性较低等缺点,从路网的基本属性出发,更加快速和准确地得到网络承载力。从技术手段上具有较高的可行性,值得推广。
以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (5)

1.一种基于宏观基本图的确定网络承载力的方法,其特征在于,包括以下步骤:
1)选定路网研究范围,对基础资料进行针对性获取,总共包括三方面的资料,分别为路网几何信息、节点放行策略和路网交通组织;
2)绘制研究区域的宏观基本图MFD,首先,基于现实环境设置检测器,获取交通数据进行绘制,完成散点图绘制后,判断宏观基本图MFD是否满足要求,满足则直接过渡至步骤3),若不完整,采用微观仿真进行补充绘制,绘制完整后再进入步骤3);
3)对散点图进行划分为3个区间,采用最小二乘法绘制个区间段拟合线段,将3个线段延长,和横坐标轴形成梯形,绘制完成最终的宏观基本图;
4)根据步骤3)绘制的宏观基本图确定区域路网的网络承载力。
2.根据权利要求1所述的一种基于宏观基本图的确定网络承载力的方法,其特征在于:在步骤(1)中,所述路网几何信息包括道路长度、道路宽度和车道数设置,所述节点放行策略包括无控制节点的让行方式和信号控制节点相位相序,所述路网交通组织包括单行线设置、转向限制,车种限制和专用道设置。
3.根据权利要求1所述的一种基于宏观基本图的确定网络承载力的方法,其特征在于:在步骤(2)中,基于现实环境绘制的宏观基本图的散点图,包括以下步骤:
2.1)以网络内预设的时间间隔Δt的车辆总数(Net Volume,N)为横坐标;以网络内预设的时间间隔Δt驶离路网的车辆总数为纵坐标,记为G;
2.2)根据区域内路网流量观察,从车流低峰期开始采集数据,获取区域内主要通道车辆数即可满足绘制宏观基本图的条件,采用路段视频检测器拍照功能,在t0时刻对区域内所有主要通道全程拍照,统计出t0时刻路网区域内的运行车辆数为N0
2.3)确定选定区域路网边界的所有进口和出口,并在各进出口设置流量检测器,总结所有的进口建立进口编号集合R-Entrance{R1,R2···Rm···},所有出口建立出口编号集合S-Exit{S1,S2···Sn···},Rm表示第m个进口,Sn表示第n个出口;
2.4)流量监测和统计,确定固定时间间隔Δt,总结所有时间节点建立时间节点集合T-interval{t0,t1,t2···tj···},其中tj=tj-1+Δt;与各个时间节点相对应的进出口的流量变化值对应集合如下:
Rj-Entrance{R1j,R2j···Rmj···}
Sj-Exit{S1j,S2j···Snj···}
其中,Rmj表示第m个进口在tj-1至tj时间段内统计的车辆数,Snj表示第n个出口在tj-1至tj时间段内统计的车辆数;
2.5)数据处理阶段,获取有效的宏观基本图样本值,记录为Oj(Nj,Gj),其中Nj表示j时间点路网内的车辆数,Gj表示j时间点,如下:
N j = N j - 1 + ( Σ m = 1 R mj - Σ n = 1 S nj )
G j = Σ n = 1 S nj
其中,初始值N0已在上面步骤2.2)中获取,根据上述关系,得j组有效的样本值;
2.6)根据处理后的样本数据,绘制散点图;
在步骤(2)中,基于微观仿真绘制的宏观基本图,包括以下步骤:
2.1)路网搭建前期准备,获取路网交通数据特征,对选取的区域进行调查分析,对仿真的参数进行校正,设置交通构成比例;
2.2)根据实际道路长度和宽度,设置不同道路的属性;搭建路网和节点,根据实际节点的转向设置,设置转向车道、交叉口进口排队区域;
2.3)根据实际交叉口放行方式,无控交叉口设置让行规则,信控交叉口设置相应的相位相序或者自适应的控制方案;
2.4)路网所有出入口设置流量检测器,并设置相应的检测间隔,确保输出数据的完整和有序;
2.5)仿真环境可直接从路网交通量为0开始仿真,并输出预设时间间隔Δt的交通数据检测量,得到足够数量的Oj(Nj,Gj);
2.6)根据处理后的样本数据,利用MATLAB绘制散点图。
4.根据权利要求1所述的一种基于宏观基本图的确定网络承载力的方法,其特征在于:在步骤(3)中,对散点图进行拟合的方法,包括以下步骤:
3.1)将散点图划分为三个区间,分别是上升趋势区间、平稳区间和下降趋势区间;
3.2)分别针对三处区间进行最小二乘法的拟合,拟合出三条线段;
3.3)将拟合好的三条线段进行延长,结合横坐标轴形成一个梯形,完成宏观基本图MFD的绘制。
5.根据权利要求1所述的一种基于宏观基本图的确定网络承载力的方法,其特征在于:在步骤4)中,根据绘制完成的宏观基本图MFD,确定该区域网络承载力,横坐标为路网处理的车辆数n,纵坐标为路网驶离的车辆数g,当路网中运行的车辆数之间时,网络的输出流量稳定在预定值γ,其中,下限值为所确定的该区域的网络承载力。
CN201510257873.5A 2015-05-18 2015-05-18 一种基于宏观基本图的确定网络承载力的方法 Active CN104933859B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510257873.5A CN104933859B (zh) 2015-05-18 2015-05-18 一种基于宏观基本图的确定网络承载力的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510257873.5A CN104933859B (zh) 2015-05-18 2015-05-18 一种基于宏观基本图的确定网络承载力的方法

