CN104909356A - Solvothermal controllable preparation method and application of graphene oxide and graphene oxide quantum dots - Google Patents
Solvothermal controllable preparation method and application of graphene oxide and graphene oxide quantum dots Download PDFInfo
- Publication number
- CN104909356A CN104909356A CN201510268945.6A CN201510268945A CN104909356A CN 104909356 A CN104909356 A CN 104909356A CN 201510268945 A CN201510268945 A CN 201510268945A CN 104909356 A CN104909356 A CN 104909356A
- Authority
- CN
- China
- Prior art keywords
- graphene oxide
- oxide quantum
- quantum dots
- dialysis
- quantum dot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 37
- 239000002096 quantum dot Substances 0.000 title claims abstract description 19
- 238000002360 preparation method Methods 0.000 title abstract description 10
- 238000000502 dialysis Methods 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 15
- 239000012286 potassium permanganate Substances 0.000 claims abstract description 13
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000003756 stirring Methods 0.000 claims abstract description 10
- 239000008367 deionised water Substances 0.000 claims abstract description 9
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 9
- 239000000843 powder Substances 0.000 claims abstract description 8
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 6
- 239000010439 graphite Substances 0.000 claims abstract description 6
- 239000007864 aqueous solution Substances 0.000 claims abstract description 3
- 239000007788 liquid Substances 0.000 claims abstract 2
- 239000000725 suspension Substances 0.000 claims abstract 2
- 239000000243 solution Substances 0.000 claims description 9
- 230000007935 neutral effect Effects 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 2
- 239000006185 dispersion Substances 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 239000002904 solvent Substances 0.000 claims 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 18
- -1 polytetrafluoroethylene Polymers 0.000 abstract description 8
- 229920001343 polytetrafluoroethylene Polymers 0.000 abstract description 8
- 239000004810 polytetrafluoroethylene Substances 0.000 abstract description 8
- 238000004729 solvothermal method Methods 0.000 abstract description 4
- 239000002086 nanomaterial Substances 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- 239000007850 fluorescent dye Substances 0.000 abstract 1
- 238000001215 fluorescent labelling Methods 0.000 abstract 1
- 238000004108 freeze drying Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 abstract 1
- 231100000252 nontoxic Toxicity 0.000 abstract 1
- 230000003000 nontoxic effect Effects 0.000 abstract 1
- 239000002245 particle Substances 0.000 abstract 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 7
- 239000000376 reactant Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 4
- 238000003917 TEM image Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000012984 biological imaging Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
本发明属于纳米材料制备技术领域,具体涉及氧化石墨烯与氧化石墨烯量子点的溶剂热制备方法及应用。它以普通石墨为原料,加入一定量硫酸和高锰酸钾,搅拌一定时间后加入硝酸,接着将悬浊液转入聚四氟乙烯反应釜中进行溶剂热反应;反应得到的浅黄色透明液分散在去离子水中,取一定量透析至中性,最终在透析袋中得到氧化石墨烯或氧化石墨烯量子点水溶液,冷冻干燥后得到氧化石墨烯或氧化石墨烯量子点粉末。制备过程中仅通过控制反应温度可以得到氧化石墨烯或氧化石墨烯量子点,通过改变石墨与高锰酸钾的比例可以分别得到不同粒径的氧化石墨烯量子点。本发明采用一步溶剂热法,操作过程及后处理简单、周期短、成本低、无毒、无污染,材料可广泛用于光电器件、防伪、生物分子荧光标记、生物成像等领域中。
The invention belongs to the technical field of nanomaterial preparation, and in particular relates to a solvothermal preparation method and application of graphene oxide and graphene oxide quantum dots. It uses ordinary graphite as raw material, adding a certain amount of sulfuric acid and potassium permanganate, stirring for a certain period of time, adding nitric acid, and then transferring the suspension into a polytetrafluoroethylene reactor for solvothermal reaction; the resulting light yellow transparent liquid Disperse in deionized water, take a certain amount of dialysis to neutrality, and finally obtain graphene oxide or graphene oxide quantum dot aqueous solution in the dialysis bag, and obtain graphene oxide or graphene oxide quantum dot powder after freeze-drying. Graphene oxide or graphene oxide quantum dots can be obtained only by controlling the reaction temperature in the preparation process, and graphene oxide quantum dots with different particle sizes can be obtained by changing the ratio of graphite to potassium permanganate. The invention adopts a one-step solvothermal method, and the operation process and post-treatment are simple, the cycle is short, the cost is low, non-toxic and pollution-free, and the material can be widely used in the fields of photoelectric devices, anti-counterfeiting, biomolecular fluorescent labeling, and bioimaging.
Description
技术领域technical field
本发明涉及纳米材料制备技术The invention relates to nanomaterial preparation technology
技术背景technical background
碳是地球上最丰富的元素,它以各种形态分布在自然环境中。由于其来源广泛、成本低廉,碳基材料一出现便成了研究热点。石墨烯发现于2004年,具有优异的电学性质、机械强度及热稳定性,它的发现对科学和技术产生了很大的影响。氧化石墨烯被认为是化学、热还原制备石墨烯的前驱体。氧化石墨烯通常由强氧化剂与石墨反应制备,其表面有许多含氧基团,使它具有一些独特的性质及水溶性,具有很大的潜在应用价值。但氧化石墨烯的一般制备方法步骤较多、耗时较长,不利于大规模制备及应用。Carbon is the most abundant element on earth, and it is distributed in various forms in the natural environment. Due to its wide range of sources and low cost, carbon-based materials have become a research hotspot as soon as they appeared. Discovered in 2004, graphene has excellent electrical properties, mechanical strength and thermal stability, and its discovery has had a great impact on science and technology. Graphene oxide is considered to be the precursor of graphene prepared by chemical and thermal reduction. Graphene oxide is usually prepared by reacting a strong oxidant with graphite. There are many oxygen-containing groups on its surface, which make it have some unique properties and water solubility, and have great potential application value. However, the general preparation method of graphene oxide has many steps and takes a long time, which is not conducive to large-scale preparation and application.
石墨烯量子点作为一种新型量子点,吸引了大量的研究者。因其显著的量子限域及边缘效应,呈现出大量新颖的物理、化学性质。其中包括:低毒性、溶解性、化学稳定性、光稳定性等使其在光电子器件、传感器件及生物成像等方面有很大的应用潜力。目前制备石墨烯量子点的方法可以划分为两类:自上而下和自下而上法。因自上而下法原料丰富、操作相对简单等优点被广泛使用。此外,这种方法制备的石墨烯量子点通常在边缘含有含氧基团,这些基团有助于提高其溶解性、实现多功能化及表面钝化。但是,目前此类制备方法也存在着不足,如需要特殊的仪器、产量低、效率低及无选择性化学剪切过程不利于控制形貌与尺寸。As a new type of quantum dots, graphene quantum dots have attracted a large number of researchers. Because of its remarkable quantum confinement and edge effects, it presents a large number of novel physical and chemical properties. These include: low toxicity, solubility, chemical stability, photostability, etc., so that it has great application potential in optoelectronic devices, sensor devices and biological imaging. The current methods for preparing graphene quantum dots can be divided into two categories: top-down and bottom-up methods. The top-down method is widely used because of its abundant raw materials and relatively simple operation. In addition, graphene quantum dots prepared by this method usually contain oxygen-containing groups at the edges, which contribute to their solubility, multifunctionalization, and surface passivation. However, the current preparation methods also have shortcomings, such as the need for special instruments, low yield, low efficiency, and non-selective chemical shearing process is not conducive to controlling the shape and size.
针对以上问题,通过简单高效的方法制备氧化石墨烯及形貌尺寸可控的氧化石墨烯量子点具有很重要的意义。In view of the above problems, it is of great significance to prepare graphene oxide and graphene oxide quantum dots with controllable shape and size by simple and efficient methods.
发明内容Contents of the invention
针对现在制备氧化石墨烯过程繁琐,石墨烯量子点制备效率低、形貌尺寸不易控制等问题,本发明的目的是通过一步溶剂热反应,通过控制温度来得到氧化石墨烯或氧化石墨烯量子点,通过改变石墨与高锰酸钾精确控制氧化石墨烯量子点尺寸。该方法操作简单,耗时短,控制变量少,且不需复杂后处理,成本低,可大量制备,商业使用价值高。In view of the current cumbersome process of preparing graphene oxide, low preparation efficiency of graphene quantum dots, and difficult control of shape and size, the purpose of the present invention is to obtain graphene oxide or graphene oxide quantum dots by one-step solvothermal reaction and temperature control , by changing graphite and potassium permanganate to precisely control the size of graphene oxide quantum dots. The method has the advantages of simple operation, short time consumption, few control variables, no complicated post-processing, low cost, mass preparation and high commercial use value.
溶剂热制备氧化石墨烯及石墨烯量子点的方法,步骤如下:Solvothermal method for preparing graphene oxide and graphene quantum dots, the steps are as follows:
步骤1:将石墨粉与高锰酸钾(KMnO4)放入烧杯;加入硫酸(H2SO4)与硝酸(HNO3);搅拌0.5-1小时。所述石墨与高锰酸钾(KMnO4)的质量比为4∶3-1∶4,硫酸(H2SO4)与硝酸(HNO3)的体积比为9∶1-3∶1。Step 1: Put graphite powder and potassium permanganate (KMnO 4 ) into a beaker; add sulfuric acid (H 2 SO 4 ) and nitric acid (HNO 3 ); stir for 0.5-1 hour. The mass ratio of graphite to potassium permanganate (KMnO 4 ) is 4:3-1:4, and the volume ratio of sulfuric acid (H 2 SO 4 ) to nitric acid (HNO 3 ) is 9:1-3:1.
步骤2:将以上反应物全部转移至体积为25-250mL的聚四氟乙烯反应釜中,在烘箱中反应。所述反应温度为120-180℃,反应时间为0.5-3小时。Step 2: Transfer all the above reactants to a polytetrafluoroethylene reactor with a volume of 25-250mL, and react in an oven. The reaction temperature is 120-180° C., and the reaction time is 0.5-3 hours.
步骤3:待反应完成后,将所得溶液分散在30-300mL去离子水中待用;Step 3: After the reaction is completed, disperse the obtained solution in 30-300mL deionized water for use;
步骤4:取一定量加入透析袋对水透析至pH为中性。所述透析袋的截留分子量为1000-3500Da。Step 4: Take a certain amount and add it to a dialysis bag to dialyze against water until the pH is neutral. The molecular weight cut-off of the dialysis bag is 1000-3500Da.
步骤5:将得到的中性水溶液冷冻干燥,即得到氧化石墨烯或氧化石墨烯量子点粉末。Step 5: freeze-dry the obtained neutral aqueous solution to obtain graphene oxide or graphene oxide quantum dot powder.
可以预测,所制备的氧化石墨烯及石墨烯量子点可能在能量传递及生物标记、成像方面得到广泛的应用。It can be predicted that the prepared graphene oxide and graphene quantum dots may be widely used in energy transfer, biomarking and imaging.
