CN104928630A - Method for preparing FeSeTe film by pulse laser deposition coating technology - Google Patents
Method for preparing FeSeTe film by pulse laser deposition coating technology Download PDFInfo
- Publication number
- CN104928630A CN104928630A CN201510262382.XA CN201510262382A CN104928630A CN 104928630 A CN104928630 A CN 104928630A CN 201510262382 A CN201510262382 A CN 201510262382A CN 104928630 A CN104928630 A CN 104928630A
- Authority
- CN
- China
- Prior art keywords
- target
- film
- substrate
- laser deposition
- deposition coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 19
- 239000011248 coating agent Substances 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims abstract description 16
- 230000008021 deposition Effects 0.000 title claims abstract description 11
- 238000005516 engineering process Methods 0.000 title claims abstract description 11
- 229910002587 FeSeTe Inorganic materials 0.000 title claims description 4
- 229910052714 tellurium Inorganic materials 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 239000010409 thin film Substances 0.000 claims abstract description 17
- 239000000843 powder Substances 0.000 claims abstract description 16
- WALCGGIJOOWJIN-UHFFFAOYSA-N iron(ii) selenide Chemical compound [Se]=[Fe] WALCGGIJOOWJIN-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000010408 film Substances 0.000 claims abstract description 14
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000000151 deposition Methods 0.000 claims abstract description 10
- 238000004549 pulsed laser deposition Methods 0.000 claims abstract description 10
- 239000010453 quartz Substances 0.000 claims abstract description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000010791 quenching Methods 0.000 claims abstract description 6
- 230000000171 quenching effect Effects 0.000 claims abstract description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000005245 sintering Methods 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- 239000002887 superconductor Substances 0.000 abstract description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052742 iron Inorganic materials 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 4
- 238000001816 cooling Methods 0.000 abstract 1
- 238000012423 maintenance Methods 0.000 abstract 1
- 239000013077 target material Substances 0.000 abstract 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 229910002367 SrTiO Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical class [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明属于新型铁基超导体领域,具体涉及一种利用脉冲激光沉积镀膜技术制备铁硒碲薄膜的方法。首先将Fe、Se、Te粉末按一定的摩尔比混合研磨均匀;其次将研磨后的粉末在真空石英管中700℃烧结24小时,400℃时进行淬火处理,再次研磨成粉,压制成所需靶材的大小后在真空石英管中700℃烧结24小时,400℃时进行淬火处理;调整激光器参数,对得到的靶材进行预处理后,在衬底上进行一定时间的薄膜生长;在真空中自然降温后得到所需薄膜。本发明利用脉冲激光沉积镀膜技术进行铁硒碲超导薄膜的生长,具有使用方便、镀膜速度快、可制备不同成分薄膜、更容易保持靶材与衬底成分一致等优点。
The invention belongs to the field of novel iron-based superconductors, and in particular relates to a method for preparing iron-selenium-tellurium thin films by using pulsed laser deposition coating technology. First, Fe, Se, and Te powders are mixed and ground evenly in a certain molar ratio; secondly, the ground powder is sintered in a vacuum quartz tube at 700°C for 24 hours, quenched at 400°C, ground again into powder, and pressed into the required After the size of the target is sintered in a vacuum quartz tube at 700°C for 24 hours, quenching is carried out at 400°C; the laser parameters are adjusted, and the obtained target is pretreated, and the film is grown on the substrate for a certain period of time; The desired film was obtained after natural cooling in medium temperature. The invention utilizes the pulse laser deposition coating technology to grow the iron selenium tellurium superconducting thin film, and has the advantages of convenient use, fast coating speed, the ability to prepare thin films with different components, and easier maintenance of the composition of the target material and the substrate.
Description
技术领域technical field
本发明属于新型铁基超导体领域,具体涉及利用脉冲激光沉积镀膜技术制备新型铁基超导体铁硒碲高温超导薄膜的技术。The invention belongs to the field of novel iron-based superconductors, and in particular relates to the technology of preparing a novel iron-based superconductor iron-selenium-tellurium high-temperature superconducting thin film by using pulsed laser deposition coating technology.
背景技术Background technique
二十世纪初,超导现象由荷兰物理学家H·卡末林·昂内斯在实验室意外发现,随后人们开始研究各种不同种类的超导体,致力于不断提高超导温度,使其能够在人类生活中得以应用。超导体的零电阻特性、完全抗磁性等特性为电力、交通等事业的发展做出了很大贡献。此前,人们对高温超导的研究更多地集中在铜氧化物方面,随着探讨的深入,这类超导体的研究遇到瓶颈,很难再获得突破,人们便开始寻找其他的新型铁基超导体,铁硒碲就是其中一种。这种通过掺杂铁硒获得的高温超导体引起了各国科研工作者的广泛关注。At the beginning of the 20th century, the phenomenon of superconductivity was accidentally discovered by the Dutch physicist H. Camerin Onnes in the laboratory. Then people began to study various types of superconductors, and devoted themselves to continuously increasing the superconducting temperature so that it can be applied in human life. The characteristics of zero resistance and complete diamagnetism of superconductors have made great contributions to the development of electric power, transportation and other industries. Previously, people's research on high-temperature superconductors focused more on copper oxides. With the deepening of the research, the research on this type of superconductor encountered a bottleneck, and it was difficult to make a breakthrough. People began to look for other new iron-based superconductors. , FeSeTe is one of them. This kind of high-temperature superconductor obtained by doping iron selenium has attracted extensive attention of researchers from all over the world.
目前制备铁硒碲薄膜的方法有磁控溅射等方法,但是使用磁控溅射法生长铁硒碲薄膜,由于生长腔的气压比较高,容易引入杂质,对薄膜的生长不利。脉冲激光沉积镀膜技术是通过高能量激光束在靶材表面聚焦,产生等离子体,最终沉积在沉底表面的一种镀膜技术。脉冲激光法镀膜具有很多优点,例如更容易使靶材与衬底成分一致,镀膜速度快,可制备的薄膜种类多样等,是薄膜生长的主要方式之一。At present, there are methods such as magnetron sputtering to prepare iron selenium tellurium thin films. However, the magnetron sputtering method is used to grow iron selenium tellurium thin films. Due to the relatively high pressure in the growth chamber, impurities are easily introduced, which is not good for the growth of the film. Pulse laser deposition coating technology is a coating technology that focuses high-energy laser beams on the surface of the target to generate plasma and finally deposits on the bottom surface. Pulse laser coating has many advantages, for example, it is easier to make the composition of the target and the substrate consistent, the coating speed is fast, and various types of films can be prepared. It is one of the main methods of film growth.
发明内容Contents of the invention
本发明的目的在于提供一种制备铁硒碲高温超导薄膜的方法,该方法使用脉冲激光沉积技术,能优化铁硒碲的晶体结构,以获得优于铁硒碲块材的超导性能。The purpose of the present invention is to provide a method for preparing iron selenium tellurium high temperature superconducting thin film, the method uses pulsed laser deposition technology, can optimize the crystal structure of iron selenium tellurium, so as to obtain superconducting performance better than that of iron selenium tellurium bulk material.
本发明采用的技术方案为:The technical scheme adopted in the present invention is:
一种利用脉冲激光沉积镀膜技术制备铁硒碲薄膜的方法,具体制备步骤如下:A kind of method utilizing pulsed laser deposition coating technology to prepare iron selenium tellurium thin film, concrete preparation steps are as follows:
a)将Fe、Se和Te粉末按一定的摩尔比混合研磨均匀;a) Fe, Se and Te powders are mixed and ground evenly in a certain molar ratio;
b)将研磨后的粉末在真空石英管中700℃烧结24小时后,降温至400℃时进行淬火处理;b) After sintering the ground powder in a vacuum quartz tube at 700°C for 24 hours, quenching is performed when the temperature is lowered to 400°C;
c)将步骤b)烧结后的铁硒碲再次研磨成粉,再压制成所需靶材的大小;c) Grinding the iron selenium tellurium sintered in step b) again into powder, and then pressing it into the required target size;
d)把压制好的在真空石英管中700℃烧结24小时后,降温至400℃时进行淬火处理,得到靶材;d) After sintering the pressed product in a vacuum quartz tube at 700°C for 24 hours, quenching is performed when the temperature is lowered to 400°C to obtain a target;
e)将衬底和制备好的靶材放入生长腔,抽真空至10-8mbar,通过衬底架中的加热丝给衬底加热至所需温度,等待至温度稳定,气压至10-7mbar左右;e) Put the substrate and the prepared target into the growth chamber, evacuate to 10 -8 mbar, heat the substrate to the required temperature through the heating wire in the substrate holder, wait until the temperature is stable, and the air pressure reaches 10 - About 7 mbar;
f)调整激光参数,设置适当的激光能量、激光频率;f) Adjust laser parameters, set appropriate laser energy and laser frequency;
g)对靶材进行预处理,在靶材和衬底之间加入挡板后,使用激光打击靶材两分钟;g) Pretreat the target, add a baffle between the target and the substrate, and hit the target with a laser for two minutes;
h)开始激光沉积镀膜,使靶材不断转动以保持打击均匀,根据所需薄膜厚度控制沉积时间;h) Start the laser deposition coating, make the target rotate continuously to keep the striking uniform, and control the deposition time according to the required film thickness;
i)生长完成后,关闭加热器,使薄膜在真空腔中自然冷却至室温后取出,得到铁硒碲薄膜。本发明方法制备铁硒碲超导薄膜具有以下有益效果:i) After the growth is completed, the heater is turned off, and the film is naturally cooled to room temperature in a vacuum chamber, and then taken out to obtain an FeSeTe film. The preparation of the iron-selenide-tellurium superconducting thin film by the method of the present invention has the following beneficial effects:
(1)利用脉冲激光沉积镀膜技术进行铁硒碲超导薄膜的生长,具有使用方便、镀膜速度快、可制备不同成分薄膜、更容易保持靶材与衬底成分一致等优点;(1) Using pulsed laser deposition and coating technology to grow iron-selenium-tellurium superconducting thin films has the advantages of convenient use, fast coating speed, thin films with different compositions, and easier to keep the composition of the target and the substrate consistent;
(2)该方法可以保证生长腔内保持较低的气压,克服使用磁控溅射镀膜时高气压引起的杂质引入;(2) This method can ensure that the air pressure in the growth chamber is kept low, and overcome the introduction of impurities caused by high air pressure when using magnetron sputtering coating;
(3)本发明方法制备的薄膜性能优良,具有更好的晶体结构,超导特性得到提高。(3) The film prepared by the method of the present invention has excellent properties, better crystal structure, and improved superconducting properties.
附图说明Description of drawings
图1是本发明制备铁硒碲薄膜的脉冲激光沉积薄膜生长***的结构示意图;其中,1-生长腔;2-激光器;3-聚焦透镜;4-入射激光;5-衬底;6-衬底架;7-靶材架;8-靶材。Fig. 1 is the structural representation of the pulsed laser deposition thin film growth system of the present invention preparation iron selenium tellurium thin film; Wherein, 1-growth chamber; 2-laser; 3-focusing lens; 4-incident laser; 5-substrate; 6-lining Bottom frame; 7-target frame; 8-target.
具体实施方式Detailed ways
实施例1Example 1
1、FeSe0.5Te0.5靶材的制备:1. Preparation of FeSe 0.5 Te 0.5 target:
a)将Fe、Se、Te粉末按摩尔比1:0.5:0.5混合研磨均匀;a) Fe, Se, Te powders are mixed and ground evenly in a molar ratio of 1:0.5:0.5;
b)研磨后的粉末在真空石英管中700℃烧结24小时,400℃时进行淬火处理;b) The ground powder is sintered in a vacuum quartz tube at 700°C for 24 hours, and quenched at 400°C;
c)烧结后的铁硒碲再次研磨成粉,再压制成直径为1英寸,厚度为2毫米的靶材;c) The sintered iron selenium tellurium is ground into powder again, and then pressed into a target with a diameter of 1 inch and a thickness of 2 mm;
d)把压制好的FeSe0.5Te0.5在真空石英管中700℃烧结24小时,400℃时进行淬火处理。d) Sinter the pressed FeSe 0.5 Te 0.5 in a vacuum quartz tube at 700°C for 24 hours, and perform quenching at 400°C.
2、脉冲激光沉积在SrTiO3衬底上生长FeSe0.5Te0.5薄膜方法如下:2. The method of pulsed laser deposition to grow FeSe 0.5 Te 0.5 thin film on SrTiO 3 substrate is as follows:
a)将SrTiO3衬底和FeSe0.5Te0.5靶材放入生长腔,抽真空至10-8mbar,通过衬底架中的加热丝给衬底加热至310℃,等待至温度稳定,气压至10-7mbar左右;a) Put the SrTiO 3 substrate and FeSe 0.5 Te 0.5 target into the growth chamber, evacuate to 10 -8 mbar, heat the substrate to 310°C through the heating wire in the substrate holder, wait until the temperature is stable, and the pressure reaches About 10 -7 mbar;
b)调整激光参数,设置激光能量585mJ、激光频率3Hz;b) Adjust laser parameters, set laser energy 585mJ, laser frequency 3Hz;
c)对靶材进行预处理,在靶材和衬底之间加入挡板后,使用激光打击靶材两分钟;c) Pretreat the target, add a baffle between the target and the substrate, and hit the target with a laser for two minutes;
d)开始激光沉积镀膜,使靶材不断转动以保持打击均匀,沉积时间为10分钟;d) Start the laser deposition coating, make the target rotate continuously to keep the strike even, and the deposition time is 10 minutes;
e)生长完成后,关闭加热器,使FeSe0.5Te0.5薄膜在真空腔中自然冷却至室温后取出。e) After the growth is completed, the heater is turned off, and the FeSe 0.5 Te 0.5 film is naturally cooled to room temperature in a vacuum chamber and then taken out.
实施例2Example 2
1、FeSe0.7Te0.3靶材的制备:1. Preparation of FeSe 0.7 Te 0.3 target:
a)将Fe、Se、Te粉末按摩尔比1:0.7:0.3混合研磨均匀;a) Fe, Se, Te powders are mixed and ground evenly in a molar ratio of 1:0.7:0.3;
b)研磨后的粉末在真空石英管中700℃烧结24小时,400℃时进行淬火处理;b) The ground powder is sintered in a vacuum quartz tube at 700°C for 24 hours, and quenched at 400°C;
c)烧结后的铁硒碲再次研磨成粉,再压制成直径为1英寸,厚度为2毫米的靶材;c) The sintered iron selenium tellurium is ground into powder again, and then pressed into a target with a diameter of 1 inch and a thickness of 2 mm;
d)把压制好的材料在真空石英管中700℃烧结24小时,400℃时进行淬火处理。d) The pressed material is sintered in a vacuum quartz tube at 700°C for 24 hours, and quenched at 400°C.
2、脉冲激光沉积在LaAlO3衬底上生长FeSe0.7Te0.3薄膜方法如下:2. The method of pulsed laser deposition to grow FeSe 0.7 Te 0.3 film on LaAlO 3 substrate is as follows:
a)将LaAlO3衬底和FeSe0.7Te0.3靶材放入生长腔,抽真空至10-8mbar,通过衬底架中的加热丝给衬底加热至310℃,等待至温度稳定,气压至10-7mbar左右;a) Put the LaAlO 3 substrate and the FeSe 0.7 Te 0.3 target into the growth chamber, evacuate to 10 -8 mbar, heat the substrate to 310°C through the heating wire in the substrate holder, wait until the temperature is stable, and the pressure reaches About 10 -7 mbar;
b)调整激光参数,设置激光能量585mJ、激光频率3Hz;b) Adjust laser parameters, set laser energy 585mJ, laser frequency 3Hz;
c)对靶材进行预处理,在靶材和衬底之间加入挡板后,使用激光打击靶材两分钟;c) Pretreat the target, add a baffle between the target and the substrate, and hit the target with a laser for two minutes;
d)开始激光沉积镀膜,使靶材不断转动以保持打击均匀,沉积时间为10分钟;d) Start the laser deposition coating, make the target rotate continuously to keep the strike even, and the deposition time is 10 minutes;
e)生长完成后,关闭加热器,使FeSe0.7Te0.3薄膜在真空腔中自然冷却至室温后取出。e) After the growth is completed, the heater is turned off, and the FeSe 0.7 Te 0.3 thin film is naturally cooled to room temperature in a vacuum chamber, and then taken out.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510262382.XA CN104928630A (en) | 2015-05-21 | 2015-05-21 | Method for preparing FeSeTe film by pulse laser deposition coating technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510262382.XA CN104928630A (en) | 2015-05-21 | 2015-05-21 | Method for preparing FeSeTe film by pulse laser deposition coating technology |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104928630A true CN104928630A (en) | 2015-09-23 |
Family
ID=54116050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510262382.XA Pending CN104928630A (en) | 2015-05-21 | 2015-05-21 | Method for preparing FeSeTe film by pulse laser deposition coating technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104928630A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105839056A (en) * | 2016-03-29 | 2016-08-10 | 中国科学院电工研究所 | Preparation method of iron base compound superconducting thin film |
CN107017333A (en) * | 2015-10-01 | 2017-08-04 | 三星电子株式会社 | Thermoelectric structure body, thermo-electric device and its manufacture method |
CN111719121A (en) * | 2019-07-29 | 2020-09-29 | 中国科学院上海微***与信息技术研究所 | A kind of preparation method of CuFeSb thin film |
CN112863761A (en) * | 2021-02-10 | 2021-05-28 | 上海交通大学 | Iron-selenium-tellurium superconducting material and preparation method thereof |
CN112981326A (en) * | 2021-02-10 | 2021-06-18 | 上海交通大学 | Metal-based superconducting tape and preparation method thereof |
CN113969395A (en) * | 2021-09-14 | 2022-01-25 | 上海交大平湖智能光电研究院 | Preparation method of phase change film based on pulse laser deposition |
CN114150375A (en) * | 2021-12-10 | 2022-03-08 | 福建师范大学 | Method for preparing Fe-Sn-Se-Te quaternary film by magnetron co-sputtering |
CN114892276A (en) * | 2022-04-01 | 2022-08-12 | 电子科技大学长三角研究院(湖州) | Spinel sulfide thin film material and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101550530A (en) * | 2009-04-03 | 2009-10-07 | 清华大学 | Prepare iron doped carbon membrane material with white light photoconductive effect by pulse laser deposition method |
CN101867012A (en) * | 2009-04-20 | 2010-10-20 | 中国科学院物理研究所 | Preparation method of epitaxial iron-based superconducting thin film and prepared epitaxial iron-based superconducting thin film |
CN103103480A (en) * | 2011-11-15 | 2013-05-15 | 中国科学院物理研究所 | Film deposition equipment and film deposition method |
CN103510057A (en) * | 2013-10-21 | 2014-01-15 | 研创应用材料(赣州)有限公司 | Method for preparing novel conducting zinc indium tin oxide materials and films |
-
2015
- 2015-05-21 CN CN201510262382.XA patent/CN104928630A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101550530A (en) * | 2009-04-03 | 2009-10-07 | 清华大学 | Prepare iron doped carbon membrane material with white light photoconductive effect by pulse laser deposition method |
CN101867012A (en) * | 2009-04-20 | 2010-10-20 | 中国科学院物理研究所 | Preparation method of epitaxial iron-based superconducting thin film and prepared epitaxial iron-based superconducting thin film |
CN103103480A (en) * | 2011-11-15 | 2013-05-15 | 中国科学院物理研究所 | Film deposition equipment and film deposition method |
CN103510057A (en) * | 2013-10-21 | 2014-01-15 | 研创应用材料(赣州)有限公司 | Method for preparing novel conducting zinc indium tin oxide materials and films |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107017333A (en) * | 2015-10-01 | 2017-08-04 | 三星电子株式会社 | Thermoelectric structure body, thermo-electric device and its manufacture method |
CN105839056A (en) * | 2016-03-29 | 2016-08-10 | 中国科学院电工研究所 | Preparation method of iron base compound superconducting thin film |
CN111719121A (en) * | 2019-07-29 | 2020-09-29 | 中国科学院上海微***与信息技术研究所 | A kind of preparation method of CuFeSb thin film |
CN111719121B (en) * | 2019-07-29 | 2021-10-08 | 中国科学院上海微***与信息技术研究所 | A kind of preparation method of out-of-plane highly oriented CuFeSb thin film |
CN112863761A (en) * | 2021-02-10 | 2021-05-28 | 上海交通大学 | Iron-selenium-tellurium superconducting material and preparation method thereof |
CN112981326A (en) * | 2021-02-10 | 2021-06-18 | 上海交通大学 | Metal-based superconducting tape and preparation method thereof |
