CN104860298B - The method that graphene is prepared using molten state reaction bed - Google Patents

The method that graphene is prepared using molten state reaction bed Download PDF

Info

Publication number
CN104860298B
CN104860298B CN201510133250.7A CN201510133250A CN104860298B CN 104860298 B CN104860298 B CN 104860298B CN 201510133250 A CN201510133250 A CN 201510133250A CN 104860298 B CN104860298 B CN 104860298B
Authority
CN
China
Prior art keywords
molten state
reaction bed
state reaction
graphene
carbon source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510133250.7A
Other languages
Chinese (zh)
Other versions
CN104860298A (en
Inventor
孙旭阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201510133250.7A priority Critical patent/CN104860298B/en
Publication of CN104860298A publication Critical patent/CN104860298A/en
Application granted granted Critical
Publication of CN104860298B publication Critical patent/CN104860298B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The present invention provides a kind of method that graphene is prepared using molten state reaction bed, and it comprises the following steps:1) molten state reaction bed is formed;2) gaseous carbon source after cracking is made to continue through the surface of the molten state reaction bed;3) separate out carbon supersaturation in the molten state reaction bed, so as to form graphene on the molten state reaction bed.Or this method comprises the following steps:1. by solid-state or liquid carbon source and reaction bed material mixing, mixture is formed;2. the mixture is melted, crack the solid-state or liquid carbon source, and form carbon containing molten state reaction bed;3. separate out carbon supersaturation in the molten state reaction bed, so as to form graphene on the molten state reaction bed.This method cost is low, efficiency high, pollution less, prepare graphene quality it is good, and can solve puzzlement engineering technological graphene stripping and transport difficulties.

Description

The method that graphene is prepared using molten state reaction bed
Technical field
The present invention relates to field of new material preparation, specifically, is related to a kind of preparation method of graphene.
Background technology
Graphene be one kind by carbon atom with sp2Hydridization and the two dimensional crystal with honeycomb lattice formed.2004, English The An Deliehaimu and Constantine's Nuo Woxiao loves of University of Manchester of state successfully isolate graphene from graphite, And therefore obtain Nobel Prize in physics in 2010.
Graphene has excellent performance.First, the specific surface area of graphene is very big, up to 2630m2/g.Secondly, stone Carbon atom in black alkene is with sp2Mode hydridization, each carbon atom three carbon atoms adjacent thereto form stabilization by σ keys Carbon-carbon bond, thus make graphene that there is high mechanical property, its Young's modulus is reachable up to 1100GPa, fracture strength 130GPa.Again, the pi-electron delocalization in graphene forms big pi bond, and pi-electron can move freely, thus graphene have it is excellent Electric conductivity, its carrier mobility speed may be up to 2 × 105cm2·V-1·S-1, and resistivity only has 10-8Ωm.In addition, stone Black alkene also has good optical property, thermal property and magnetic performance etc..Therefore, graphene has huge potential application valency Value, it is considered to be one of the present age most important new material.
At present, the preparation method of graphene can be divided into method from top to bottom and from bottom to top method, wherein, graphite oxide reduction Method is the main method in method from top to bottom.This method is first to handle to obtain graphite oxide by graphite progress Strong oxdiative, then to oxygen Graphite is peeled off to obtain graphene oxide, and finally graphene oxide is reduced to obtain graphene.In the method, by force The structure of oxidizing process meeting heavy damage graphene sheet layer, and can only partly recover the electricity of graphene sheet layer after reduction treatment Sub- conjugated structure, therefore obtained graphene is of low quality.In addition, the oxidizing process of graphite usually requires substantial amounts of strong acid (such as The concentrated sulfuric acid, concentrated nitric acid) or other strong oxidizers (such as liquor potassic permanganate), and hydrazine hydrate or boron hydrogen are also needed in reduction process Change the noxious materials such as sodium, therefore this method efficiency is low, cost is high, energy consumption is big, seriously polluted.
Chemical vapor deposition (CVD) epitaxial growth method is the main method in method from bottom to top.This method method is, in high temperature Under be filled with carbon-source gas (such as methane, ethane, acetylene), carbon-source gas decompose simultaneously forms graphene on substrate.This method High-quality graphene can be formed on substrate (such as copper substrate), but the strict, reaction time is required to device and working condition Length, low yield, because using a large amount of hazardous gases and it is with high costs.Particularly, by this method in substrate (such as copper, nickel, carbon SiClx etc.) on the graphene that grows be difficult to be peeled off from substrate.Generally required during stripping using poles such as strong acid burn into high-temperature gasifications End method, this has been resulted in, and cost is high, environmental pollution is big, and can damage graphene finished product.
The content of the invention
The present invention is exactly in order to solve the above-mentioned technical problem to make, the purpose is to, there is provided one kind is anti-using molten state The method for answering bed to prepare graphene, this method cost is low, efficiency high, pollution less, prepare graphene quality it is good, and can solve be stranded Disturb graphene stripping and the transport difficulties of engineering technological.
To achieve these goals, in one aspect of the invention, there is provided one kind prepares graphite using molten state reaction bed The method of alkene, it comprises the following steps:1) molten state reaction bed is formed;2) continue through the gaseous carbon source after cracking described molten Melt the surface of state reaction bed;3) separate out carbon supersaturation in the molten state reaction bed, so as in the molten state reaction bed Upper formation graphene.
Preferably, the material for forming the molten state reaction bed is at normal temperatures water-soluble substances or dissolves in weak acid and weak base Material.Specifically, the water-soluble substances or dissolve in the material of weak acid and weak base and can include from water miscible or dissolve in The one or more materials selected in the inorganic salts of weak acid and weak base, inorganic base, oxide, nitride, carbide.Further preferably Ground, in above-mentioned steps 3) it can also comprise the following steps afterwards:4) temperature of the molten state reaction bed is down to normal temperature, so as to Forming deposition on surface has the material of graphene;5) material that deposition on the surface has graphene is immersed into water or weak acid and weak base Middle elution, so as to obtain graphene.
Furthermore it is preferred that the gaseous carbon source can include from aliphatic hydrocarbon, aromatic hydrocarbon, hydrocarbon derivative, containing carbon macromolecule The one or more carbonaceous materials selected in polymer.Further, it is possible to made by the high temperature of the molten state reaction bed described Gaseous carbon source is cracked or can be cracked the gaseous carbon source to form the gaseous state after the cracking by preheating Carbon source.Further, can during being cracked the gaseous carbon source or making carbon from molten state reaction bed precipitation To use the one or more in copper, copper-bearing alloy, nickel, nickel-containing alloys, platinum, platinum rhodium to be used as catalyst.
Furthermore, it is preferable that in above-mentioned steps 2) in can be passed through one selected from nitrogen, argon gas, hydrogen, ammonia simultaneously Kind or multiple gases, as protective gas.
Furthermore it is preferred that in above-mentioned steps 3) before, it is additionally may included in the molten state reaction bed and inserts for stone The solid substrate of black alkene growth, so that when making carbon supersaturation precipitation in the molten state reaction bed, in the solid substrate Upper deposited graphite alkene simultaneously.
Furthermore it is preferred that in above-mentioned steps 1) in, graphene seed crystal can be added in the molten state reaction bed.
In another aspect of this invention, there is provided a kind of method that graphene is prepared using molten state reaction bed, it is included such as Lower step:1. by solid-state or liquid carbon source and reaction bed material mixing, mixture is formed;2. the mixture is melted, make institute Solid-state or liquid carbon source cracking are stated, and forms carbon containing molten state reaction bed;3. carbon is set to be satiated in the molten state reaction bed And precipitation, so as to form graphene on the molten state reaction bed.
Preferably, the solid-state or liquid carbon source can be included from aliphatic hydrocarbon, aromatic hydrocarbon, hydrocarbon derivative, carbon containing high score The one or more carbonaceous materials selected in sub- polymer, phthalocyanines material.
Preferably, the reaction bed material is water-soluble substances or the material for dissolving in weak acid and weak base at normal temperatures.Specifically Say, the water-soluble substances or dissolve in the material of weak acid and weak base and can include from water miscible or dissolve in the nothing of weak acid and weak base The one or more materials selected in machine salt, inorganic base, oxide, nitride, carbide.Further, 3. gone back afterwards in step It may include steps of:4. the temperature of the molten state reaction bed is down into normal temperature, there is graphite so as to form deposition on surface The material of alkene;Eluted 5. the material that deposition on the surface has graphene is immersed in water or weak acid and weak base, so as to obtain graphite Alkene.
Preferably, in the mixture, the one kind that can add in copper, copper-bearing alloy, nickel, nickel-containing alloys, platinum, platinum rhodium Or a variety of catalyst separated out as the solid-state or liquid carbon source cracking or carbon from the molten state reaction bed.
Preferably, step 2. in can be passed through the one or more selected from nitrogen, argon gas, hydrogen, ammonia simultaneously Gas, as protective gas.
Preferably, before step is 3., it is additionally may included in the molten state reaction bed and inserts for graphene growth Solid substrate, it is simultaneously heavy in the solid substrate so as to when making carbon supersaturation separating out in the molten state reaction bed Product graphene.
Preferably, step 1. in, graphene seed crystal can be added in the mixture.
Understood from the description above with practice, the present invention prepares graphene using molten state reaction bed, it is believed that is Breakthrough to the graphene method that is vapor-deposited in solid substrate of routine.Equipment investment used in the present invention is small, it is simple and easy, Cost is low, efficiency high.The present invention prepare graphene during, it is not necessary to using strong acid and other strong oxidizers, be not required to Noxious material is used, therefore the influence polluted less, to graphene performance is small.By dragging for away precipitation from molten state reaction bed Graphene or there is the material of graphene by the way that carbon containing molten state reaction bed is cooled on the surface formed after normal temperature into deposition Immerse in water or weak acid and weak base and afford graphene, the graphene that can easily solve to perplex engineering technological is peeled off and turned Move problem.If desired, graphene growth can also be made on the substrate of growth is generally difficult to, consequently facilitating manufacture device Part.In addition, graphene quality prepared by the present invention is good, cost-effective, it is not high to preparing the purity requirement of raw material of graphene.
Brief description of the drawings
Fig. 1 is the flow chart of the method that graphene is prepared using molten state reaction bed described in one aspect of the present invention;
Fig. 2 is the schematic arrangement of Nickel Phthalocyanine;
Fig. 3 be described in one embodiment of the present of invention be reaction bed material using copper chloride, using methane as carbon source, with copper foil The photo of the graphene prepared for catalyst and solid substrate;
Fig. 4 is being prepared using sodium chloride as reaction bed material, by carbon source of benzene described in one embodiment of the present of invention Transmission electron microscope (TEM) photo of graphene;
Fig. 5 be described in one embodiment of the present of invention using potassium chloride as reaction bed material, using Nickel Phthalocyanine as carbon source system X-ray diffraction (XRD) collection of illustrative plates of standby graphene;
Fig. 6 be described in one embodiment of the present of invention using potassium chloride as reaction bed material, using Nickel Phthalocyanine as carbon source system Transmission electron microscope (TEM) photo of standby graphene.
Embodiment
The reality of the method for the present invention that graphene is prepared using molten state reaction bed described below with reference to the accompanying drawings Apply example.One of ordinary skill in the art will recognize, without departing from the spirit and scope of the present invention, Ke Yiyong A variety of modes are modified to described embodiment.Therefore, accompanying drawing and description are inherently illustrative, without It is to be used to limit scope of the claims.
Fig. 1 is the flow chart of the method that graphene is prepared using molten state reaction bed described in one aspect of the present invention. As shown in figure 1, the method that graphene is prepared using molten state reaction bed described in one embodiment of the present of invention is included as follows Step:
First, in step sl, molten state reaction bed is formed.Then, in step s 2, hold the gaseous carbon source after cracking The continuous surface by the molten state reaction bed.Finally, in step s3, carbon supersaturation analysis in the molten state reaction bed is made Go out, so as to form graphene on the molten state reaction bed.
In the present invention, the molten state reaction bed is used as the liquid substrate and carbon solvent of growth graphene, gaseous carbon source After cracking, carbon dissolution is in molten state reaction bed.By separating out carbon supersaturation in molten state reaction bed, carbon can be separated out On molten state reaction bed, so as to form graphene.
Forming the material of the molten state reaction bed and can using has water miscible material or dissolves in weak at normal temperatures The material of sour weak base.Specifically, the water-soluble substances or dissolve in weak acid and weak base material can include from water miscible or The inorganic salts of weak acid and weak base are dissolved in (for example, villaumite, sulfate, nitrate, carbonate, phosphate, silicate, manganate, nickel Hydrochlorate, cobaltatess etc.), inorganic base (for example, the metal hydroxides such as potassium hydroxide, sodium hydroxide, calcium hydroxide), oxide, The one or more materials selected in nitride, carbide.But the invention is not restricted to this.If on the molten state reaction bed Directly graphene is dragged for away after indigenous graphite alkene, then the material for forming molten state reaction bed is needed not be with water miscible material Or dissolve in the material of weak acid and weak base.The fusing point for forming the material of molten state reaction bed can be in 500 DEG C to 1500 DEG C of scope It is interior.
The gaseous carbon source can include selecting from aliphatic hydrocarbon, aromatic hydrocarbon, hydrocarbon derivative, carbon containing high molecular polymer One or more carbonaceous materials, for example, methane, ethane, propane, butane, ethene, propylene, acetylene, cycloalkane, benzene, toluene, Naphthalene, methanol, ethanol, carbohydrate.Selected gaseous carbon source should be cracked easily, anti-to enable carbon to be dissolved in molten state Answer in bed.
The cracking of gaseous carbon source can be realized by two methods, in first method, can be passed directly into gaseous state Carbon source, can be under the high temperature action of the molten state reaction bed when gaseous carbon source passes through the surface of high-temperature molten-state reaction bed Cracked.In the second approach, by the method for preheating gaseous carbon source can be made first to be cracked, the carbon after then cracking Molten state reaction bed is passed through in source, and dissolves wherein.In order that cracking temperature reduces, improves lysis efficiency and separate out carbon Efficiency improves, and during being cracked gaseous carbon source or making carbon from the precipitation of molten state reaction bed, can use copper, cupric One or more in alloy, nickel, nickel-containing alloys, platinum, platinum rhodium are as catalyst.These catalyst can be made foil-like, it is netted, Foam-like, and the place that gaseous carbon source cracks is placed on, such as it is placed on the top of molten state reaction bed.
While the gaseous carbon source after making cracking continues through the surface of molten state reaction bed, can be passed through from nitrogen, The one or more gases selected in argon gas, hydrogen, ammonia, as protective gas.
Include the carbon method that supersaturation separates out in the molten state reaction bed:The carbon being passed through after excessive cracking Source, or supersaturated solubility of the carbon in the molten state reaction bed is reduced by changing temperature and/or pressure, so that Carbon can be separated out to form graphene in supersaturation from molten state reaction bed.But the invention is not restricted to this.
In addition, in order to improve the crystalline rate of graphene, graphene seed crystal can be added in molten state reaction bed.
In one embodiment, after graphene is being formed on the surface of molten state reaction bed, can be shifted in time, So that the forming process of graphene can be carried out continuously.
In another embodiment, make carbon in molten state reaction bed before supersaturation precipitation, can also be in molten state The solid substrate for graphene growth is inserted in reaction bed, so that when making carbon supersaturation precipitation in molten state reaction bed, In the solid substrate simultaneously deposited graphite alkene.The solid substrate can include silicon chip, germanium wafer, sapphire, carborundum, oxygen Change aluminium, aluminium nitride, metal foil, potsherd etc..
In yet another embodiment, for water-soluble substances or weak acid and weak base is dissolved in the material for forming molten state reaction bed Material in the case of, the temperature of carbon containing molten state reaction bed can be down to normal temperature, the solidification of carbon containing molten state reaction bed Afterwards, forming deposition on surface has the material of graphene.Then, the material that deposition on the surface has graphene is immersed into water or weak Eluted in sour weak base, so as to obtain graphene.
In another aspect of this invention, solid-state or liquid carbon source can be used, graphene is prepared using molten state reaction bed. The method that graphene is prepared using molten state reaction bed described in another aspect of the present invention is comprised the following steps:1. by solid-state or liquid State carbon source and reaction bed material mixing, form mixture;2. the mixture is melted, split the solid-state or liquid carbon source Solution, and form carbon containing molten state reaction bed;3. separate out carbon supersaturation in the molten state reaction bed, so as to described molten Melt and form graphene on state reaction bed.
Similar with description above, the solid-state or liquid carbon source include from aliphatic hydrocarbon, aromatic hydrocarbon, hydrocarbon derivative, contained The one or more carbonaceous materials selected in carbon macromolecule polymer, phthalocyanines material.Wherein, phthalocyanines material is a kind of big ring Compound, Phthalocyanine center are a 18- π systems being made up of carbon nitrogen conjugated double bond, have a cavity in ring.In cavity Two hydrogen atoms can be substituted by 70 multiple elements, including almost all of metallic element and a part of nonmetalloid and gold Belong to oxide etc., Fig. 2 shows the schematic arrangement of Nickel Phthalocyanine.
The reaction bed material can use to be had water miscible material or dissolves in the material of weak acid and weak base at normal temperatures. Specifically, the water-soluble substances or dissolve in the material of weak acid and weak base and can include from water miscible or dissolve in weak acid and weak base Inorganic salts (for example, villaumite, sulfate, nitrate, carbonate, phosphate, silicate, manganate, nickelate, cobaltatess Deng), inorganic base (for example, the metal hydroxides such as potassium hydroxide, sodium hydroxide, calcium hydroxide), oxide, nitride, carbonization The one or more materials selected in thing.But the invention is not restricted to this.If the indigenous graphite alkene on the molten state reaction bed Directly graphene is dragged for away afterwards, then the material for forming molten state reaction bed is needed not be with water miscible material or dissolved in weak The material of sour weak base.The fusing point for forming the material of molten state reaction bed can be in the range of 500 DEG C to 1500 DEG C.
In the mixture, the one or more that can add in copper, copper-bearing alloy, nickel, nickel-containing alloys, platinum, platinum rhodium The catalyst separated out as the solid-state or liquid carbon source cracking or carbon from molten state reaction bed, it is anti-can so to reduce molten state The temperature of bed is answered, the lysis efficiency of carbon source can be either improved or improve the efficiency that carbon separates out.
Melting the mixture simultaneously, the one or more selected from nitrogen, argon gas, hydrogen, ammonia can be passed through Gas, as protective gas.
Include the carbon method that supersaturation separates out in the molten state reaction bed:Make carbon source excessive, or pass through Change temperature and/or pressure to reduce supersaturated solubility of the carbon in the molten state reaction bed, so that carbon can be from molten Melt supersaturation in state reaction bed to separate out to form graphene.But the invention is not restricted to this.
In addition, in order to improve the crystalline rate of graphene, graphene seed crystal can be added in molten state reaction bed.
In one embodiment, after graphene is being formed on the surface of molten state reaction bed, can be shifted in time, So that the forming process of graphene can be carried out continuously.
In another embodiment, can also be before supersaturated solubility of the carbon in molten state reaction bed is reduced The solid substrate for graphene growth is inserted in molten state reaction bed, so as to which carbon is supersaturated in molten state reaction bed to analyse when making When going out, in the solid substrate simultaneously deposited graphite alkene.The solid substrate can include silicon chip, germanium wafer, sapphire, carbonization Silicon, aluminum oxide, aluminium nitride, metal foil, potsherd etc..
In yet another embodiment, for water-soluble substances or weak acid and weak base is dissolved in the material for forming molten state reaction bed Material in the case of, the temperature of carbon containing molten state reaction bed can be down to normal temperature, the solidification of carbon containing molten state reaction bed Afterwards, forming deposition on surface has the material of graphene.Then, the material that deposition on the surface has graphene is immersed into water or weak Eluted in sour weak base, so as to obtain graphene.
Further described below in conjunction with specific example and of the present invention prepare graphene using molten state reaction bed Method.
Example 1:
The material for forming molten state reaction bed is copper chloride, is loaded into graphite crucible and is placed in high-temperature vacuum tubular type stove In.900 DEG C are warming up to, then further heats up to 925 DEG C and is kept for 1 hour, high-purity is continually fed into when being incubated for 925 DEG C (purity is more than 99.99%) methane and hydrogen gas mixture, wherein, methane is 95 with hydrogen volume ratio:1.Copper foil is placed in In molten state reaction bed, copper foil is taken out at the end of insulation.Direct precipitation has high purity graphite alkene on copper foil.Fig. 3 is shown The photo of copper foil formed with graphene.The specific surface area data of the grapheme material is shown in Table 1.
Example 2:
The material for forming molten state reaction bed is copper chloride, is loaded into graphite crucible and is placed in high-temperature vacuum tubular type stove In.1300 DEG C are warming up to, 1250 DEG C is then cooled to and is kept for 1 hour, high-purity (purity is continually fed into when being incubated for 1250 DEG C For more than 99.99%) methane and hydrogen gas mixture, wherein, methane is 95 with hydrogen volume ratio:1.Sapphire sheet is placed in molten Melt in state reaction bed, Direct precipitation has high purity graphite alkene material in sapphire sheet.The specific surface area number of the grapheme material According to being shown in Table 1.
Example 3:
The material for forming molten state reaction bed is potassium hydroxide, is loaded into graphite crucible and is placed in high-temperature vacuum tubular type stove In.1100 DEG C are warming up to, 1050 DEG C is then cooled to and is kept for 20 minutes, it is (pure to be continually fed into high-purity when being incubated for 1050 DEG C Spend for more than 99.99%) acetylene and hydrogen gas mixture, wherein, acetylene is 99 with hydrogen volume ratio:1.Then, by molten state The temperature of reaction bed is down to room temperature.Solidification products are immersed in the water elution, obtain high purity graphite alkene material.The grapheme material Specific surface area data be shown in Table 1.
Example 4:
The material for forming molten state reaction bed is potassium hydroxide, is mixed into single-layer graphene powder wherein and does seed crystal, wherein, The volume ratio of potassium hydroxide and graphene seed crystal is 999999:1.It is loaded into graphite crucible and is placed in high-temperature vacuum tubular type stove In.1100 DEG C are warming up to, 1050 DEG C is then cooled to and is kept for 20 minutes, it is (pure to be continually fed into high-purity when being incubated for 1050 DEG C Spend for more than 99.99%) acetylene and hydrogen gas mixture, wherein, acetylene is 99 with hydrogen volume ratio:1.Then, by molten state The temperature of reaction bed is down to room temperature.Solidification products are immersed in the water elution, obtain high purity graphite alkene material.The grapheme material Specific surface area data be shown in Table 1.
Example 5:
The material for forming molten state reaction bed is potassium hydroxide, is loaded into graphite crucible and is placed in high-temperature vacuum tubular type stove In.1000 DEG C are warming up to, 950 DEG C is then cooled to and is kept for 20 minutes, continues that (purity is by high-purity when being incubated for 950 DEG C More than 99.99%) acetylene is passed through with hydrogen gas mixture after nickel foam, wherein, acetylene is 99 with hydrogen volume ratio:1.So Afterwards, the temperature of molten state reaction bed is down to room temperature.Solidification products are immersed in the water elution, obtain high purity graphite alkene material. The specific surface area data of the grapheme material is shown in Table 1.
Example 6:
The material for forming molten state reaction bed is potassium hydroxide, is loaded into and is loaded with the graphite crucible of nickel foam and is placed in height In warm vacuum tube furnace.1000 DEG C are warming up to, 950 DEG C is then cooled to and is kept for 20 minutes, is continually fed into when being incubated for 950 DEG C High-purity (purity is more than 99.99%) acetylene and hydrogen gas mixture, wherein, acetylene is 99 with hydrogen volume ratio:1.Then, The temperature of molten state reaction bed is down to room temperature.Solidification products are immersed in the water elution, obtain high purity graphite alkene material.The stone The specific surface area data of black alkene material is shown in Table 1.
Example 7:
The material for forming molten state reaction bed is sodium chloride, is loaded into graphite crucible and is placed in high-temperature vacuum tubular type stove In.1200 DEG C are warming up to, 1150 DEG C is then cooled to and is kept for 0.5 hour.It is (pure that high-purity is continually fed into when being incubated for 1150 DEG C Spend for more than 99.99%) benzene vapor and hydrogen gas mixture, wherein, benzene vapor is 99 with hydrogen volume ratio:1.Then, will be molten The temperature for melting state reaction bed is down to room temperature.Solidification products are immersed in the water elution, obtain the grapheme material of high-purity.The graphite The transmission electron microscope photo of alkene material is shown in Fig. 4, and its specific surface area data is shown in Table 1.
Example 8:
The material for forming molten state reaction bed is potassium chloride, and solid-state carbon source is the Nickel Phthalocyanine of 30.0 grams of laboratory synthesis (NiPc), the mass ratio of Nickel Phthalocyanine and potassium chloride is 1:99, Nickel Phthalocyanine is well mixed with potassium chloride, and be placed on quartz ampoule In formula stove.(argon gas flow velocity is 50cm under high-purity argon gas protection3·min-1), 800 DEG C are warming up to, then stablizes 8 at 800 DEG C Hour, finally it is naturally cooling to room temperature.Solidification products are immersed in the water and eluted, obtain grapheme material.The graphene material X-ray diffraction (XRD) collection of illustrative plates of material is shown in Fig. 5, and its transmission electron microscope photo is shown in Fig. 6, and its specific surface area data is shown in table 1.
Example 9:
The material for forming molten state reaction bed is potassium chloride, and liquid carbon source is 20.0 grams of liquid toluenes, toluene and potassium chloride Mass ratio be 1:99.Toluene is well mixed with potassium chloride, and is placed in quartz tube furnace.Protected in high-purity argon gas Under, 900 DEG C are warming up to, then stablizes at 900 DEG C 4 hours, is finally naturally cooling to room temperature.By solidification products be immersed in the water into Row elution, obtains grapheme material, its specific surface area data is shown in table 1.
Table 1:
Example Reaction bed material Carbon source Graphene specific surface area (㎡ g-1)
1 CuCl2 CH4(being deposited on copper foil) 1190.5
2 CuCl2 CH4(being deposited on sapphire) 513.6
3 KOH C2H2 815.1
4 KOH C2H2(added with seed crystal) 1006.4
5 KOH C2H2(adding nickel foam) 901.2
6 KOH C2H2(adding nickel foam) 899.7
7 NaCl C6H6 402.3
8 KCl NiPc 490.8
9 KOH Toluene 815.1
Understood from the description above with practice, the present invention prepares graphene using molten state reaction bed, it is believed that is Breakthrough to the graphene method that is vapor-deposited in solid substrate of routine.Equipment investment used in the present invention is small, it is simple and easy, Cost is low, efficiency high.The present invention prepare graphene during, it is not necessary to using strong acid and other strong oxidizers, be not required to Noxious material is used, therefore the influence polluted less, to graphene performance is small.By dragging for away precipitation from molten state reaction bed Graphene or there is the material of graphene by the way that carbon containing molten state reaction bed is cooled on the surface formed after normal temperature into deposition Immerse in water or weak acid and weak base and afford graphene, the graphene that can easily solve to perplex engineering technological is peeled off and turned Move problem.If desired, graphene growth can also be made on the substrate of growth is generally difficult to, consequently facilitating manufacture device Part.In addition, graphene quality prepared by the present invention is good, cost-effective, it is not high to preparing the purity requirement of raw material of graphene.
It will be appreciated by those skilled in the art that the utilization molten state reaction bed proposed for the invention described above prepares graphite The method of alkene, various improvement and combination can also be made on the basis of present invention is not departed from.Therefore, protection of the invention Scope should be determined by the content of appended claims.

Claims (18)

1. a kind of method that graphene is prepared using molten state reaction bed, is comprised the following steps:
1) molten state reaction bed is formed;
2) gaseous carbon source after cracking is made to continue through the surface of the molten state reaction bed;
3) separate out carbon supersaturation in the molten state reaction bed, so as to form graphene on the molten state reaction bed,
Wherein, the material for forming the molten state reaction bed is water-soluble substances or the thing for dissolving in weak acid or weak base at normal temperatures Matter.
2. the method for preparing graphene using molten state reaction bed as claimed in claim 1, wherein, the water-soluble substances or Dissolve in the material of weak acid or weak base include from it is water miscible or dissolve in the inorganic salts of weak acid or weak base, inorganic base, oxide, The one or more materials selected in nitride, carbide.
3. the method for preparing graphene using molten state reaction bed as claimed in claim 1, wherein, also wrapped after step 3) Include following steps:
4) temperature of the molten state reaction bed is down to normal temperature, has the material of graphene so as to form deposition on surface;
5) material that deposition on the surface has graphene is immersed in water or weak acid or weak base and eluted, so as to obtain graphene.
4. the method for preparing graphene using molten state reaction bed as claimed in claim 1, wherein, the gaseous carbon source includes The one or more carbonaceous materials selected from aliphatic hydrocarbon, aromatic hydrocarbon, hydrocarbon derivative, carbon containing high molecular polymer.
5. the method for preparing graphene using molten state reaction bed as claimed in claim 4, wherein, it is anti-by the molten state Answering the high temperature of bed is cracked the gaseous carbon source or the gaseous carbon source crack come described in being formed by preheating Gaseous carbon source after cracking.
6. the method for preparing graphene using molten state reaction bed as claimed in claim 5, wherein, make the gaseous carbon source Cracked and during carbon is from the precipitation of molten state reaction bed, use copper, copper-bearing alloy, nickel, nickel-containing alloys, platinum, platinum One or more in rhodium are as catalyst.
7. the method for preparing graphene using molten state reaction bed as claimed in claim 1, wherein, lead to simultaneously in step 2) Enter the one or more gases selected from nitrogen, argon gas, hydrogen, ammonia, as protective gas.
8. the method for preparing graphene using molten state reaction bed as claimed in claim 1, wherein, before step 3), also It is included in the solid substrate inserted in the molten state reaction bed for graphene growth, makes carbon anti-in the molten state so as to work as Answer in bed supersaturation separate out when, in the solid substrate simultaneously deposited graphite alkene.
9. the method for preparing graphene using molten state reaction bed as claimed in claim 1, wherein, in step 1), in institute State addition graphene seed crystal in molten state reaction bed.
10. a kind of method that graphene is prepared using molten state reaction bed, is comprised the following steps:
1. by solid-state or liquid carbon source and reaction bed material mixing, mixture is formed;
2. the mixture is melted, crack the solid-state or liquid carbon source, and form carbon containing molten state reaction bed;
3. separate out carbon supersaturation in the molten state reaction bed, so as to form graphene on the molten state reaction bed.
11. the method for preparing graphene using molten state reaction bed as claimed in claim 10, wherein, the solid-state or liquid Carbon source include one kind for being selected from aliphatic hydrocarbon, aromatic hydrocarbon, hydrocarbon derivative, carbon containing high molecular polymer, phthalocyanines material or A variety of carbonaceous materials.
12. the method for preparing graphene using molten state reaction bed as claimed in claim 10, wherein, the reaction bed material For water-soluble substances or dissolve in the material of weak acid or weak base at normal temperatures.
13. the method for preparing graphene using molten state reaction bed as claimed in claim 12, wherein, the water-soluble substances Or dissolve in the material of weak acid or weak base and include from water miscible or dissolve in the inorganic salts, inorganic base, oxidation of weak acid or weak base The one or more materials selected in thing, nitride, carbide.
14. the method for preparing graphene using molten state reaction bed as claimed in claim 12, wherein, 3. gone back afterwards in step Comprise the following steps:
4) temperature of the molten state reaction bed is down to normal temperature, has the material of graphene so as to form deposition on surface;
5) material that deposition on the surface has graphene is immersed in water or weak acid or weak base and eluted, so as to obtain graphene.
15. the method for preparing graphene using molten state reaction bed as claimed in claim 10, wherein, in the mixture In, the one or more added in copper, copper-bearing alloy, nickel, nickel-containing alloys, platinum, platinum rhodium are split as the solid-state or liquid carbon source The catalyst that solution or carbon separate out from the molten state reaction bed.
16. the method for preparing graphene using molten state reaction bed as claimed in claim 10, wherein, step 2. in simultaneously The one or more gases selected from nitrogen, argon gas, hydrogen, ammonia are passed through, as protective gas.
17. the method for preparing graphene using molten state reaction bed as claimed in claim 10, wherein, before step is 3., The solid substrate inserted in the molten state reaction bed for graphene growth is additionally included in, makes carbon in the molten state so as to work as In reaction bed supersaturation separate out when, in the solid substrate simultaneously deposited graphite alkene.
18. the method for preparing graphene using molten state reaction bed as claimed in claim 10, wherein, step 1. in, Graphene seed crystal is added in the mixture.
CN201510133250.7A 2015-03-25 2015-03-25 The method that graphene is prepared using molten state reaction bed Active CN104860298B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510133250.7A CN104860298B (en) 2015-03-25 2015-03-25 The method that graphene is prepared using molten state reaction bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510133250.7A CN104860298B (en) 2015-03-25 2015-03-25 The method that graphene is prepared using molten state reaction bed

Publications (2)

Publication Number Publication Date
CN104860298A CN104860298A (en) 2015-08-26
CN104860298B true CN104860298B (en) 2018-02-16

Family

ID=53906546

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510133250.7A Active CN104860298B (en) 2015-03-25 2015-03-25 The method that graphene is prepared using molten state reaction bed

Country Status (1)

Country Link
CN (1) CN104860298B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10273574B2 (en) * 2016-03-18 2019-04-30 Honda Motor Co., Ltd. Method for continuous production of high quality graphene
CN107099171A (en) * 2016-11-03 2017-08-29 孙旭阳 A kind of graphene strengthens carbon black preparation method
CN107055515B (en) * 2016-11-03 2019-04-23 孙旭阳 A method of atomization melting media prepares graphene
CN106946241A (en) * 2017-01-26 2017-07-14 北京清烯科技有限公司 The manufacture method of large-area graphene
CN106986336B (en) * 2017-04-13 2019-04-19 孙旭阳 The preparation method of few layer compound between graphite layers
CN107119316A (en) * 2017-04-13 2017-09-01 孙旭阳 A kind of temperature-varying zone liquid bed Direct precipitation grows the preparation method of graphene
CN108727808A (en) * 2017-04-21 2018-11-02 山东圣泉新材料股份有限公司 - 6 agglomerate material of polyamide, the fiber and purposes comprising it of graphene modification
CN108423658A (en) * 2018-03-26 2018-08-21 北京大学 A kind of preparation method of graphene film
CN108840323A (en) * 2018-07-10 2018-11-20 中喜(宁夏)新材料有限公司 Coal ash for manufacturing for graphene chip method
CN108545723A (en) * 2018-07-10 2018-09-18 中喜(宁夏)新材料有限公司 The method of the preparation of biological alkyl graphene
CN110003689A (en) * 2019-04-05 2019-07-12 孙旭阳 A method of directly growing graphene on carbon black
CN111333057B (en) * 2020-03-08 2021-10-12 西南交通大学 Reaction device for preparing graphene and method for preparing graphene
CN113460997B (en) * 2021-06-01 2023-02-24 武汉理工大学 Preparation method of three-dimensional grid-shaped graphene material
CN114832729B (en) * 2022-03-29 2023-05-09 清华大学 Device and method for simultaneously producing carbon nano tube and graphene
CN114685097A (en) * 2022-04-28 2022-07-01 常州二维碳素科技股份有限公司 Preparation method of graphene aerogel composite material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583359B (en) * 2012-04-01 2015-03-18 中国科学院上海微***与信息技术研究所 Method for preparing graphene by adopting liquid catalyst aided chemical vapor deposition
CN103588195A (en) * 2013-11-01 2014-02-19 天津大学 Preparation method of graphene
CN103663441B (en) * 2013-12-04 2016-03-23 四川环碳科技有限公司 A kind of solid phase cracking process prepares the method for azepine Graphene and nano metal Graphene
CN104291327A (en) * 2014-09-24 2015-01-21 北京化工大学常州先进材料研究院 Method for preparing graphene by peeling graphite in electrochemical manner by using molten salt

Also Published As

Publication number Publication date
CN104860298A (en) 2015-08-26

Similar Documents

Publication Publication Date Title
CN104860298B (en) The method that graphene is prepared using molten state reaction bed
Liu et al. Chrysanthemum-like high-entropy diboride nanoflowers: A new class of high-entropy nanomaterials
CN104860273B (en) The method that two-dimentional hexagonal boron nitride is prepared using molten state reaction bed
JP5483216B2 (en) SiC single crystal and method for producing the same
TW201022142A (en) Graphene and hexagonal boron nitride planes and associated methods
WO2013149417A1 (en) Liquid catalyst assisted chemical vapor deposition method for preparing graphene
Lee et al. In situ growth of SiC nanowires by carbothermal reduction using a mixture of low-purity SiO2 and carbon
KR101858799B1 (en) Process for pure carbon production, compositions, and methods thereof
CN102452650B (en) Process for preparing graphene by cryochemical method
JP2004002173A (en) Silicon carbide single crystal and its manufacturing method
CN107119316A (en) A kind of temperature-varying zone liquid bed Direct precipitation grows the preparation method of graphene
CN104445160B (en) Method for preparing graphene through molten inorganic salt reaction bed
JP3497355B2 (en) Silicon purification method
CN106365154B (en) A kind of preparation method of non high temperature liquid phase method growth graphene
WO2012115348A2 (en) High-quality hexagonal boron-nitride nanosheet using a multi-component low eutectic temperature system
JP2001106600A (en) Method for growing silicon carbide crystal in liquid phase
EP4006186A1 (en) Method for preparing elemental material by using reduction of monoatomic carbon
EP3216757B1 (en) Method for preparing graphene by molten state inorganic salt reaction bed
CN106986336B (en) The preparation method of few layer compound between graphite layers
JP2011520763A5 (en)
KR101162718B1 (en) Method of forming high-quality graphene using multi component eutectic point system
CN105480966B (en) A method of spontaneous long graphene when reduction and carbonization tungsten in situ
Liu et al. Clean Synthesis and Formation Mechanisms of High‐Purity Silicon for Solar Cells by the Carbothermic Reduction of SiC with SiO2
CN112408394B (en) Preparation method of tantalum disilicide nano powder
CN106119951B (en) Fluxing agent for low-temperature high-speed growth of SiC single crystal

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant