CN104861785B - 高分散碳纳米管复合导电墨水 - Google Patents

高分散碳纳米管复合导电墨水 Download PDF

Info

Publication number
CN104861785B
CN104861785B CN201310716717.1A CN201310716717A CN104861785B CN 104861785 B CN104861785 B CN 104861785B CN 201310716717 A CN201310716717 A CN 201310716717A CN 104861785 B CN104861785 B CN 104861785B
Authority
CN
China
Prior art keywords
cnt
high dispersive
composite conducting
conducting ink
cnt composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310716717.1A
Other languages
English (en)
Other versions
CN104861785A (zh
Inventor
郝海燕
曹西亮
戴雷
蔡丽菲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Aglaia Technology Development Co Ltd
Guangdong Aglaia Optoelectronic Materials Co Ltd
Original Assignee
Beijing Aglaia Technology Development Co Ltd
Guangdong Aglaia Optoelectronic Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201310716717.1A priority Critical patent/CN104861785B/zh
Application filed by Beijing Aglaia Technology Development Co Ltd, Guangdong Aglaia Optoelectronic Materials Co Ltd filed Critical Beijing Aglaia Technology Development Co Ltd
Priority to JP2016559485A priority patent/JP2017508855A/ja
Priority to US15/106,749 priority patent/US20170029646A1/en
Priority to KR1020167012371A priority patent/KR20160084387A/ko
Priority to PCT/CN2014/092466 priority patent/WO2015096591A1/zh
Priority to TW103144231A priority patent/TW201525079A/zh
Publication of CN104861785A publication Critical patent/CN104861785A/zh
Priority to HK15111209.7A priority patent/HK1210492A1/zh
Application granted granted Critical
Publication of CN104861785B publication Critical patent/CN104861785B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/125Intrinsically conductive polymers comprising aliphatic main chains, e.g. polyactylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes

Abstract

本发明涉及一种高分散碳纳米管复合导电墨水,由改性碳纳米管、导电高分子材料和溶剂组成,所述改性碳纳米管由普通的碳纳米管经由紫外光机照射后,又经强酸氧化后得到的。经过该处理得以的碳纳米管在制备导电复合墨水时不需要添加表面活性剂来增加其分散性,使得其制得的导电层具有良好的导电性能和可见光范围内光学透过率以及柔性。此柔性碳纳米高分子透明导电膜导电性为100Ω/□‑1MΩ/□,性能处于世界先进水平,具有良好的应用前景。

Description

高分散碳纳米管复合导电墨水
技术领域
本发明涉及一种加入有碳纳米管的导电墨水,特别是涉及一种高分散碳纳米管复合导电墨水。
背景技术
在液晶面板、OLED面板、触摸屏、电子纸、太阳能电池等显示器件和光伏器件中,透明电极都是不可缺少的部分。氧化铟锡(ITO)在玻璃基底上形成ITO薄膜显示出优异的透光性和导电性,因此目前其在商业化透明电极的应用领域里占有主导地位。但随着科技的发展及透明电极应用领域的多元化,透明电极必须具备低方阻,可见光范围内良好的透过率、柔性、可实现大面积精细涂布成膜的简单操作工艺等要求。而ITO透明导电薄膜的不可弯折,自然资源匮乏,成本高等问题的限制其在未来柔性电子产业中的广泛应用。由此开发新型柔性透明电极材料来替代ITO电极是电子显示领域和光伏产业等应用领域急需解决的关键技术问题。目前柔性透明导电薄膜发展趋势正朝着高品质、高效率、低成本、环保的方向发展。新型的柔性电极材料中碳纳米管材料因为其高电子迁移率,低电阻率被科研和产业界认定为可代替ITO的透明电极。
碳纳米管是一种具有典型的层状中空结构特征的碳材料,构成碳纳米管的管身由六边形石墨碳环结构单元组成,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级)的一维量子材料。它的管壁构成主要为数层到数十层的同轴圆管。层与层之间保持固定的距离,约为0.34nm,直径一般为2~20nm。碳纳米管上碳原子的P电子形成大范围的离域π键,因此共轭效应显著。由于碳纳米管的结构与石墨的片层结构相同,具有很好的电学性能。然而,由于单壁碳纳米管之间很强的范德华作用力(~500eV/μm)和大的长径比(>1000),通常容易形成大的管束,难以分散,极大地制约了其优异性能的发挥和实际应用的开发。通常碳纳米管的分散需借助各种表面活性剂来实现其在溶剂中的分散。这样在形成的碳纳米导电薄膜会由于表面活性剂的不导电性导致其电学性能的降低。
发明内容
针对上述领域中的缺陷,本发明提供一种高分散碳纳米管复合导电墨水,无需外加分散辅助剂,此墨水采用无表面活性剂的碳纳米管分散液及导电高分子为原材料,通过溶液的共混工艺技术(超声波分散、机械搅拌、细胞粉碎等工艺方法复合),实现了碳纳米管与导电高分子溶液的均匀分散,制备的墨水稳定性和再分散性良好。
一种高分散碳纳米管复合导电墨水,由下列成分及其重量百分含量组成:
所述改性碳纳米管采用下述方法制得:(1)将碳纳米管分散在低沸点醇类或水溶液中,通过超声波分散或细胞粉碎机分散,分散液放入紫外光机中照射30-60分钟,离心;(2)将紫外光机清洗后的碳纳米管用氧化性强酸溶液进行氧化反应,离心;(3)将强酸清洗过的碳纳米管通过采用低沸点醇溶剂或水超声散,离心清洗后,得到高分散性的改性碳纳米管。
所述步骤(1)或/和步骤(2)重复1-2次。
所述低沸点醇为乙醇或甲醇。
所述氧化性强酸溶液为三氟乙酸、硝酸、浓硫酸、或添加有过氧化物的硝酸或浓硫酸。
所述过氧化物为过氧化铵或双氧水。
所述的碳纳米管为单壁碳纳米管,双壁碳纳米管,多壁碳纳米管。
所述的导电高分子为聚苯胺、聚3,4-乙撑二氧噻吩、聚乙炔或聚吡咯中的一种或几种。
所述导电高分子助溶剂为聚苯乙烯磺酸盐、樟脑磺酸或萘磺酸。
所述溶剂为水,乙醇,甲醇中的一种或几种。
该复合导电墨水的一种制备方法说明
1.碳纳米管分散液的制备方法:
首先将碳纳米管粉体分散在低沸点醇类或水溶液中,通过超声波分散或细胞粉碎机分散,分散液放入紫外光机中照射一定时间,可得离心得碳纳米管粉体。其次将紫外光机清洗后的碳纳米管用强酸控制反应条件,进行清洗。最后将强酸清洗过的碳纳米管通过多次离心分离后,重复超声波清洗后,得到均匀的单壁碳纳米管分散液。此工艺方法中的工艺步骤可以多次重复和调整。尤其是强酸清洗工艺中,采用不同的强酸对非晶态碳的作用也各不相同,所得碳纳米管的可溶性和碳纳米管的洁净度也有很大的差异。碳米管的回收率在80%左右。
2.本发明中采用的强酸有三氟乙酸(TFA),硝酸,浓硫酸,双氧水等在碳纳米管表面不会残留无机盐的易分解的酸。相应的溶剂有低沸点醇类如甲醇,乙醇;水;N,N-二甲基甲酰胺(DMF)等
3.将无表面活性剂的碳纳米管高分散溶液与导电高分子溶液共混,通过机械搅拌结合超声分散技术,或机械搅拌结合细胞破碎的工艺方法使得共混溶液形成稳定均匀的碳纳米管高分子分散体系,最后浓缩到合适的浓度。
该配方中的碳纳米管经过改性处理,极大的提高了其在普通溶剂的分散性,结合导电高分子材料,即可制成复合导电墨水,不需要外加表面活性剂来助溶,提高了该导电墨水的导电性能。该高分散碳纳米管复合导电墨水,可以在室温条件下,采用spin coating和激光烧蚀技术来制备精细的电极图案,也可以采用喷墨打印等技术实现微细结构电极图案的一次性制备。
该复合导电墨水可应用于柔性OLED显示器件、太阳能电池、液晶显示,触摸屏面板等器件中的极透明电极材料,与透明高分子基底相容性好,附着力强,可实现透明导电薄膜的柔性,同时也满足透明柔性电极使用寿命要求。
附图说明
图1基底PET膜层表面形貌图AFM照片,
图2PET表面的本发明复合导电墨水形成的膜层表面形貌图AFM照片,
图3改性CNT薄膜的SEM图,其中A为多壁碳纳米管(MWCNT),B为单壁碳纳米管(SWCNT)。
具体实施方式
下面结合实施例对本发明作进一步的详细说明。
本申请中的聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸钠水溶液(PEDOT:PSS)为外购产品,其PEDOT的含量在1.8%,聚苯乙烯磺酸钠的含量为0.5%。可以按下列方法自制:将PEDOT溶解于水中,由于其溶解性不行,需加入25%的PSS水溶液助溶。
实施例1
改性后的单壁碳纳米管甲醇溶液 10ml
导电高分子水溶液为的1.8%PEDOT:PSS水溶液 20ml
浓缩至15ml体积。
制备方法:0.05g的单壁碳纳米管(SWCNT)在20ml甲醇中超声分散20min后形成SWNT悬浊液。将此SWCNT悬浊液放入UV光清洗机中处理40min,得到SWCNT粉体;取20ml的去离子水放入单口烧瓶中,再加入10ml的浓HNO3(68wt%),加入5wt%过硫酸铵(APS)水溶液,混合均匀后加入提纯过的SWCNT粉体,磁子搅拌,120℃下回流反应5h。去离子水反复离心冲洗(7000rpm,10min)3次,将所得的单壁碳纳米管最后用甲醇超声分散20min,再离心,反复两次,最后得10ml的SWCNT的甲醇分散液。
将20ml的1.8%PEDOT:PSS水溶液与10ml的SWCNT的甲醇分散液混合均匀,浓缩至15ml(称重约15克)后,形成分散均一的SWCNT/PEDOT:PSS墨水溶液。
实施例2
改性后的多壁碳纳米管(MWCNT)乙醇溶液 20ml
1.8%PEDOT:PSS水溶液 20ml
制备方法:0.05g的MWCNT在20ml乙醇中超声分散20min后形成MWCNT悬浊液。将此MWCNT悬浊液放入UV光清洗机中处理40min。所得MWCNT粉体用DMF和TFA混合液(9:1/Vol)20ml超声清洗30-60min,在7000rpm转速下离心分离,再重复超声清洗,共反复5次,最后用乙醇超声分散20min,再离心,反复两次,最后得MWCNT的乙醇分散液20ml。
将20ml1.8%PEDOT:PSS与10ml的MWCNT的乙醇分散液混合均匀,浓缩至15ml(称重约15克)后,形成分散均一的MWCNT/PEDOT:PSS墨水溶液。
实施例3
改性后的SWCNT甲醇 10ml
1.8%PEDOT:PSS水溶液 20ml
制备方法:0.05g的单SWNT分散在20ml甲醇中,超声分散20min后形成SWNT悬浊液。将此SWNT悬浊液放入UV光清洗机中处理40min,得到SWNT粉体;取20ml的浓硫酸放入单口烧瓶中,加入提纯过的单壁SWNT粉体,磁力搅拌,室温溶胀12h。将SWNT的混合浓硫酸溶液用10:1的水稀释后,进行离心分离,反复4次。最后得单壁SWNT粉体。将此粉体放入单口烧瓶中,加入20ml的去离子水,再加入10ml的浓HNO3(68wt%),加10ml H2O2,磁力搅拌,85℃下回流反应5h。用去离子水反复离心冲洗(7000rpm,10min)3次,将所得的单壁碳纳米管最后用甲醇超声分散20min,再离心,反复两次,最后得SWCNT的甲醇分散液10ml。
将20ml PEDOT:PSS与10ml的SWCNT的甲醇分散液混合均匀,浓缩至15ml(称重约15克)后,形成分散均一的SWCNT/PEDOT:PSS墨水溶液
碳纳米高分子导电薄膜的制备方法
本发明所涉及的高分散碳纳米管复合导电墨水,可以在室温条件下,采用spincoating和激光烧蚀技术来制备精细的电极图案,也可以采用喷墨打印等技术实现微细结构电极图案的一次性制备。
本发明的复合导电墨水,其工艺可操作性强,可采用喷墨打印技术,旋涂技术以及配套的光刻技术,可实现在玻璃,透明晶体,透明陶瓷,高分子薄膜等表面制备碳纳米导电高分子膜层,其膜层表面形貌如图1、2、3所示。
碳纳米管分散液中,碳纳米管的分散性能良好,形成了单束网状分散。碳纳米管高分子墨水在PET薄膜表面涂膜后,形成的碳纳米管薄膜为较为均一的碳纳米高分子链结,并且表面粗糙度只有2.79nm。
碳纳米导电薄膜膜层性能检测:
表1碳纳米管高分子导电薄膜表
样品名称 方阻Ω/□ 透过率/550nm Ra平均粗糙度 Rq均方根粗糙度
PET膜层 90% 0.65nm 1.65nm
碳纳米导电薄膜 90 80% 3.94nm 2.97nm
本发明墨水形成的碳纳米高分子透明导电膜层具有良好的导电性能和可见光范围内光学透过率以及柔性。此柔性碳纳米高分子透明导电膜导电性可在(100Ω/□-1MΩ/□)可调。此碳纳米高分子导电墨水制备成本低,节能环保,产品对人体无毒无副作用,工艺简单。相比国内外碳纳米导电高分子电极材料的性能,本发明所制备的碳纳米柔性电极材料性能处于领先的水平。参见表2
表2国内外碳纳米导电薄膜与本发明碳纳米薄膜的光电性能比较
样品名称 方阻Ω/□ 透过率/550nm
碳纳米导电薄膜 90 80%
同行最佳 152 83%
本发明所研制的碳纳米管高分子柔性电极墨水及其所制备的透明柔性导电薄膜在触摸屏,太阳能电池以及OLED等显示器件所需的柔性透明电极方面具备良好的应用前景。

Claims (8)

1.一种高分散碳纳米管复合导电墨水,由下列成分及其重量百分含量组成:
所述改性碳纳米管采用下述方法制得:(1)将碳纳米管分散在低沸点醇类或水中,通过超声波分散或细胞粉碎机分散,分散液放入紫外光机中照射30-60分钟,离心;(2)将紫外光机清洗后的碳纳米管用氧化性强酸或氧化性强酸溶液进行氧化反应,离心;(3)将强酸清洗过的碳纳米管通过采用低沸点醇溶剂或水超声分散,离心清洗后,得到高分散性的改性碳纳米管;
所述的导电高分子材料为聚苯胺、聚3,4-乙撑二氧噻吩、聚乙炔或聚吡咯中的一种或几种;所述导电高分子助溶剂为聚苯乙烯磺酸盐、樟脑磺酸或萘磺酸。
2.根据权利要求1所述的高分散碳纳米管复合导电墨水,由下列成分及其重量百分含量组成:
3.根据权利要求1所述的高分散碳纳米管复合导电墨水,所述步骤(1)或/和步骤(2)重复1-2次。
4.根据权利要求1所述的高分散碳纳米管复合导电墨水,所述低沸点醇为乙醇或甲醇。
5.根据权利要求1所述的高分散碳纳米管复合导电墨水,所述氧化性强酸为三氟乙酸、硝酸、浓硫酸,所述氧化性强酸溶液为添加有过氧化物的硝酸或浓硫酸。
6.根据权利要求5所述的高分散碳纳米管复合导电墨水,所述过氧化物为过氧化铵或双氧水。
7.根据权利要求1所述的高分散碳纳米管复合导电墨水,所述的碳纳米管为单壁碳纳米管,双壁碳纳米管,多壁碳纳米管。
8.根据权利要求1所述的高分散碳纳米管复合导电墨水,所述溶剂为水,乙醇,甲醇中的一种或几种。
CN201310716717.1A 2013-12-23 2013-12-23 高分散碳纳米管复合导电墨水 Active CN104861785B (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201310716717.1A CN104861785B (zh) 2013-12-23 2013-12-23 高分散碳纳米管复合导电墨水
US15/106,749 US20170029646A1 (en) 2013-12-23 2014-11-28 High-dispersion carbon nanotube composite conductive ink
KR1020167012371A KR20160084387A (ko) 2013-12-23 2014-11-28 고분산 탄소나노튜브 복합 전도성 잉크
PCT/CN2014/092466 WO2015096591A1 (zh) 2013-12-23 2014-11-28 高分散碳纳米管复合导电墨水
JP2016559485A JP2017508855A (ja) 2013-12-23 2014-11-28 高分散のカーボンナノチューブ複合導電インク
TW103144231A TW201525079A (zh) 2013-12-23 2014-12-18 高分散碳納米管複合導電墨水
HK15111209.7A HK1210492A1 (zh) 2013-12-23 2015-11-13 高分散碳納米管複合導電墨水

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310716717.1A CN104861785B (zh) 2013-12-23 2013-12-23 高分散碳纳米管复合导电墨水

Publications (2)

Publication Number Publication Date
CN104861785A CN104861785A (zh) 2015-08-26
CN104861785B true CN104861785B (zh) 2017-11-14

Family

ID=53477513

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310716717.1A Active CN104861785B (zh) 2013-12-23 2013-12-23 高分散碳纳米管复合导电墨水

Country Status (7)

Country Link
US (1) US20170029646A1 (zh)
JP (1) JP2017508855A (zh)
KR (1) KR20160084387A (zh)
CN (1) CN104861785B (zh)
HK (1) HK1210492A1 (zh)
TW (1) TW201525079A (zh)
WO (1) WO2015096591A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL237572B1 (pl) * 2017-06-28 2021-05-04 Politechnika Slaska Im Wincent Sposób wytwarzania pasty do druku powłok przewodzących prąd elektryczny
JP7142278B2 (ja) * 2017-08-10 2022-09-27 デンカ株式会社 熱電変換材料の製造方法、熱電変換素子の製造方法及び熱電変換材料の改質方法
PL237958B1 (pl) * 2018-01-03 2021-06-14 Politechnika Slaska Im Wincent Kompozycja stanowiąca pastę lub atrament do druku powłok przewodzących prąd elektryczny
CN111710472A (zh) * 2020-06-03 2020-09-25 深圳烯湾科技有限公司 碳纳米管透明导电薄膜及其制备方法
CN113659139A (zh) * 2021-07-12 2021-11-16 中北大学 一种钒位铜掺杂复合碳纳米管的磷酸钒钠电极材料及其制备方法和应用
CN114158148A (zh) * 2021-11-16 2022-03-08 西湖大学 一种3d打印透明电加热电极的制备方法和应用
CN114106624B (zh) * 2021-12-08 2023-02-21 上海永安印务有限公司 一种水性油墨及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986398A (zh) * 2006-11-30 2007-06-27 上海交通大学 光化学修饰碳纳米管的方法
CN101866722A (zh) * 2009-04-15 2010-10-20 韩国科学技术研究院 使用金属丝来制备导电薄膜的方法以及导电薄膜

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040038251A1 (en) * 2002-03-04 2004-02-26 Smalley Richard E. Single-wall carbon nanotubes of precisely defined type and use thereof
ITMI20021737A1 (it) * 2002-08-01 2004-02-02 Univ Degli Studi Trieste Processo di purificazione di nanotubi di carbonio.
DE60239138D1 (de) * 2002-12-12 2011-03-24 Sony Deutschland Gmbh Lösliche Kohlenstoff-Nanoröhren
JP4519071B2 (ja) * 2004-02-16 2010-08-04 独立行政法人科学技術振興機構 カーボンナノチューブの構造選択分離と表面固定
US20060188723A1 (en) * 2005-02-22 2006-08-24 Eastman Kodak Company Coating compositions containing single wall carbon nanotubes
US7535462B2 (en) * 2005-06-02 2009-05-19 Eastman Kodak Company Touchscreen with one carbon nanotube conductive layer
US20070292622A1 (en) * 2005-08-04 2007-12-20 Rowley Lawrence A Solvent containing carbon nanotube aqueous dispersions
US20070246689A1 (en) * 2006-04-11 2007-10-25 Jiaxin Ge Transparent thin polythiophene films having improved conduction through use of nanomaterials
KR100801670B1 (ko) * 2006-10-13 2008-02-11 한국기계연구원 잉크젯 프린팅법에 의한 나노소재의 미세 전극 패턴 제조방법
US20080152573A1 (en) * 2006-12-20 2008-06-26 Noriyuki Juni Method for producing carbon nanotubes, method for producing liquid dispersion thereof and optical product
CA2698093A1 (en) * 2007-08-29 2009-03-12 Northwestern University Transparent electrical conductors prepared from sorted carbon nanotubes and methods of preparing same
JP2009238394A (ja) * 2008-03-25 2009-10-15 Fujifilm Corp 導電性ポリマー組成物、導電性ポリマー材料及び電極材料
US8414792B2 (en) * 2008-09-09 2013-04-09 Sun Chemical Corporation Carbon nanotube dispersions
TWI395710B (zh) * 2009-01-06 2013-05-11 Univ Tatung 奈米碳管複合材料之製作方法
CA2770997C (en) * 2009-08-14 2018-07-03 Ramesh Sivarajan Solvent-based and water-based carbon nanotube inks with removable additives
EP2634139A4 (en) * 2010-10-29 2017-06-07 Toray Industries, Inc. Method for manufacturing liquid dispersion of carbon-nanotube aggregates
CN103477397B (zh) * 2011-03-28 2016-07-06 富士胶片株式会社 导电性组合物、使用所述组合物的导电性膜及其制造方法
CN102634249B (zh) * 2012-04-10 2014-02-05 中国科学院苏州纳米技术与纳米仿生研究所 一种碳纳米管墨水的制备方法及晶体管器件的制作方法
CN103305051A (zh) * 2013-05-20 2013-09-18 Kmt纳米科技(香港)有限公司 一种低温辐射电热膜及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986398A (zh) * 2006-11-30 2007-06-27 上海交通大学 光化学修饰碳纳米管的方法
CN101866722A (zh) * 2009-04-15 2010-10-20 韩国科学技术研究院 使用金属丝来制备导电薄膜的方法以及导电薄膜

Also Published As

Publication number Publication date
TW201525079A (zh) 2015-07-01
WO2015096591A1 (zh) 2015-07-02
JP2017508855A (ja) 2017-03-30
CN104861785A (zh) 2015-08-26
KR20160084387A (ko) 2016-07-13
HK1210492A1 (zh) 2016-04-22
US20170029646A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
CN104861785B (zh) 高分散碳纳米管复合导电墨水
CN105321592B (zh) 碳纳米管‑高分子层状复合透明柔性电极及其制备方法
Mohd Nurazzi et al. Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: An overview
Baker et al. Polyaniline nanofibers: broadening applications for conducting polymers
JP5364582B2 (ja) カーボンナノチューブ組成物および透明導電性フィルム
Lin et al. Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer
Jo et al. Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating
Ouyang et al. Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors
Zhou et al. Improving electrical conductivity in polycarbonate nanocomposites using highly conductive PEDOT/PSS coated MWCNTs
Shim et al. Facile method to functionalize graphene oxide and its application to poly (ethylene terephthalate)/graphene composite
CN104059432B (zh) 透明碳纳米管高分子复合导电墨水及其制备方法
Ko et al. Vacuum-assisted bilayer PEDOT: PSS/cellulose nanofiber composite film for self-standing, flexible, conductive electrodes
Zhao et al. Electrical conductivity of poly (vinylidene fluoride)/carbon nanotube composites with a spherical substructure
CN104724692B (zh) 单壁碳纳米管均匀分散的方法
Yun et al. Composite films of oxidized multiwall carbon nanotube and poly (3, 4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT: PSS) as a contact electrode for transistor and inverter devices
Wang et al. Base and acid treatment of SWCNT-RNA transparent conductive films
Cui et al. High-concentration self-cross-linkable graphene dispersion
TWI496846B (zh) 墨水組合物以及使用其之抗靜電薄膜
Yang et al. Synthesis and characterization of polypyrrole nanotubes/multi-walled carbon nanotubes composites with superior electrochemical performance
KR101190206B1 (ko) 투명도전막 및 그 제조방법
CN105086377B (zh) 磺化石墨烯‑导电高分子分散液,其制备方法与应用
CN105295554B (zh) 高分散、粘度可控的碳纳米管透明电极墨水
KR20130003467A (ko) 탄소나노튜브를 이용한 투명 전도성 필름 및 그 제조방법
KR20110071539A (ko) 투명도전막 및 그 제조방법
Huang et al. Strengthened graphene oxide/diazoresin multilayer composites from layer-by-layer assembly and cross-linking

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1210492

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1210492

Country of ref document: HK