附图说明Description of drawings
图1中a)-b)为本发明实施例1-2所制备样品的透射电镜照片;Among Fig. 1 a)-b) is the transmission electron micrograph of the sample prepared by the embodiment of the present invention 1-2;
图2中a)-d)为本发明实施例3-6所制备样品的透射电镜照片;A)-d) in Fig. 2 is the transmission electron micrograph of the sample prepared by the embodiment of the present invention 3-6;
图3为本发明实施例2所制备样品的发射光谱(激发光从330到510nm以20nm为间隔;插图中强度为归一化强度);Fig. 3 is the emission spectrum of the sample prepared in Example 2 of the present invention (the excitation light is from 330 to 510nm with an interval of 20nm; the intensity in the illustration is the normalized intensity);
图4为本发明实施例2所制备样品在海拉细胞上所做细胞成像图(405nm激发);Fig. 4 is a cell imaging diagram (405nm excitation) of the sample prepared in Example 2 of the present invention on HeLa cells;
具体实施方式Detailed ways
实施例1:Example 1:
将质量比为1∶3的石墨粉与高锰酸钾放入烧杯中,加入体积比为3∶1的硫酸与硝酸,搅拌30分钟;将以上反应物全部转移到25mL聚四氟乙烯反应釜中,在130℃的烘箱内反应1.5小时;待反应结束后,全部分散于50mL去离子水中,待用;取一定量加入到截留分子量3500Da的透析袋中,透析3-7天;将透析袋中的溶液冷冻干燥,即得到氧化石墨烯粉末。Put graphite powder and potassium permanganate with a mass ratio of 1:3 into a beaker, add sulfuric acid and nitric acid with a volume ratio of 3:1, and stir for 30 minutes; transfer all the above reactants to a 25mL polytetrafluoroethylene reactor reaction in an oven at 130°C for 1.5 hours; after the reaction is complete, disperse it in 50mL deionized water for use; take a certain amount and add it to a dialysis bag with a molecular weight cut-off of 3500Da, and dialyze for 3-7 days; put the dialysis bag The solution in is freeze-dried to obtain graphene oxide powder.
实施例2:Example 2:
将质量比为1∶3的石墨粉与高锰酸钾放入烧杯中,加入体积比为3∶1的硫酸与硝酸,搅拌30分钟;将以上反应物全部转移到25mL聚四氟乙烯反应釜中,在160℃的烘箱内反应1.5小时;待反应结束后,全部分散于50mL去离子水中,待用;取一定量加入到截留分子量1000Da的透析袋中,透析3-7天;将透析袋中的溶液冷冻干燥,即得到氧化石墨烯量子点粉末。Put graphite powder and potassium permanganate with a mass ratio of 1:3 into a beaker, add sulfuric acid and nitric acid with a volume ratio of 3:1, and stir for 30 minutes; transfer all the above reactants to a 25mL polytetrafluoroethylene reactor , react in an oven at 160°C for 1.5 hours; after the reaction is complete, disperse it in 50mL of deionized water for use; take a certain amount and add it to a dialysis bag with a molecular weight cut-off of 1000Da, and dialyze for 3-7 days; put the dialysis bag The solution in is freeze-dried to obtain graphene oxide quantum dot powder.
实施例3;Embodiment 3;
将质量比为4∶3的石墨粉与高锰酸钾放入烧杯中,加入体积比为3∶1的硫酸与硝酸,搅拌30分钟;将以上反应物全部转移到25mL聚四氟乙烯反应釜中,在160℃的烘箱内反应1.5小时;待反应结束后,全部分散于50mL去离子水中,待用;将分散后的产物加入到截留分子量1000Da的透析袋中,透析3-7天;将透析袋中的溶液冷冻干燥,即得到氧化石墨烯量子点粉末。Put graphite powder and potassium permanganate with a mass ratio of 4:3 into a beaker, add sulfuric acid and nitric acid with a volume ratio of 3:1, and stir for 30 minutes; transfer all the above reactants to a 25mL polytetrafluoroethylene reactor reaction in an oven at 160°C for 1.5 hours; after the reaction is complete, disperse it in 50 mL of deionized water for use; add the dispersed product to a dialysis bag with a molecular weight cut-off of 1000 Da, and dialyze for 3-7 days; The solution in the dialysis bag is freeze-dried to obtain graphene oxide quantum dot powder.
实施例4:Example 4:
将质量比为6∶5的石墨粉与高锰酸钾放入烧杯中,加入体积比为3∶1的硫酸与硝酸,搅拌30分钟;将以上反应物全部转移到25mL聚四氟乙烯反应釜中,在160℃的烘箱内反应1.5小时;待反应结束后,全部分散于50mL去离子水中,待用;将分散后的产物加入到截留分子量1000Da的透析袋中,透析3-7天;将透析袋中的溶液冷冻干燥,即得到氧化石墨烯量子点粉末。Put graphite powder and potassium permanganate with a mass ratio of 6:5 into a beaker, add sulfuric acid and nitric acid with a volume ratio of 3:1, and stir for 30 minutes; transfer all the above reactants to a 25mL polytetrafluoroethylene reactor reaction in an oven at 160°C for 1.5 hours; after the reaction is complete, disperse it in 50 mL of deionized water for use; add the dispersed product to a dialysis bag with a molecular weight cut-off of 1000 Da, and dialyze for 3-7 days; The solution in the dialysis bag is freeze-dried to obtain graphene oxide quantum dot powder.
实施例5:Example 5:
将质量比为5∶6的石墨粉与高锰酸钾放入烧杯中,加入体积比为3∶1的硫酸与硝酸,搅拌30分钟;将以上反应物全部转移到25mL聚四氟乙烯反应釜中,在160℃的烘箱内反应1.5小时;待反应结束后,全部分散于50mL去离子水中,待用;将分散后的产物加入到截留分子量1000Da的透析袋中,透析3-7天;将透析袋中的溶液冷冻干燥,即得到氧化石墨烯量子点粉末。Put graphite powder and potassium permanganate with a mass ratio of 5:6 into a beaker, add sulfuric acid and nitric acid with a volume ratio of 3:1, and stir for 30 minutes; transfer all the above reactants to a 25mL polytetrafluoroethylene reactor reaction in an oven at 160°C for 1.5 hours; after the reaction is complete, disperse it in 50 mL of deionized water for use; add the dispersed product to a dialysis bag with a molecular weight cut-off of 1000 Da, and dialyze for 3-7 days; The solution in the dialysis bag is freeze-dried to obtain graphene oxide quantum dot powder.
实施例6:Embodiment 6:
将质量比为1∶2的石墨粉与高锰酸钾放入烧杯中,加入体积比为3∶1的硫酸与硝酸,搅拌30分钟;将以上反应物全部转移到25mL聚四氟乙烯反应釜中,在160℃的烘箱内反应1.5小时;待反应结束后,全部分散于50mL去离子水中,待用;将分散后的产物加入到截留分子量1000Da的透析袋中,透析3-7天;将透析袋中的溶液冷冻干燥,即得到氧化石墨烯量子点粉末。Put graphite powder and potassium permanganate with a mass ratio of 1:2 into a beaker, add sulfuric acid and nitric acid with a volume ratio of 3:1, and stir for 30 minutes; transfer all the above reactants to a 25mL polytetrafluoroethylene reactor reaction in an oven at 160°C for 1.5 hours; after the reaction is complete, disperse it in 50 mL of deionized water for use; add the dispersed product to a dialysis bag with a molecular weight cut-off of 1000 Da, and dialyze for 3-7 days; The solution in the dialysis bag is freeze-dried to obtain graphene oxide quantum dot powder.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510268945.6A CN104909356A (en) | 2015-05-22 | 2015-05-22 | Solvothermal controllable preparation method and application of graphene oxide and graphene oxide quantum dots |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510268945.6A CN104909356A (en) | 2015-05-22 | 2015-05-22 | Solvothermal controllable preparation method and application of graphene oxide and graphene oxide quantum dots |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104909356A true CN104909356A (en) | 2015-09-16 |
Family
ID=54078869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510268945.6A Pending CN104909356A (en) | 2015-05-22 | 2015-05-22 | Solvothermal controllable preparation method and application of graphene oxide and graphene oxide quantum dots |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104909356A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106219528A (en) * | 2016-07-26 | 2016-12-14 | 湖南师范大学 | A kind of controlled method preparing graphene oxide and graphene oxide quantum dot |
CN106348281A (en) * | 2015-07-13 | 2017-01-25 | 南京理工大学 | Method for preparing bifluorescence graphene quantum dots hydrothermally |
CN107043104A (en) * | 2017-05-11 | 2017-08-15 | 桂林理工大学 | A kind of graphene quantum dot induces high nitrogen doped photo-reduction graphene oxide preparation method |
CN107601466A (en) * | 2017-10-12 | 2018-01-19 | 青岛科技大学 | A kind of preparation method and applications of the graphene quantum dot of size uniform |
CN110204991A (en) * | 2019-04-28 | 2019-09-06 | 西南石油大学 | A kind of efficient corrosion resisting h-BN/GO/ water-base epoxy composite material, preparation method and application |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102633257A (en) * | 2012-05-04 | 2012-08-15 | 东南大学 | Method for synthesizing less than 10 nm of single-layer graphene quantum dot biological imaging agent |
CN102660270A (en) * | 2012-05-03 | 2012-09-12 | 吉林大学 | Method for preparing fluorescent graphene quantum dots by solvothermal method |
CN102807209A (en) * | 2012-08-02 | 2012-12-05 | 清华大学 | Method for preparing graphene quantum dots |
CN103325579A (en) * | 2013-06-20 | 2013-09-25 | 中南大学 | A kind of reduced carbon quantum dot/RuO2 composite material and its preparation and application method |
CN103626161A (en) * | 2012-08-24 | 2014-03-12 | 海洋王照明科技股份有限公司 | Preparation method for graphene |
CN103738941A (en) * | 2013-11-14 | 2014-04-23 | 盐城增材科技有限公司 | Graphene quantum dot preparation method |
CN103738942A (en) * | 2013-11-14 | 2014-04-23 | 盐城增材科技有限公司 | Graphene nano-rod preparation method |
CN103845361A (en) * | 2014-03-19 | 2014-06-11 | 国家纳米科学中心 | Application of graphene quantum dot in preparing tumor therapy sensitizing agent |
CN103965867A (en) * | 2014-04-09 | 2014-08-06 | 上海大学 | Preparation method for graphene quantum dot wrapping zinc oxide core-shell structure quantum dot for QD-LED |
-
2015
- 2015-05-22 CN CN201510268945.6A patent/CN104909356A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102660270A (en) * | 2012-05-03 | 2012-09-12 | 吉林大学 | Method for preparing fluorescent graphene quantum dots by solvothermal method |
CN102633257A (en) * | 2012-05-04 | 2012-08-15 | 东南大学 | Method for synthesizing less than 10 nm of single-layer graphene quantum dot biological imaging agent |
CN102807209A (en) * | 2012-08-02 | 2012-12-05 | 清华大学 | Method for preparing graphene quantum dots |
CN103626161A (en) * | 2012-08-24 | 2014-03-12 | 海洋王照明科技股份有限公司 | Preparation method for graphene |
CN103325579A (en) * | 2013-06-20 | 2013-09-25 | 中南大学 | A kind of reduced carbon quantum dot/RuO2 composite material and its preparation and application method |
CN103738941A (en) * | 2013-11-14 | 2014-04-23 | 盐城增材科技有限公司 | Graphene quantum dot preparation method |
CN103738942A (en) * | 2013-11-14 | 2014-04-23 | 盐城增材科技有限公司 | Graphene nano-rod preparation method |
CN103845361A (en) * | 2014-03-19 | 2014-06-11 | 国家纳米科学中心 | Application of graphene quantum dot in preparing tumor therapy sensitizing agent |
CN103965867A (en) * | 2014-04-09 | 2014-08-06 | 上海大学 | Preparation method for graphene quantum dot wrapping zinc oxide core-shell structure quantum dot for QD-LED |
Non-Patent Citations (2)
Title |
---|
DENGYU PAN ETC.: "Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots", 《ADVANCED MATERIALS》 * |
YU CHONG ETC.: "The in vitro and in vivo toxicity of graphene quantum dots", 《BIOMATERIALS》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106348281A (en) * | 2015-07-13 | 2017-01-25 | 南京理工大学 | Method for preparing bifluorescence graphene quantum dots hydrothermally |
CN106219528A (en) * | 2016-07-26 | 2016-12-14 | 湖南师范大学 | A kind of controlled method preparing graphene oxide and graphene oxide quantum dot |
CN106219528B (en) * | 2016-07-26 | 2018-06-15 | 湖南师范大学 | A kind of method of controllable preparation graphene oxide and graphene oxide quantum dot |
CN107043104A (en) * | 2017-05-11 | 2017-08-15 | 桂林理工大学 | A kind of graphene quantum dot induces high nitrogen doped photo-reduction graphene oxide preparation method |
CN107601466A (en) * | 2017-10-12 | 2018-01-19 | 青岛科技大学 | A kind of preparation method and applications of the graphene quantum dot of size uniform |
CN107601466B (en) * | 2017-10-12 | 2018-08-03 | 青岛科技大学 | A kind of preparation method and applications of the graphene quantum dot of size uniform |
CN110204991A (en) * | 2019-04-28 | 2019-09-06 | 西南石油大学 | A kind of efficient corrosion resisting h-BN/GO/ water-base epoxy composite material, preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Graphene quantum dots for energy storage and conversion: from fabrication to applications | |
Li et al. | Frontiers in carbon dots: design, properties and applications | |
CN104743545B (en) | A kind of application of asphalt base carbon quantum dot prepared by the preparation method and the method for asphalt base carbon quantum dot | |
CN105567228B (en) | A kind of fluorescent carbon quantum dot of N, P, S codope and its preparation method and application | |
CN104909356A (en) | Solvothermal controllable preparation method and application of graphene oxide and graphene oxide quantum dots | |
CN103359727B (en) | Preparation method of oxygen and chlorine co-doped graphene quantum dots | |
CN105152147B (en) | A kind of preparation method of water-soluble luminous graphite phase carbon nitride nanometer sea-tangle | |
Gaurav et al. | Review on fluorescent carbon/graphene quantum dots: promising material for energy storage and next-generation light-emitting diodes | |
CN103833029B (en) | The preparation method of the water-soluble sulphur of a kind of efficient multicolor fluorescence, oxygen codoped graphene quantum dot | |
CN109437154B (en) | A method for preparing energy band controllable carbon quantum dots using coal as raw material | |
Cui et al. | A review of advances in graphene quantum dots: from preparation and modification methods to application | |
CN106219528B (en) | A kind of method of controllable preparation graphene oxide and graphene oxide quantum dot | |
CN109054825B (en) | Fluorescent carbon quantum dot and efficient preparation method thereof | |
CN104531148A (en) | Preparation method of assembly of carbon quantum dots (CQDS) | |
CN109021969A (en) | It is a kind of using cotton as the preparation method of carbon source samarium doping carbon quantum dot composite material | |
CN106348281A (en) | Method for preparing bifluorescence graphene quantum dots hydrothermally | |
CN106833609A (en) | A kind of green fluorescence nitrogenizes the preparation method of carbon dust | |
CN106542520A (en) | The preparation method of green orange red three fluorescence graphene quantum dot | |
Lagonegro et al. | Carbon dots as a sustainable new platform for organic light emitting diode | |
CN105502340A (en) | Preparation method of fluorescent carbon dots | |
CN106047348A (en) | A preparation method of β-NaYF4:Yb/Tm@CdS core-shell nanostructure | |
CN105870338A (en) | Preparation method of copper-containing organic-inorganic perovskite quantum dot solar cell | |
CN107033908A (en) | A kind of GdF3:Yb3+,Er3+The preparation method of upconversion fluorescence nano material | |
CN105084418B (en) | Preparation method of nanometer lanthanum vanadate hollow microspheres | |
CN105860972B (en) | The preparation method of P doping carbon quantum dots and its application in cell imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150916 |