CN112863761B (en) * | 2021-02-10 | 2022-04-01 | 上海交通大学 | Iron-selenium-tellurium superconducting material and preparation method thereof |
CN113969395A (en) * | 2021-09-14 | 2022-01-25 | 上海交大平湖智能光电研究院 | Preparation method of phase change film based on pulse laser deposition |
CN113969395B (en) * | 2021-09-14 | 2023-09-08 | 上海交大平湖智能光电研究院 | Preparation method of phase-change film based on pulse laser deposition |
CN114150375A (en) * | 2021-12-10 | 2022-03-08 | 福建师范大学 | Method for preparing Fe-Sn-Se-Te quaternary film by magnetron co-sputtering |
CN114150375B (en) * | 2021-12-10 | 2023-11-17 | 福建师范大学 | Method for preparing Fe-Sn-Se-Te quaternary film by magnetron co-sputtering |
CN114892276A (en) * | 2022-04-01 | 2022-08-12 | 电子科技大学长三角研究院(湖州) | Spinel sulfide thin film material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104928630A (en) | Method for preparing FeSeTe film by pulse laser deposition coating technology | |
CN103060750B (en) | Method for preparing bismuth, antimony and telluride base thermoelectric film | |
TW201001895A (en) | Thermomagnetic generator | |
CN1312301C (en) | Prepn process of high temperature superconductive Ni-W alloy | |
CN110970170B (en) | A kind of preparation method of FeTeSe polycrystalline superconductor | |
CN106399937B (en) | A method of preparing preferred orientation bismuth telluride thermal electric film | |
CN104851967B (en) | A kind of c-axis orientation bismuth copper selenolite base oxide thermal electric film and preparation method thereof | |
CN109053157A (en) | A kind of Ga2O3Base co-doped material target and preparation method thereof | |
CN113481602A (en) | Preparation method of infinite-layer nickelate film with superconducting characteristic | |
CN107445621A (en) | A kind of Cu Te are nanocrystalline/Cu2SnSe3Thermoelectric composite material and preparation method thereof | |
CN103334083B (en) | A kind of preparation method of Mg-doped AlN-based dilute magnetic semiconductor thin film | |
CN104388901B (en) | Cobalt-antimonide-base thermoelectric film and preparation method thereof | |
CN102270737B (en) | ZnO-based diluted magnetic semiconductor film with intrinsic ferromagnetism and preparation method thereof | |
CN107293637B (en) | A kind of preparation method of high-performance GeSbTe-based thermoelectric material | |
CN109082631A (en) | A kind of Ga2O3Base transparent conducting film and preparation method thereof | |
CN101275282B (en) | Preparation for superlattice thermoelectric material | |
CN115161610B (en) | Preparation method of copper antimony selenium solar cell light absorption layer film | |
CN108330304B (en) | Preparation of Te-doped cubic Ca2Ge by rapid solidification method | |
CN108423641A (en) | A kind of preparation method with ultralow thermal conductivity bismuth indium selenium thermoelectric material | |
CN102268638A (en) | In and Nb codoped ZnO-based transparent conductive film and preparation method thereof | |
CN101781753B (en) | Process for preparing Cr-doped β-FeSi2 thin films | |
CN108265188B (en) | A kind of Bi element-doped cubic-phase germanium-calcium thermoelectric material and preparation method thereof | |
CN110790310A (en) | Two-dimensional BaKBiO film easy to regulate and control and preparation method thereof | |
CN105420528A (en) | A method for preparing high-performance AgInTe2 thermoelectric material | |
CN105200382B (en) | A kind of Ge adulterates Mg2Si base thermal electric films and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150923 |