Publications (2)

Publication Number Publication Date
CN104933859A true CN104933859A (zh) 2015-09-23
CN104933859B CN104933859B (zh) 2017-10-20

Family

ID=54121007

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510257873.5A Active CN104933859B (zh) 2015-05-18 2015-05-18 一种基于宏观基本图的确定网络承载力的方法

Country Status (1)

Country Link
CN (1) CN104933859B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105741555A (zh) * 2016-04-28 2016-07-06 华南理工大学 一种基于宏观基本图确定车型折算系数的方法
CN106128133A (zh) * 2016-07-18 2016-11-16 合肥工业大学 一种基于交通效率和网络能耗的区域交通控制方法
CN106408943A (zh) * 2016-11-17 2017-02-15 华南理工大学 一种基于宏观基本图的路网交通拥堵甄别方法
CN106504536A (zh) * 2016-12-09 2017-03-15 华南理工大学 一种交通小区协调优化方法
CN106971565A (zh) * 2017-04-22 2017-07-21 高新兴科技集团股份有限公司 一种基于物联网的区域交通边界控制与诱导协同方法及***
CN109785625A (zh) * 2019-02-18 2019-05-21 北京航空航天大学 一种城市路网运行状态的“红绿”区域识别和评价方法
CN110851769A (zh) * 2019-11-25 2020-02-28 东南大学 一种基于网络承载力的电动公交网络可靠性评价方法
CN110930708A (zh) * 2019-12-06 2020-03-27 北京工业大学 一种城市交通承载力计算与预测方法
CN111127880A (zh) * 2019-12-16 2020-05-08 西南交通大学 一种基于mfd的网格路网交通性能分析方法
CN111882886A (zh) * 2020-04-21 2020-11-03 东南大学 一种基于mfd的交通门限控制子区承载力估计方法
CN113129582A (zh) * 2019-12-31 2021-07-16 阿里巴巴集团控股有限公司 一种交通状态预测方法及装置
CN113593220A (zh) * 2021-07-02 2021-11-02 南京泛析交通科技有限公司 一种基于宏观基本图的路网承载力估计方法
CN115331426A (zh) * 2022-06-30 2022-11-11 同济大学 一种城市片区道路网交通承载力计算方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10108611A1 (de) * 2001-02-22 2002-09-05 Daimler Chrysler Ag Verfahren zur Simulation und Prognose der Bewegung von Einzelfahrzeugen auf einem Verkehrswegenetz
CN101364344A (zh) * 2008-06-27 2009-02-11 北京工业大学 基于压力测试的路网极限容量确定方法
JP2010140371A (ja) * 2008-12-15 2010-06-24 Nippon Telegr & Teleph Corp <Ntt> 映像監視システム、映像監視方法および映像監視プログラム
WO2010119774A1 (ja) * 2009-04-17 2010-10-21 株式会社エヌ・ティ・ティ・ドコモ 位置情報分析装置および位置情報分析方法
CN102542795A (zh) * 2012-02-14 2012-07-04 清华大学 一种路网承载能力的计算方法
CN102819955A (zh) * 2012-09-06 2012-12-12 北京交通发展研究中心 基于车辆行程数据的道路网运行评价方法
CN103413428A (zh) * 2013-06-27 2013-11-27 北京交通大学 基于传感器网络的道路交通信息可信度空间特性表示方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10108611A1 (de) * 2001-02-22 2002-09-05 Daimler Chrysler Ag Verfahren zur Simulation und Prognose der Bewegung von Einzelfahrzeugen auf einem Verkehrswegenetz
CN101364344A (zh) * 2008-06-27 2009-02-11 北京工业大学 基于压力测试的路网极限容量确定方法
JP2010140371A (ja) * 2008-12-15 2010-06-24 Nippon Telegr & Teleph Corp <Ntt> 映像監視システム、映像監視方法および映像監視プログラム
WO2010119774A1 (ja) * 2009-04-17 2010-10-21 株式会社エヌ・ティ・ティ・ドコモ 位置情報分析装置および位置情報分析方法
CN102542795A (zh) * 2012-02-14 2012-07-04 清华大学 一种路网承载能力的计算方法
CN102819955A (zh) * 2012-09-06 2012-12-12 北京交通发展研究中心 基于车辆行程数据的道路网运行评价方法
CN103413428A (zh) * 2013-06-27 2013-11-27 北京交通大学 基于传感器网络的道路交通信息可信度空间特性表示方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105741555B (zh) * 2016-04-28 2017-12-01 华南理工大学 一种基于宏观基本图确定车型折算系数的方法
CN105741555A (zh) * 2016-04-28 2016-07-06 华南理工大学 一种基于宏观基本图确定车型折算系数的方法
CN106128133A (zh) * 2016-07-18 2016-11-16 合肥工业大学 一种基于交通效率和网络能耗的区域交通控制方法
CN106408943A (zh) * 2016-11-17 2017-02-15 华南理工大学 一种基于宏观基本图的路网交通拥堵甄别方法
CN106504536A (zh) * 2016-12-09 2017-03-15 华南理工大学 一种交通小区协调优化方法
CN106504536B (zh) * 2016-12-09 2019-01-18 华南理工大学 一种交通小区协调优化方法
CN106971565A (zh) * 2017-04-22 2017-07-21 高新兴科技集团股份有限公司 一种基于物联网的区域交通边界控制与诱导协同方法及***
CN106971565B (zh) * 2017-04-22 2019-08-23 高新兴科技集团股份有限公司 基于物联网的区域交通边界控制与诱导协同方法及***
CN109785625A (zh) * 2019-02-18 2019-05-21 北京航空航天大学 一种城市路网运行状态的“红绿”区域识别和评价方法
CN109785625B (zh) * 2019-02-18 2020-09-08 北京航空航天大学 一种城市路网运行状态的“红绿”区域识别和评价方法
CN110851769B (zh) * 2019-11-25 2020-07-24 东南大学 一种基于网络承载力的电动公交网络可靠性评价方法
CN110851769A (zh) * 2019-11-25 2020-02-28 东南大学 一种基于网络承载力的电动公交网络可靠性评价方法
CN110930708A (zh) * 2019-12-06 2020-03-27 北京工业大学 一种城市交通承载力计算与预测方法
CN111127880A (zh) * 2019-12-16 2020-05-08 西南交通大学 一种基于mfd的网格路网交通性能分析方法
CN113129582A (zh) * 2019-12-31 2021-07-16 阿里巴巴集团控股有限公司 一种交通状态预测方法及装置
CN111882886A (zh) * 2020-04-21 2020-11-03 东南大学 一种基于mfd的交通门限控制子区承载力估计方法
CN113593220A (zh) * 2021-07-02 2021-11-02 南京泛析交通科技有限公司 一种基于宏观基本图的路网承载力估计方法
CN113593220B (zh) * 2021-07-02 2022-07-29 南京泛析交通科技有限公司 一种基于宏观基本图的路网承载力估计方法
CN115331426A (zh) * 2022-06-30 2022-11-11 同济大学 一种城市片区道路网交通承载力计算方法
CN115331426B (zh) * 2022-06-30 2023-12-01 同济大学 一种城市片区道路网交通承载力计算方法

Also Published As

Publication number Publication date
CN104933859B (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
CN104933859A (zh) 一种基于宏观基本图的确定网络承载力的方法
CN104899360A (zh) 一种绘制宏观基本图的方法
WO2019047905A1 (zh) 一种交通路况分析***、方法以及装置
Li et al. Link travel time estimation using single GPS equipped probe vehicle
CN102436751B (zh) 基于城市宏观路网模型的交通流短时预测方法
CN102819955B (zh) 基于车辆行程数据的道路网运行评价方法
CN103996289B (zh) 一种流量-速度匹配模型及行程时间预测方法及***
CN101639871B (zh) 面向行为研究的车载动态交通信息诱导***模拟设计方法
CN105513359A (zh) 一种基于智能手机移动检测的城市快速路交通状态估计方法
CN104575050B (zh) 一种基于浮动车的快速路匝道智能诱导方法及装置
CN105070056A (zh) 一种基于浮动车的交叉***通拥堵指数计算方法
CN104637317A (zh) 一种基于实时车辆轨迹的交叉口感应信号控制方法
CN107368931A (zh) 基于大数据分析技术的物流配送路径动态规划方法及***
CN111931317B (zh) 基于车载gps数据的区域拥堵路网边界控制方法
CN101123038A (zh) 一种路口关联路段动态路况采集方法
CN104298540A (zh) 一种微观交通仿真软件的底层模型参数校正方法
Grumert et al. Using connected vehicles in a variable speed limit system
CN102890862A (zh) 基于向量模式的交通状态分析装置及方法
CN111815953B (zh) 一种面向交通事件的高速公路交通管控效果评价方法
CN106355882A (zh) 一种基于路中检测器的交通状态估计方法
CN110827537B (zh) 一种潮汐车道的设置方法、装置及设备
Anusha et al. Dynamical systems approach for queue and delay estimation at signalized intersections under mixed traffic conditions
Sabawat et al. Control strategy for rural variable speed limit corridor
CN111767644A (zh) 考虑单隧道限速影响高速公路路段实际通行能力估计方法
CN105303833B (zh) 基于微波车辆检测器的高架桥突发事件判别方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant