CN104779315A - 一种石墨烯/磷化铟光电探测器及其制备方法 - Google Patents

一种石墨烯/磷化铟光电探测器及其制备方法 Download PDF

Info

Publication number
CN104779315A
CN104779315A CN201510162728.9A CN201510162728A CN104779315A CN 104779315 A CN104779315 A CN 104779315A CN 201510162728 A CN201510162728 A CN 201510162728A CN 104779315 A CN104779315 A CN 104779315A
Authority
CN
China
Prior art keywords
graphene
layer
indium
surface electrode
indium phosphide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510162728.9A
Other languages
English (en)
Inventor
林时胜
王朋
李晓强
章盛娇
徐志娟
吴志乾
徐文丽
陈红胜
骆季奎
李尔平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201510162728.9A priority Critical patent/CN104779315A/zh
Publication of CN104779315A publication Critical patent/CN104779315A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种石墨烯/磷化铟光电探测器,自下而上依次有磷化铟层、石墨烯层和表面电极;或者自下而上依次有磷化铟层、绝缘层和表面电极,还设有石墨烯层,石墨烯层设置在磷化铟层上,并与表面电极接触。制备该光电探测器的方法是:将石墨烯转移至洁净的磷化铟片上,再在石墨烯层上制作表面电极;或者在洁净的磷化铟片上生长绝缘层,再在上述绝缘层上制作表面电极,最后将石墨烯转移至磷化铟上,并使石墨烯与表面电极相接触。本发明的石墨烯/磷化铟光电探测器利用石墨烯材料的高载流子迁移率和良好的光电响应,结合磷化铟优异的半导体光电性质,光响应灵敏,响应度高,且制备工艺简单。

Description

一种石墨烯/磷化铟光电探测器及其制备方法
技术领域
本发明涉及一种光电探测器及其制备方法,尤其是一种石墨烯/磷化铟光电探测器及其制备方法,属于光电器件技术领域。
背景技术
石墨烯二维原子材料在2004年首次被发现并制备出来以后,更多的研究表明石墨烯材料具有优异的电学、光学和机械性质,如极高的载流子迁移率、很宽波长范围内的光响应、高的杨氏模量和柔韧性等。这些独特的性质使石墨烯有可能广泛地应用于光电子技术领域,包括光电探测器、太阳电池等。近年来,不少研究者进行石墨烯光探测器的应用研究,它的优势是可以实现超快和较宽波段的光谱响应。但由于石墨烯只有原子尺寸的厚度,吸收的光比较少(~2.3%),影响了光探测的响应度。寻找合适的材料与石墨烯结合或设计新的结构,增强其光探测响应,是研究和应用的重点。
发明内容
本发明的目的在于提供一种响应度高,制备工艺简单的石墨烯/磷化铟光电探测器及其制备方法。
本发明的石墨烯/磷化铟光电探测器可以采用如下两种技术方案实现:
技术方案一
本发明的石墨烯/磷化铟光电探测器,自下而上依次有p型或n型掺杂的磷化铟层、石墨烯层和表面电极;
制备该光电探测器的方法是:将石墨烯转移至洁净的p型或n型掺杂磷化铟片上获得石墨烯层,再在石墨烯层上制作表面电极。
技术方案二
本发明的石墨烯/磷化铟光电探测器,自下而上依次有p型或n型掺杂的磷化铟层、绝缘层和表面电极,绝缘层面积占磷化铟层面积的5-90%,表面电极面积小于绝缘层面积,所述的光电探测器还设有石墨烯层,石墨烯层设置在磷化铟层上,并与表面电极接触。
制备该光电探测器的方法是:在洁净的p型或n型掺杂磷化铟片上生长绝缘层,并预留制作石墨烯层的面积,再在上述绝缘层上制作表面电极,最后将石墨烯转移至上述预留面积处,并使石墨烯与表面电极相接触。
本技术方案中,所述的绝缘层可以是氧化硅、氮化硅、氮氧化硅、氧化铝或者氮化硼,其厚度通常为1-200nm。
上述两种技术方案中,所述的石墨烯层中石墨烯通常为1层至10层。
所述的表面电极通常为金、钯、银、钛、铬、镍、铂和铝中的一种或者几种的复合电极。
传统的体半导体材料,尤其是Ⅲ-Ⅴ族化合物半导体,具有优异的光电性质。石墨烯与半导体材料结合,若两者的费米能级存在较大差异,可形成肖特基结。光照下,光子主要由半导体材料吸收并产生电子空穴对,在结势垒的作用下,电子或空穴注入石墨烯内。石墨烯内载流子数量随之发生变化,其电阻率也会改变。外界光强发生变化,注入的电子或空穴浓度也改变。石墨烯的电阻值变化即可反映对外界光照的探测响应情况。
此外,石墨烯的费米能级可以通过掺杂或外加电压调节,肖特基的势垒也相应改变,器件的光电探测性能也可进行调节。在Ⅲ-Ⅴ族化合物半导体中,磷化铟是直接带隙材料,其禁带宽度最接近于太阳光谱能量的最优值(1.34ev),具有良好的光谱吸收和响应。
综上所述,本发明具有的有益效果是:与传统的光电探测器相比,本发明的石墨烯/磷化铟光电探测器利用石墨烯的高载流子迁移率和良好的光电响应及磷化铟优异光电性质,具有更好的光吸收及光探测响应性能;且其制备工艺简单,易于实现。
附图说明
图1为石墨烯/磷化铟光电探测器的一种结构的示意图;
图2为石墨烯/磷化铟光电探测器的另一种结构的示意图;
图3为实施例1制得的石墨烯/磷化铟光电探测器在光开关状态下的电流变化曲线。
具体实施方式
以下结合附图和具体实施例对本发明做进一步说明。
参照图1,本发明的石墨烯/磷化铟光电探测器,自下而上依次有p型或n型掺杂的磷化铟层1、石墨烯层2和表面电极3;或者如图2所示,自下而上依次有p型或n型掺杂的磷化铟层1、绝缘层4和表面电极3,绝缘层4面积占磷化铟层1面积的5-90%,表面电极3面积小于绝缘层4面积,所述的光电探测器还设有石墨烯层2,石墨烯层2设置在磷化铟层1上,并与表面电极3接触。
实施例1
1)将p型磷化铟片样品先后浸入丙酮、异丙醇溶液中进行表面清洗;
2)将单层石墨烯转移至经过清洗的磷化铟片上;
3)在石墨烯上利用热蒸发工艺沉积100nm金电极,得到石墨烯/磷化铟光电探测器。
在两个表面电极间加电压,通过测试光电探测器在不同光照下电流的变化,可反应出其对不同光谱和光强的响应。图3即对本例制得的光电探测器加5V电压时,在不加光照和1个标准太阳光光照下间隔连续测试的电流值变化曲线,可以看出本例制得的光电探测器光响应灵敏,响应度高。
实施例2
1)将n型磷化铟片先后浸入丙酮、异丙醇溶液中进行表面清洗;
2)将10层石墨烯转移至经过清洗的磷化铟片上;
3)在石墨烯上利用热蒸发工艺沉积200nm镍/金电极,得到石墨烯/磷化铟光电探测器。
实施例3
1)将n型磷化铟片先后浸入丙酮、异丙醇溶液中进行表面清洗;
2)将3层石墨烯转移至经过清洗的磷化铟片上;
3)在石墨烯上丝网印刷500nm银电极,得到石墨烯/磷化铟光电探测器。
实施例4
1)将p型磷化铟片先后浸入丙酮、异丙醇溶液中进行表面清洗;
2)将6层石墨烯转移至经过清洗的磷化铟片上;
3)在石墨烯上磁控溅射20nm钛/镍电极,得到石墨烯/磷化铟光电探测器。
实施例5
1)将p型磷化铟片先后浸入丙酮、异丙醇溶液中进行表面清洗;
2)在磷化铟片上掩膜电子束蒸发沉积氧化硅80nm,其在磷化铟表面覆盖面积比例为5%;
3)在氧化硅上电子束蒸发沉积40nm金电极,金电极面积小于氧化硅面积;
4)将单层石墨烯转移至经过蒸发电极的磷化铟片上,且石墨烯与金电极相接触,得到石墨烯/磷化铟光电探测器。
实施例6
1)将n型磷化铟片先后浸入丙酮、异丙醇溶液中进行表面清洗;
2)在磷化铟片上掩膜电子束蒸发沉积氮化硅1nm,其在磷化铟表面覆盖面积比例为80%;
3)在氮化硅上电子束蒸发沉积20nm银电极,银电极面积小于氮化硅面积;
4)将8层石墨烯转移至经过蒸发电极的磷化铟片上,且石墨烯与银电极相接触,得到石墨烯/磷化铟光电探测器。
实施例7
1)将p型磷化铟片先后浸入丙酮、异丙醇溶液中进行表面清洗;
2)在磷化铟片上掩膜电子束蒸发沉积氧化铝200nm,其在磷化铟表面覆盖面积比例为90%;
3)在氧化铝上电子束蒸发沉积40nm金/钯电极,金/钯电极的面积小于氧化铝的面积;
4)将3层石墨烯转移至经过蒸发电极的磷化铟片上,且石墨烯与金/钯电极相接触,得到石墨烯/磷化铟光电探测器。

Claims (6)

1. 一种石墨烯/磷化铟光电探测器,其特征在于自下而上依次有p型或n型掺杂的磷化铟层(1)、石墨烯层(2)和表面电极(3);或者自下而上依次有p型或n型掺杂的磷化铟层(1)、绝缘层(4)和表面电极(3),绝缘层(4)面积占磷化铟层(1)面积的5-90%,表面电极(3)面积小于绝缘层(4)面积,所述的光电探测器还设有石墨烯层(2),石墨烯层(2)设置在磷化铟层(1)上,并与表面电极(3)接触。
2. 根据权利要求1所述的石墨烯/磷化铟光电探测器,其特征在于所述的石墨烯层(2)中石墨烯为1层至10层。
3. 根据权利要求1所述的石墨烯/磷化铟光电探测器,其特征在于所述的绝缘层(4)是氧化硅、氮化硅、氮氧化硅、氧化铝或者氮化硼。
4. 根据权利要求1所述的石墨烯/磷化铟光电探测器,其特征在于所述的绝缘层(4)的厚度为1-200nm。
5. 根据权利要求1所述的石墨烯/磷化铟光电探测器,其特征在于所述的表面电极(3)为金、钯、银、钛、铬、镍、铂和铝中的一种或者几种的复合电极。
6. 制备如权利要求1-5任一项所述的石墨烯/磷化铟光电探测器的方法,其特征在于包括如下步骤:
将石墨烯转移至洁净的p型或n型掺杂磷化铟片(1)上获得石墨烯层(2),再在石墨烯层(2)上制作表面电极(3);
或者在洁净的p型或n型掺杂磷化铟片(1)上生长绝缘层(4),并预留制作石墨烯层(2)的面积,再在上述绝缘层(4)上制作表面电极(3),最后将石墨烯转移至上述预留面积处,并使石墨烯与表面电极(3)相接触。
CN201510162728.9A 2015-04-08 2015-04-08 一种石墨烯/磷化铟光电探测器及其制备方法 Pending CN104779315A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510162728.9A CN104779315A (zh) 2015-04-08 2015-04-08 一种石墨烯/磷化铟光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510162728.9A CN104779315A (zh) 2015-04-08 2015-04-08 一种石墨烯/磷化铟光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN104779315A true CN104779315A (zh) 2015-07-15

Family

ID=53620678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510162728.9A Pending CN104779315A (zh) 2015-04-08 2015-04-08 一种石墨烯/磷化铟光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN104779315A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057961A (zh) * 2016-06-28 2016-10-26 兰建龙 一种基于氧化钛纳米带的异质结型光电探测器及制备方法
CN106505115A (zh) * 2016-10-17 2017-03-15 浙江大学 量子点光掺杂石墨烯/氮化硼/氮化镓紫外探测器及其制作方法
CN107437568A (zh) * 2016-05-26 2017-12-05 中国科学院物理研究所 一种光伏装置以及一种产生光伏效应的方法
CN108075009A (zh) * 2016-11-09 2018-05-25 香港生产力促进局 基于光子晶体光响应增强技术的石墨烯红外传感器及其制备方法
CN110783423A (zh) * 2019-09-09 2020-02-11 浙江大学 石墨烯/三氧化二铝/砷化镓太赫兹探测器及其制作方法
CN114784125A (zh) * 2022-03-25 2022-07-22 国科大杭州高等研究院 一种非对称性诱导室温高灵敏光电探测器件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263144A (zh) * 2011-07-29 2011-11-30 清华大学 基于仿生蛾眼半导体异质结太阳能电池及其制造方法
WO2013190128A2 (en) * 2012-06-21 2013-12-27 Norwegian University Of Science And Technology (Ntnu) Solar cells
CN104241415A (zh) * 2014-09-10 2014-12-24 浙江大学 一种石墨烯/砷化镓太阳电池及其制造方法
CN104393093A (zh) * 2014-11-13 2015-03-04 北京工业大学 应用石墨烯的高探测率氮化镓基肖特基型紫外探测器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263144A (zh) * 2011-07-29 2011-11-30 清华大学 基于仿生蛾眼半导体异质结太阳能电池及其制造方法
WO2013190128A2 (en) * 2012-06-21 2013-12-27 Norwegian University Of Science And Technology (Ntnu) Solar cells
CN104241415A (zh) * 2014-09-10 2014-12-24 浙江大学 一种石墨烯/砷化镓太阳电池及其制造方法
CN104393093A (zh) * 2014-11-13 2015-03-04 北京工业大学 应用石墨烯的高探测率氮化镓基肖特基型紫外探测器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107437568A (zh) * 2016-05-26 2017-12-05 中国科学院物理研究所 一种光伏装置以及一种产生光伏效应的方法
CN107437568B (zh) * 2016-05-26 2019-04-05 中国科学院物理研究所 一种光伏装置以及一种产生光伏效应的方法
CN106057961A (zh) * 2016-06-28 2016-10-26 兰建龙 一种基于氧化钛纳米带的异质结型光电探测器及制备方法
CN106505115A (zh) * 2016-10-17 2017-03-15 浙江大学 量子点光掺杂石墨烯/氮化硼/氮化镓紫外探测器及其制作方法
CN108075009A (zh) * 2016-11-09 2018-05-25 香港生产力促进局 基于光子晶体光响应增强技术的石墨烯红外传感器及其制备方法
CN110783423A (zh) * 2019-09-09 2020-02-11 浙江大学 石墨烯/三氧化二铝/砷化镓太赫兹探测器及其制作方法
CN114784125A (zh) * 2022-03-25 2022-07-22 国科大杭州高等研究院 一种非对称性诱导室温高灵敏光电探测器件及其制备方法
CN114784125B (zh) * 2022-03-25 2024-04-02 国科大杭州高等研究院 一种非对称性诱导室温高灵敏光电探测器件及其制备方法

Similar Documents

Publication Publication Date Title
CN106505115B (zh) 量子点光掺杂石墨烯/氮化硼/氮化镓紫外探测器及其制作方法
CN104779315A (zh) 一种石墨烯/磷化铟光电探测器及其制备方法
Diao et al. 12.35% efficient graphene quantum dots/silicon heterojunction solar cells using graphene transparent electrode
Cao et al. Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture
Yang et al. Interface engineering for efficient and stable chemical-doping-free graphene-on-silicon solar cells by introducing a graphene oxide interlayer
Zhang et al. Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering
CN103346199B (zh) 基于单层石墨烯/氧化锌纳米棒阵列肖特基结的紫外光电探测器及其制备方法
CN103280484B (zh) p-型石墨烯薄膜/n-型Ge肖特基结近红外光电探测器及其制备方法
Deo et al. Strong photo-response in a flip-chip nanowire p-Cu 2 O/n-ZnO junction
Bae et al. Carrier-selective p-and n-contacts for efficient and stable photocatalytic water reduction
Guo et al. High-performance WO 3− x-WSe 2/SiO 2/n-Si heterojunction near-infrared photodetector via a homo-doping strategy
CN104300027B (zh) 基于石墨烯/二氧化硅/硅的雪崩光电探测器及制备方法
Zhao et al. Self-driven visible-near infrared photodetector with vertical CsPbBr3/PbS quantum dots heterojunction structure
CN103956402B (zh) 一种自驱动高速肖特基结近红外光电探测器及其制备方法
Liao et al. Strain-modulation and service behavior of Au–MgO–ZnO ultraviolet photodetector by piezo-phototronic effect
Xie et al. p-CdTe nanoribbon/n-silicon nanowires array heterojunctions: photovoltaic devices and zero-power photodetectors
Chen et al. Enhanced photoresponsivity in carbon quantum dots-coupled graphene/silicon Schottky-junction photodetector
CN105720127A (zh) 基于石墨烯/半导体异质结的多功能发电机及其制造方法
CN109252179A (zh) 一种用于光解水的双吸收层光阳极及制备方法
Peng et al. UV-induced SiC nanowire sensors
Popoola et al. Fabrication of bifacial sandwiched heterojunction photoconductor–type and MAI passivated photodiode–type perovskite photodetectors
Nguyen et al. Self-powered transparent photodetectors for broadband applications
Huang et al. Self-powered ultraviolet photodetector based on CuGaO/ZnSO heterojunction
Kurt et al. Optical and electrical characterization of a ZnO/coronene-based hybrid heterojunction photodiode
Huang et al. Dual functional modes for nanostructured p-Cu2O/n-Si heterojunction photodiodes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150715

WD01 Invention patent application deemed withdrawn after publication