CN104882507A - 一种Pt-GFW/SiO2/n-Si异质结材料及其制备方法 - Google Patents

一种Pt-GFW/SiO2/n-Si异质结材料及其制备方法 Download PDF

Info

Publication number
CN104882507A
CN104882507A CN201510156307.5A CN201510156307A CN104882507A CN 104882507 A CN104882507 A CN 104882507A CN 201510156307 A CN201510156307 A CN 201510156307A CN 104882507 A CN104882507 A CN 104882507A
Authority
CN
China
Prior art keywords
gfw
graphene
heterojunction material
sio
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510156307.5A
Other languages
English (en)
Other versions
CN104882507B (zh
Inventor
谭新玉
康喆
田丹妮
肖婷
向鹏
姜礼华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201510156307.5A priority Critical patent/CN104882507B/zh
Publication of CN104882507A publication Critical patent/CN104882507A/zh
Application granted granted Critical
Publication of CN104882507B publication Critical patent/CN104882507B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种Pt-GFW/SiO2/n-Si异质结材料及其制备方法。采用化学气相沉积(CVD)法生长的石墨烯网(GFW)转移到n型硅(n-Si(100)基片上后,形成具有白光光伏效应的异质结薄膜材料。采用激光照射高铂酸溶液来负载铂纳米颗粒的方法,在GFW/n-Si器件表面负载铂纳米粒子。本发明的铂负载的石墨烯、硅太阳能电池在室温、100mW/cm2的模拟太阳光源照射下,器件的开路光电压从474mV提升到545mV、短路光电流从18.2mA/cm2提升到19.6mA/cm2、填充因子从42.8%提升到51.2%以上,光电转换效率从3.69%提升到5.48%。采用该方法具有性能优越,价格低廉,制备简单且不同于之前文献中所报道的用硝基甲苯作为溶剂,而采用去离子水作为溶剂,是一种优异的提升可见光传感器材料和具有潜力的光伏器件性能的方法。

Description

一种Pt-GFW/SiO2/n-Si异质结材料及其制备方法
技术领域
本发明属于提升薄膜太阳能电池材料及光电器件性能的方法,属于材料技术领域,特别涉及一种提升石墨烯、硅异质结太阳能电池性能Pt-GFW/SiO2/n-Si异质结材料及其制备方法。
背景技术
能源短缺和环境问题得到越来越多的重视,光伏发电因可以将太阳能的光能直接转换为电能而备受关注。光伏发电技术的研究始于100多年以前。1839年法国物理学家贝克勒尔(A.E. Becqurel)意外地发现,用两片金属侵入溶液构成的伏打电池,光照时会产生额外的伏打电势,他把这种现象称为“光生伏打效应”(photovoltaic effect)。半导体P-N结器件在阳光下的光电转换效率最高,通常称这种光伏器件为太阳能电池。Rusop通过PLD的方法制备了B掺杂的非晶碳膜/硅异质结太阳能电池。
石墨烯硅异质结太阳能电池器件因其制备方法多样,材料便宜易得,无毒无害,光伏性能性稳定等优点成为光伏材料的有力候选者。Xinming Li , Hongwei Zhu , Kunlin Wang , Anyuan Cao , Jinquan Wei , Chunyan Li ,Yi Jia , Zhen Li , Xiao Li , and Dehai Wu,Advanced Materials,2010, 22: 2743–2759.报道了用化学气象沉积方法(CVD)制备石墨烯并制备石墨烯太阳能电池的方法。文献中提到的这种器件对可见光的响应较弱。文献Yumeng Shi, Ki Kang Kim, Alfonso Reina, Mario Hofmann, Lain-Jong Li, and Jing Kong, ACS Nano, 2010, VOL. 4 ,NO. 5, 2689-2694报道了一种在石墨烯表面负载金纳米颗粒的方法从而提升石墨烯、硅太阳能电池的效率。文献Zhen Li, Peng Zhang, Kunlin Wang, Zhiping Xu, Jinquan Wei, Lili Fan, Dehai Wu and Hongwei Zhu, Journal of Materials Chemistry, 2011, 21: 13241–13246报道了使用激光照射的方法,在石墨烯表面沉积金属。
发明内容
本发明的目的是提升石墨烯太阳能电池在室温条件下对可见光的响应,提供了一种具有白光光伏效应的Pt-GFW/SiO2/n-Si异质结材料。该异质结材料为层状,在n-Si(100)基片上依次设置有氧化硅层,和负载了铂纳米颗粒的石墨烯网层,n-Si(100)基片下还设置有金属电极Ti/Au。
    所述的负载了铂纳米颗粒的石墨烯网层中,铂原子与碳原子的摩尔比为2:98。氧化硅层的厚度为1.5-3.0纳米。
    所述的负载了铂纳米颗粒的石墨烯网层的厚度为10-20纳米,其中,石墨烯网层数为2~10层。
    本发明还公开了一种Pt-GFW/SiO2/n-Si异质结材料的制备方法,包括如下步骤:
1)将铜网在氩气气氛中从室温加热到1000℃(铜网在氩气气氛中从室温加热到1000℃的升温速率为10-20℃/min。),在1000℃条件下通入氢气,30分钟后,再通入氩气、氢气、甲烷的混合气体(氩气、氢气、甲烷的混合气体的体积比为200:2:30。),反应10~20分钟,再在氩气保护下,降温至室温,将生长了石墨烯网的铜网用硝酸铁溶液刻蚀后用去离子水清洗,得到石墨烯网;
2)将n-Si(100)基片用丙酮、氢氟酸清洗除去表面的氧化层后,将步骤1)中的石墨烯网转移到硅基片上,在室温下自然氧化15-20小时后形成SiO2层,再用银胶、银线做为电极,得到GFW/n-Si;
3)将0.1~100mmol/L的高铂酸溶液滴加在GFW/n-Si上,并用能量密度为100mW,波长为405nm的激光,照射100~1000秒,最后将多余的高铂酸溶液除去,得到Pt-GFW/SiO2/n-Si异质结材料。
    上述步骤3)还可以为将10mmol/L的高铂酸溶液滴加在GFW/n-Si上,并用能量密度为100mW,波长为405nm的激光,照射500秒,最后将多余的高铂酸溶液除去,得到Pt-GFW/SiO2/n-Si异质结材料,其中10mmol/L高铂酸溶液是用纯度>99.99%的六水合六氯铂酸溶于去离子水中,在常温、暗室下超声得到的。
    本发明将得到的Pt-GFW/SiO2/n-Si异质结材料在石墨烯太阳能电池或光强探测器上的应用。
本发明的有益效果为:
1、采用的无害无危险性的去离子水作为负载材料的溶剂,使石墨烯、硅光伏器件在室温下的光伏效应明显提升。激光照射对石墨烯负载铂纳米颗粒使得石墨烯的P型性增强,Pt-GFW层厚度在10~20纳米之间,为p型材料,氧化硅层厚度在1~2纳米左右。这种光电薄膜在室温、100 mW/cm2(AM 1.5)的模拟太阳光源照射下,器件的开路光电压达到可以从474mV提升到545 mV、短路光电流可以从18.2 mA/cm2提升到19.6 mA/cm2、填充因子可以从42.8%提升到51.2%以上,光电转换效率达到从3.69%提升到5.48%。采用该材料具有性能优越,价格低廉,制备简单等特点,并且在制备过程中,不使用任何有毒易燃易爆物质,是一种有效的提升石墨烯太阳能电池光伏器件的方法。
附图说明
图1:Pt-GFW/SiO2/Si异质结太阳能电池的结构及其光伏性能测试示意图;图中标号:1—铂纳米颗粒负载的石墨烯网;2—氧化硅(SiO2)层;3— N型硅片(001);4—金属电极。
图2:实施例1的GFW/SiO2/Si异质结太阳能电池在Pt负载前和Pt负载后的室温I-V特性(有光与无光照情况)。
图3:实施例2的GFW/SiO2/Si异质结太阳能电池在Pt负载前和Pt负载后的室温I-V特性(有光与无光照情况)。
图4:实施例3的GFW/SiO2/Si异质结太阳能电池在Pt负载前和Pt负载后的室温I-V特性(有光与无光照情况)。
图5:实施例4的GFW/SiO2/Si异质结太阳能电池在Pt负载前和Pt负载后的室温I-V特性(有光与无光照情况)。
图6:实施例5的GFW/SiO2/Si异质结太阳能电池在Pt负载前和Pt负载后的室温I-V特性(有光与无光照情况)。
图7:石墨烯网Pt-GFW的TEM图。
具体实施方式
下面结合附图对本发明作进一步说明:
实施例1
本发明提升了石墨烯太阳能电池在室温条件下对可见光的响应。
先将铜网在氩气气氛中从室温经80分钟加热到1000℃,在1000℃条件下通入氢气30分钟,在1000℃温度下按比例200:2:30通入氩气、氢气、甲烷,反应20分钟。在氩气保护下,降温至室温。将生长了石墨烯网的铜网用硝酸铁溶液刻蚀后用去离子水清洗3次。然后将硅片用丙酮超声清洗两到三次,再用氢氟酸清洗硅片。然后把清洗后的石墨烯网转移到硅片上。静止在室温下15小时让器件硅与石墨烯网连接不好的地方形成自然氧化的二氧化硅层,至此组装成通常意义下的石墨烯太阳能电池。
所述氧化硅层厚度可为1.5~2.5纳米。
所述铂负载的石墨烯网的厚度为10~20纳米。
提升具有白光光伏效应的异质结器件的方法,该方法包括如下步骤:
将如上所述石墨烯网、硅光伏器件水平放置于10mmol/L的高铂酸溶液中,用能量密度为100mW,波长为405nm的激光,照射石墨烯、硅太阳能电池表面一段时间后,将石墨烯、硅器件取出用滤纸吸走吸附在器件表面的高铂酸溶液并于室温下干燥,从而完成铂纳米颗粒在石墨烯网上的负载。以提升石墨烯、硅器件的光伏效应。
所述10mmol/L高铂酸溶液是用纯度>99.99%的六水合六氯铂酸,溶于去离子水溶液中。常温,暗室内超声溶解得到。
所述激光照射时间最佳为300s。
所制备的Pt-GFW/SiO2/Si太阳能电池样品中的Pt-GFW层膜厚由TEM(JEM-2011)测量;Pt-GFW厚度在10~20纳米之间,为p型半导体,氧化铝层厚度在1~2纳米之间。IV性能用梳状电极上下垂直测量法由Keithley2601电流电压表测量;光源由100 mW/cm2(AM 1.5)的模拟太阳光源提供。本专利仅以Pt-GFW层厚度200纳米、氧化硅厚度为1.5纳米的样品为例,给出其室温光伏性能测试的原理图(图1)及光伏性能的测量结果(图2)。
实施例2
实验是先将铜网在氩气气氛中从室温经60分钟加热到1000℃,在1000℃条件下通入氢气30分钟,在1000℃温度下按比例200:2:30通入氩气、氢气、甲烷,反应20分钟。在氩气保护下,降温至室温。将生长了石墨烯网的铜网用硝酸铁溶液刻蚀后用去离子水清洗3次。然后将硅片用丙酮超声清洗两到三次,再用氢氟酸清洗硅片。然后把清洗后的石墨烯网转移到硅片上。静止在室温下15小时让器件硅与石墨烯网连接不好的地方形成自然氧化的二氧化硅层,至此组装成通常意义下的石墨烯太阳能电池。
所述氧化硅层厚度可为1.5~2.5纳米。
所述铂负载的石墨烯网的厚度为10~20纳米。
提升具有白光光伏效应的异质结器件的方法,该方法包括如下步骤:
将如上所述石墨烯网、硅光伏器件水平放置于1mmol/L的高铂酸溶液中,用能量密度为100mW/cm2,波长为405nm的激光,照射石墨烯、硅太阳能电池表面一段时间后,将石墨烯、硅器件取出用滤纸吸走吸附在器件表面的高铂酸溶液并于室温下干燥,从而完成铂纳米颗粒在石墨烯网上的负载。以提升石墨烯、硅器件的光伏效应。
所述1mmol/L高铂酸溶液是用纯度>99.99%的六水合六氯铂酸,溶于去离子水溶液中。常温,暗室内超声溶解得到。
所述激光照射时间为300s。
所制备的Pt-GFW/SiO2/Si太阳能电池样品中的Pt-GFW层膜厚由TEM(JEM-2011)测量;Pt-GFW厚度在10~20纳米之间,为p型半导体,氧化铝层厚度在1~2纳米之间。IV性能用梳状电极上下垂直测量法由Keithley2601电流电压表测量;光源由100 mW/cm2(AM 1.5)的模拟太阳光源提供。本专利仅以Pt-GFW层厚度200纳米、氧化硅厚度为1.5纳米的样品为例,给出其室温光伏性能测试的原理图及光伏性能的测量结果(图3)
实施例3
本发明提升了石墨烯太阳能电池在室温条件下对可见光的响应。
先将铜网在氩气气氛中从室温经80分钟加热到1000℃,在1000℃条件下通入氢气30分钟,在1000℃温度下按比例200:2:30通入氩气、氢气、甲烷,反应20分钟。在氩气保护下,降温至室温。将生长了石墨烯网的铜网用硝酸铁溶液刻蚀后用去离子水清洗3次。然后将硅片用丙酮超声清洗两到三次,再用氢氟酸清洗硅片。然后把清洗后的石墨烯网转移到硅片上。静止在室温下15小时让器件硅与石墨烯网连接不好的地方形成自然氧化的二氧化硅层,至此组装成通常意义下的石墨烯太阳能电池。
所述氧化硅层厚度可为1.5~2.5纳米。
所述铂负载的石墨烯网的厚度为10~20纳米。
提升具有白光光伏效应的异质结器件的方法,该方法包括如下步骤:
将如上所述石墨烯网、硅光伏器件水平放置于0.1mmol/L的高铂酸溶液中,用能量密度为100mW/cm2,波长为405nm的激光,照射石墨烯、硅太阳能电池表面一段时间后,将石墨烯、硅器件取出用滤纸吸走吸附在器件表面的高铂酸溶液并于室温下干燥,从而完成铂纳米颗粒在石墨烯网上的负载。以提升石墨烯、硅器件的光伏效应。
所述100mmol/L高铂酸溶液是用纯度>99.99%的六水合六氯铂酸,溶于去离子水溶液中。常温,暗室内超声溶解得到。
所述激光照射时间最佳为300s。
    所制备的Pt-GFW/SiO2/Si太阳能电池样品中的Pt-GFW层膜厚由TEM(JEM-2011)测量;Pt-GFW厚度在10~20纳米之间,为p型半导体,氧化铝层厚度在1~2纳米之间。IV性能用梳状电极上下垂直测量法由Keithley2601电流电压表测量;光源由100 mW/cm2(AM 1.5)的模拟太阳光源提供。本专利仅以Pt-GFW层厚度200纳米、氧化硅厚度为1.5纳米的样品为例,给出其室温光伏性能测试的原理图及光伏性能的测量结果(图4)。
实施例4
本发明提升了石墨烯太阳能电池在室温条件下对可见光的响应。
先将铜网在氩气气氛中从室温经80分钟加热到1000℃,在1000℃条件下通入氢气30分钟,在1000℃温度下按比例200:2:30通入氩气、氢气、甲烷,反应20分钟。在氩气保护下,降温至室温。将生长了石墨烯网的铜网用硝酸铁溶液刻蚀后用去离子水清洗3次。然后将硅片用丙酮超声清洗两到三次,再用氢氟酸清洗硅片。然后把清洗后的石墨烯网转移到硅片上。静止在室温下15小时让器件硅与石墨烯网连接不好的地方形成自然氧化的二氧化硅层,至此组装成通常意义下的石墨烯太阳能电池。
所述氧化硅层厚度可为1.5~2.5纳米。
所述铂负载的石墨烯网的厚度为10~20纳米。
提升具有白光光伏效应的异质结器件的方法,该方法包括如下步骤:
将如上所述石墨烯网、硅光伏器件水平放置于10mmol/L的高铂酸溶液中,用能量密度为100mW,波长为405nm的激光,照射石墨烯、硅太阳能电池表面一段时间后,将石墨烯、硅器件取出用滤纸吸走吸附在器件表面的高铂酸溶液并于室温下干燥,从而完成铂纳米颗粒在石墨烯网上的负载。以提升石墨烯、硅器件的光伏效应。
所述10mmol/L高铂酸溶液是用纯度>99.99%的六水合六氯铂酸,溶于去离子水溶液中。常温,暗室内超声溶解得到。
所述激光照射时间最佳为200s。
    所制备的Pt-GFW/SiO2/Si太阳能电池样品中的Pt-GFW层膜厚由TEM(JEM-2011)测量;Pt-GFW厚度在10~20纳米之间,为p型半导体,氧化铝层厚度在1~2纳米之间。IV性能用梳状电极上下垂直测量法由Keithley2601电流电压表测量;光源由100 mW/cm2(AM 1.5)的模拟太阳光源提供。本专利仅以Pt-GFW层厚度200纳米、氧化硅厚度为1.5纳米的样品为例,给出其室温光伏性能测试的原理图及光伏性能的测量结果(图5)。
实施例5
本发明提升了石墨烯太阳能电池在室温条件下对可见光的响应。
先将铜网在氩气气氛中从室温经80分钟加热到1000℃,在1000℃条件下通入氢气30分钟,在1000℃温度下按比例200:2:30通入氩气、氢气、甲烷,反应20分钟。在氩气保护下,降温至室温。将生长了石墨烯网的铜网用硝酸铁溶液刻蚀后用去离子水清洗3次。然后将硅片用丙酮超声清洗两到三次,再用氢氟酸清洗硅片。然后把清洗后的石墨烯网转移到硅片上。静止在室温下15小时让器件硅与石墨烯网连接不好的地方形成自然氧化的二氧化硅层,至此组装成通常意义下的石墨烯太阳能电池。
所述氧化硅层厚度可为1.5~2.5纳米。
所述铂负载的石墨烯网的厚度为10~20纳米。
提升具有白光光伏效应的异质结器件的方法,该方法包括如下步骤:
将如上所述石墨烯网、硅光伏器件水平放置于10mmol/L的高铂酸溶液中,用能量密度为100mW,波长为405nm的激光,照射石墨烯、硅太阳能电池表面一段时间后,将石墨烯、硅器件取出用滤纸吸走吸附在器件表面的高铂酸溶液并于室温下干燥,从而完成铂纳米颗粒在石墨烯网上的负载。以提升石墨烯、硅器件的光伏效应。
所述10mmol/L高铂酸溶液是用纯度>99.99%的六水合六氯铂酸,溶于去离子水溶液中。常温,暗室内超声溶解得到。
所述激光照射时间最佳为400s。
所制备的Pt-GFW/SiO2/Si太阳能电池样品中的Pt-GFW层膜厚由TEM(JEM-2011)测量;Pt-GFW厚度在10~20纳米之间,为p型半导体,氧化铝层厚度在1~2纳米之间。IV性能用梳状电极上下垂直测量法由Keithley2601电流电压表测量;光源由100 mW/cm2(AM 1.5)的模拟太阳光源提供。本专利仅以Pt-GFW层厚度200纳米、氧化硅厚度为1.5纳米的样品为例,给出其室温光伏性能测试的原理图及光伏性能的测量结果(图6)。

Claims (9)

1.一种Pt-GFW/SiO2/n-Si异质结材料,其特征在于,该异质结材料为层状,在n-Si(100)基片上依次设置有氧化硅层,和负载了铂纳米颗粒的石墨烯网层,n-Si(100)基片下还设置有金属电极Ti/Au。
2.根据权利要求1所述的Pt-GFW/SiO2/n-Si异质结材料,其特征在于,负载了铂纳米颗粒的石墨烯网层中,铂原子与碳原子的摩尔比为2:98。
3.根据权利要求1所述的Pt-GFW/SiO2/n-Si异质结材料,其特征在于,氧化硅层的厚度为1.5-3.0纳米。
4.根据权利要求1所述的Pt-GFW/SiO2/n-Si异质结材料,其特征在于,所述的负载了铂纳米颗粒的石墨烯网层的厚度为10-20纳米,其中,石墨烯网层数为2~10层。
5.一种Pt-GFW/SiO2/n-Si异质结材料的制备方法,其特征在于,包括如下步骤:
1)将铜网在氩气气氛中从室温加热到1000℃,在1000℃条件下通入氢气,30分钟后,再通入氩气、氢气、甲烷的混合气体,反应10~20分钟,再在氩气保护下,降温至室温,将生长了石墨烯网的铜网用硝酸铁溶液刻蚀后用去离子水清洗,得到石墨烯网;
2)将n-Si(100)基片用丙酮、氢氟酸清洗除去表面的氧化层后,将步骤1)中的石墨烯网转移到硅基片上,在室温下自然氧化15-20小时后形成SiO2层,再用银胶、银线做为电极,得到GFW/n-Si;
3)将0.1~100mmol/L的高铂酸溶液滴加在GFW/n-Si上,并用能量密度为100mW,波长为405nm的激光,照射100~1000秒,最后将多余的高铂酸溶液除去,得到Pt-GFW/SiO2/n-Si异质结材料。
6. 根据权利要求5所述的Pt-GFW/SiO2/n-Si异质结材料的制备方法,其特征在于,铜网在氩气气氛中从室温加热到1000℃的升温速率为10-20℃/min。
7. 根据权利要求5所述的Pt-GFW/SiO2/n-Si异质结材料的制备方法,其特征在于,氩气、氢气、甲烷的混合气体的体积比为200:2:30。
8.根据权利要求5所述的Pt-GFW/SiO2/n-Si异质结材料的制备方法,其特征在于,步骤3)还可以为将10mmol/L的高铂酸溶液滴加在GFW/n-Si上,并用能量密度为100mW,波长为405nm的激光,照射500秒,最后将多余的高铂酸溶液除去,得到Pt-GFW/SiO2/n-Si异质结材料,其中10mmol/L高铂酸溶液是用纯度>99.99%的六水合六氯铂酸溶于去离子水中,在常温、暗室下超声得到的。
9.根据权利要求1~8任一项所述的Pt-GFW/SiO2/n-Si异质结材料在石墨烯太阳能电池上的应用。
CN201510156307.5A 2015-04-03 2015-04-03 一种Pt‑GFW/SiO2/n‑Si异质结材料及其制备方法 Active CN104882507B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510156307.5A CN104882507B (zh) 2015-04-03 2015-04-03 一种Pt‑GFW/SiO2/n‑Si异质结材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510156307.5A CN104882507B (zh) 2015-04-03 2015-04-03 一种Pt‑GFW/SiO2/n‑Si异质结材料及其制备方法

Publications (2)

Publication Number Publication Date
CN104882507A true CN104882507A (zh) 2015-09-02
CN104882507B CN104882507B (zh) 2017-01-25

Family

ID=53949920

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510156307.5A Active CN104882507B (zh) 2015-04-03 2015-04-03 一种Pt‑GFW/SiO2/n‑Si异质结材料及其制备方法

Country Status (1)

Country Link
CN (1) CN104882507B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102120186A (zh) * 2010-11-22 2011-07-13 南京大学 在石墨烯上负载铂纳米颗粒的制备方法
US20140141581A1 (en) * 2011-07-29 2014-05-22 Fujitsu Limited Method of manufacturing graphene nanomesh and method of manufacturing semiconductor device
CN104201221A (zh) * 2014-08-28 2014-12-10 中国科学院半导体研究所 基于石墨烯-金属纳米颗粒复合材料的太阳能电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102120186A (zh) * 2010-11-22 2011-07-13 南京大学 在石墨烯上负载铂纳米颗粒的制备方法
US20140141581A1 (en) * 2011-07-29 2014-05-22 Fujitsu Limited Method of manufacturing graphene nanomesh and method of manufacturing semiconductor device
CN104201221A (zh) * 2014-08-28 2014-12-10 中国科学院半导体研究所 基于石墨烯-金属纳米颗粒复合材料的太阳能电池

Also Published As

Publication number Publication date
CN104882507B (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
Peng et al. Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion
Bae et al. Back-illuminated Si photocathode: a combined experimental and theoretical study for photocatalytic hydrogen evolution
Xu et al. Photoelectrochemical cell for unassisted overall solar water splitting using a BiVO 4 photoanode and Si nanoarray photocathode
Deo et al. Strong photo-response in a flip-chip nanowire p-Cu 2 O/n-ZnO junction
Guliani et al. Exact analytical analysis of dye-sensitized solar cell: improved method and comparative study
Aurang et al. ZnO nanorods as antireflective coatings for industrial‐scale single‐crystalline silicon solar cells
CN102226715B (zh) 一种基于一维硅纳米结构阵列的可见光电化学探测器
US20130276873A1 (en) High level injection systems
Fardi et al. Characterization and modeling of CdS/CdTe heterojunction thin-film solar cell for high efficiency performance
CN102487103B (zh) 太阳能电池及其制备方法
Zhang et al. Two-dimensional perovskite Sr2Nb3O10 nanosheets meet CuZnS film: facile fabrications and applications for high-performance self-powered UV photodetectors
Wang et al. Single crystalline ordered silicon wire/Pt nanoparticle hybrids for solar energy harvesting
Mishra et al. Enhanced optical properties and dark IV characteristics of silicon nanowire-carbon quantum dots heterostructures
Bapathi et al. Passivation-free high performance self-powered photodetector based on Si nanostructure-PEDOT: PSS hybrid heterojunction
Thamri et al. Study of the performance of a ZnO-NiO/Si nanocomposite-based solar cell
CN104882507B (zh) 一种Pt‑GFW/SiO2/n‑Si异质结材料及其制备方法
CN105762222A (zh) 一种Pd/MoS2/SiO2/Si/SiO2/In多结光探测器件及其制备方法
Janene et al. Opto-electronic properties of a TiO2/PS/mc-Si heterojunction based solar cell
Schmitt et al. Photoelectrochemical Schlenk cell functionalization of multi-junction water-splitting photoelectrodes
CN107240623B (zh) 表面等离激元和界面场协同增强型单晶硅电池的制备方法
Essner Dye sensitized solar cells: optimization of Grätzel solar cells towards plasmonic enhanced photovoltaics
Yadav et al. Routes for realizing high-performing Si solar cells by using periodic structures
Abe et al. 2019 Index IEEE Journal of Photovoltaics Vol. 9
Abbas et al. 2018 Index IEEE Journal of Photovoltaics Vol. 8
Ogutman Hole Selective Tunneling Oxide Applications with Insight into Sophisticated Characterization Techniques

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant