CN104736978A - 用于运行空气质量流量计的方法 - Google Patents

用于运行空气质量流量计的方法 Download PDF

Info

Publication number
CN104736978A
CN104736978A CN201380055288.6A CN201380055288A CN104736978A CN 104736978 A CN104736978 A CN 104736978A CN 201380055288 A CN201380055288 A CN 201380055288A CN 104736978 A CN104736978 A CN 104736978A
Authority
CN
China
Prior art keywords
thermopair
measured value
absolute temperature
flow meter
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380055288.6A
Other languages
English (en)
Inventor
S·许雷尔
S·赛特夏克
T·尼特尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of CN104736978A publication Critical patent/CN104736978A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/6965Circuits therefor, e.g. constant-current flow meters comprising means to store calibration data for flow signal calculation or correction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • G01F25/15Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters specially adapted for gas meters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本发明涉及一种用于运行空气质量流量计的方法,该空气质量流量计用于确定输送到内燃机的空气质量流量,其中该空气质量流量计具有以由微机电***结构形式构成的带有加热元件的感应元件,其中在感应元件上在加热元件的上游设置有第一热电偶并且在加热元件的下游设置有第二热电偶。为了消除由于感应元件脏污所引起的测量结果失真或者至少将其保持在严格界限内,执行下面的方法步骤:A:确定空气质量流量计的第二热电偶的绝对温度的第一测量值,B:将空气质量流量计的第二热电偶的绝对温度的第一测量值存储在电子存储器中,C:使内燃机运行并且通过空气质量流量计确定输送到内燃机的空气质量流量,D:在内燃机运行后确定空气质量流量计的第二热电偶的绝对温度的第二测量值,E:将第二热电偶的绝对温度的第一测量值与第二热电偶的绝对温度的第二测量值相比较,F:在确定出第一测量值与第二测量值之间的偏差的情况下对感应元件的特征曲线的偏移进行修正。

Description

用于运行空气质量流量计的方法
技术领域
本发明涉及一种用于运行空气质量流量计的方法。
背景技术
空气质量流量计例如在机动车中用于确定由内燃机抽吸的空气质量流量。以关于抽吸的空气质量流量的尽可能可靠的信息为基础可以通过内燃机的电子控制器这样优化燃烧,使得正好与空气质量流量相协调的燃料量输送到各燃烧室。由此以减少的有害物排放得到改善的能量利用效果。
由DE 44 07 209 A1已知一种空气质量流量计,它为了确定空气质量流量而***到进气通道中,其中总流量的一定分量流经该空气质量流量传感器。为此这个空气质量流量计由***通道式空气质量流量计构成。该空气质量流量计包括设置在测量通道中的感应元件、设置在外壳中的、用于评价和/或检测感应元件测量值的电子件、以及在感应元件另一侧的出口通道。为了节省空间地布置,上述通道或空气导引路径U形、S形或C形地构成,由此形成总体上紧凑的、由***部件构成的装置。
按照WO 03/089884 A1的理论构成的空气质量流量计在原理上已经证实是可靠的,它由热膜风速计构成。
在对基于感应元件工作的由微机电***(MEMS)构成的现代空气质量流量计进行研发时,已经证实,感应元件的测量结果特别受脏污的不利影响。由于例如由空气质量流中的油滴引起的脏污,通过一段时间在感应元件中产生信号漂移,它可能导致空气质量流量的测量值有误。但是由微机电***构成的感应元件具有不能放弃的许多优点,因此本发明的目的是,消除由于感应元件脏污引起的测量结果失真或至少将其保持在低限度内。
发明内容
这个目的通过独立权利要求的特征实现。有利的实施例是从属权利要求的内容。
为了实现这个目的,按照本发明执行下面的方法步骤:
A:确定空气质量流量计的第二热电偶/感温元件的绝对温度的第一测量值,
B:将空气质量流量计的第二热电偶的绝对温度的第一测量值存储在电子存储器中,
C:运行内燃机并且利用空气质量流量计确定输送到内燃机的空气质量流量,
D:在内燃机运行后确定空气质量流量计的第二热电偶的绝对温度的第二测量值,
E:将第二热电偶的绝对温度的第一测量值与第二热电偶的绝对温度的第二测量值相比较,
F:在确定出第一测量值与第二测量值之间的偏差的情况下对热电偶的特征曲线的偏移进行修正。
在使内燃机运行以后通过确定空气质量流量计的第二热电偶的绝对温度的第二测量值并且通过将第二热电偶的绝对温度的第一测量值与第二热电偶的绝对温度的第二测量值相比较,可以识别并修正在内燃机运行期间产生的信号漂移。这导致长时间高度准确工作的感应元件并由此导致空气质量流量的可靠测量结果。
在按照本发明方法的扩展结构中,在方法步骤A中额外还确定第一热电偶的绝对温度的第一测量值。由此构成了用于对由第一热电偶的脏污所引起的信号漂移进行识别的基础。
在本发明的改进方案中,在方法步骤A之前并且在方法步骤B之前在方法步骤A1中形成第二热电偶的绝对温度的第一测量值与第一热电偶的绝对温度的第一测量值之间的差。绝对温度的差值也可以给出关于信号漂移的信息。
如果在方法步骤B中额外还将第一热电偶的绝对温度的第一测量值和/或第二热电偶的绝对温度的第一测量值与第一热电偶的绝对温度的第一测量值之间的差存储在电子存储器中,则所有可能的比较值都存在于存储器中可供用于在使内燃机运行以后确定出在感应元件上的信号漂移和由脏污引起的信号漂移的起源位置。
为此有利地是,在方法步骤D中还额外确定第一热电偶的绝对温度的第二测量值。对该绝对温度的第二测量值的确定是在内燃机已经运行一定时间以后进行的,其中在感应元件上有可能出现污物沉积。
此外有利的是,在方法步骤D之后并且在方法步骤E之前在方法步骤D1中形成第二热电偶的绝对温度的第二测量值与第一热电偶的绝对温度的第二测量值之间的差。通过这些测量值可以识别信号漂移并且额外还可以对信号漂移的起源位置作出判断。如果例如第一热电偶的绝对温度的第二测量值明显发生改变,而第二热电偶的测量值在很大程度上却保持相同,则很可能是第一热电偶出现污染。
这一点在方法步骤E中通过额外将第一热电偶的绝对温度的第一测量值和/或由第二热电偶的绝对温度的第一测量值与第一热电偶的绝对温度的第一测量值所构成的差与第一热电偶的绝对温度的第二测量值和/或由第二热电偶的绝对温度的第二测量值与第一热电偶的绝对温度的第二测量值所构成的差相比较得以识别。
然后据此在方法步骤F中,以有利的方式在确定出第一热电偶的绝对温度的第一测量值和/或由第二热电偶的绝对温度的第一测量值与第一热电偶的绝对温度的第一测量值所构成的差与第一热电偶的绝对温度的第二测量值和/或由第二热电偶的绝对温度的第二测量值与第一热电偶的绝对温度的第二测量值所构成的差的偏差的情况下,对感应元件的特征曲线的偏移进行修正。
附图说明
下面借助于参照附图的实施例描述给出本发明的其它特征和优点。下面在不同的附图中将相同的术语和附图标记用于相同的零部件。在此示出:
图1空气质量流量计,
图2由微机电***(MEMS)构成的感应元件,
图3由微机电***(MEMS)构成的感应元件,该感应元件设置在空气质量流量计的辅助管中,
图4空气质量流通过入口流入到空气质量流量计的辅助管中的情况,
图5在空气质量流量计中的由微机电***(MEMS)构成的感应元件,该空气质量流量计作为***销集成到进气管中,
图6具有第一感温元件和第二感温元件的感应元件,
图7空气质量流量计的感应元件,
图8流程图,它详细示出按照本发明的用于运行空气质量流量计的方法,
图9由图8已知的方法的扩展结构。
具体实施方式
图1示出在这里由空气质量流量计2构成的质量流量传感器。空气质量流量计2在这个实施例中作为***销示出,它***到进气管1中并且与进气管1固定连接。进气管1向内燃机的气缸输送质量流,在这里是空气质量流10。为了使燃料在内燃机的气缸中有效燃烧,必需获得关于供使用的空气质量流量的准确信息。利用供使用的空气质量流量可以推断可供使用的氧气——它对于喷入到气缸中的燃料的燃烧是必需的。此外在图1中空气质量流量计2示出第一感温元件7和第二感温元件8。第一感温元件7和第二感温元件8设置在不同的位置。感温元件7、8通常由也称为热电偶的电阻或热电堆构成,这些电阻或热电堆根据在热电偶上存在的温度而具有不同的电阻值。在第一感温元件7与第二感温元件8之间构成有加热元件12。通过入口4进入到空气质量流量计2的外壳3中的空气质量流10首先流过第一感温元件7,然后流过加热元件12,然后空气质量流10到达第二感温元件8并且沿着辅助管5导引到空气质量流量计2的出口6。空气质量流10达到具有确定温度的第一感温元件7。这个温度被第一感温元件7检测作为绝对温度。然后空气质量流10流过加热元件12,其中空气质量流10根据流过的质量流量或多或少地被加热。当加热的空气质量流10达到第二感温元件8时,通过第二感温元件8确定这时的空气质量流10温度作为绝对温度。由第一感温元件7测得的温度与由第二感温元件8测得的温度的差值可以确定流过的空气质量流量。为此空气质量流量计2本身可以含有评价电子件13,它评价第一感温元件7和第二感温元件8的测量信号。由此获得的关于空气质量流10的信息继续传导到在这里未示出的发动机控制器。
要指出的是,本发明示例地利用空气质量流量计进行描述,但是这不意味着该用于运行空气质量流量计的方法局限于对空气质量流量的测量。通过按照本发明的方法也可以有利地检测和测量其它质量流量。
图2示出用于空气质量流量计2的感应元件15。感应元件15由微机电***(MEMS)在唯一的硅芯片上构成。感应元件15按照温差原理工作,由此确定流过的空气质量流10的流量。为此在薄膜17上构成第一感温元件7和第二感温元件8。第一和第二感温元件7、8位于薄膜17的表面16上的不同位置。在第一感温元件7与第二感温元件8之间设置加热元件12。在由微机电***构成的感应元件15上还集成评价电子件13,评价电子件能够立刻评价感温元件7、8的测量信号并且将其转换成与空气质量流10的流量成比例的信号。但是评价电子件13还可以集成到下游连接的电子仪器中。关于空气质量流10的信息然后通过连接垫19和连接导线18传导到在这里未示出的下游的电子发动机控制器。
在图3中示出由微机电***(MEMS)构成的用于空气质量流量计2的感应元件15,它在唯一的衬底上构成,其中衬底设置在空气质量流量计2的辅助管5中。在图3中没有空气质量流10通过入口4,这例如在内燃机熄火时是这种情况。这个状态也称为零质量流量。如果给在感应元件15上的加热元件12供电,那么在加热元件12周围会产生在这里示出的对称的温度分布20。由此第一感温元件7和第二感温元件8测量相同的绝对温度并且在形成感温元件7、8的测温信号差以后,评价电子件13识别出,在空气质量流量计2的辅助管5中没有空气质量流10。但是温度测量信号的这种在零质量流量时的理想的等同可能会例如由于感应元件15上的脏污而受到干扰。
图4示出空气质量流10穿过入口4流到空气质量流量计2的辅助管5中的情况。这时可明显看到,在加热元件12周围的温度分布20在第二感温元件8的方向上偏移。由此第二感温元件8测量出比第一感温元件7明显更高的温度。现在通过在评价电子件13中确定两个感温元件7、8的温差能够确定空气质量流10的流量。但是感应元件上脏污的影响仍然可能起作用并且它可能掩盖测量结果。温度总和也对质量流10的流量作出反应。但是温度总和还对空气质量流的热特性、例如流过的空气质量流10的热容量和/或导热性作出反应。如果例如对于相同的空气质量流10的流量,空气质量流的导热性提高,则***冷却并且温度总和明显变小。但是第一感温元件7和第二感温元件8的温度差却大致上(一阶近似)保持不变。因此通过第一感温元件7和第二感温元件8的总和信号,可以测量空气质量流的热特性、例如热容量或者导热性的变化。如果这时计算出温差信号与温度总和信号,可以推断流过的空气质量流的变化的导热性和/或变化的热容量。
图5示出空气质量流量计的感应元件15,该感应元件在空气质量流量计2中由微机电***(MEMS)构成,该空气质量流量计作为***销集成到进气管1中。空气质量流10在这里也达到入口4并且进入到辅助管5中。在薄膜17的表面16上可以看到第一感温元件7和第二感温元件8。在第一感温元件7与第二感温元件8之间设置加热元件12。空气质量流10首先达到第一感温元件7,然后流过加热元件12,以便随后达到第二感温元件8。
在图5中看出,空气质量流10也含有污物9。空气质量流10将例如水滴6、油滴11和/或灰尘颗粒14向着空气质量流量计2输送。污物9通过空气质量流量计2的入口4直到感应元件15。如果污物9沉积在第一感温元件7和第二感温元件8区域中,那么随着时间增长可能导致空气质量流10测量值的严重失真。因为这种失真是由于污物在感应元件15上长时间的积累而不断形成的,所以在此也被称为空气质量流量计2的信号漂移。该信号漂移是不期望的并且要加以抑制和/或补偿。
图6示出感应元件15,具有第一感温元件7和第二感温元件8以及设置在感温元件7与8之间的加热元件12。通过箭头表示空气质量流10的方向。由此在空气质量流10的流动方向上,第一感温元件7位于加热元件12上游,第二感温元件8位于加热元件12下游。不仅第一感温元件7而且第二感温元件8都作为串联电路由例如具有大阻值的测量电阻22和至少两个例如具有小阻值的比较电阻21组成。可以看出,测量电阻22设置在薄膜内部区域中,比较电阻21设置在薄膜17边缘区域中。
图6还示出,污物9,在此主要是油滴11,随着质量流10被输送到感应元件15。尤其油滴11沉积在感应元件15上。清楚地看出,感应元件15上的油滴11特别严重地沉积于在空气质量流10的流动方向上设置在加热元件12下游的电阻的区域中。油滴11在感应元件15上的这种非对称沉积导致信号漂移,它最终导致由感应元件15检测的空气质量流10测量值失真。此外污物的沉积优选在薄膜17边缘区域中进行。非对称的油滴11沉积具有物理原因,它们尤其源于在第二感应元件8区域中的较高温度和在薄膜17边缘区域中的温度梯度。
图7示出空气质量流量计2的感应元件15。这个感应元件15的第一感温元件7和第二感温元件8由热电堆23构成。也称为热电偶23的热电堆23将热量转换成电能。热电偶23由两种不同的金属组成,它们在一端相互连接。温度差在金属中的热流基础上产生电压。
在导体的两个不同温度的位置之间出现的电势差称为塞贝克效应。电势差大致与温度差成正比并且取决于导体材料。如果用于测量的唯一导体的端部都处于相同的温度,那么电势差会一直升高。但是如果将两种不同的导体材料相互连接,那么就会形成热电偶23。在以塞贝克效应为基础的测量***中通常串联许多单个的热电偶23。
在对用于测量目的的材料副进行选择时,应实现尽可能高的热电压以及在温度变化与电压变化之间的高度的线性。在图7中所示的热电堆23由一系列的第一金属24组成,它在连接位置26上与第二金属25连接。在图7中可清楚地看出,在由热电偶23构成的第二感温元件8的区域中,污物主要以油滴11形式沉积。这些污物9导致由感温元件7和8测得的绝对温度失真。由此引起的信号漂移已经在前面的附图描述中提到过。通过按照本发明的方法可以补偿这个信号漂移,由此空气质量流量计2的测量结果可非常稳定地供长时间使用。
图8示出流程图,它详细表示按照本发明的用于运行空气质量流量计的方法。这个按照本发明的方法可以特别富有成效的在具有由微机电***构成的感应元件的空气质量流量计中使用。这种微机电***的易污染性和由此引起的这个感应元件的信号漂移已经在前面描述过。为了避免信号漂移或者说为了补偿该信号漂移,在步骤A中确定空气质量流量计的第二热电偶的绝对温度的第一测量值。第二热电偶在空气质量流的流动方向上位于加热元件下游并且尤其受到在空气质量流中含有的油滴的污染。在步骤B中,将空气质量流量计的第二热电偶的绝对温度的第一测量值存储在电子存储器中。现在在步骤C中使内燃机运行并且通过空气质量流量计确定输送到内燃机的空气质量流量。由于内燃机运行,污物随着空气质量流被输送至感应元件,其中尤其是油滴沉积在第二热电偶的边缘区域中。热电偶的这种脏污导致不期望的信号漂移,并且该信号漂移使空气质量流量计的测量结果失真。这样可以使内燃机被关闭。为了补偿由污物引起的空气质量流量计的测量值失真,在步骤D中在内燃机运行后获得空气质量流量计的第二热电偶的绝对温度的第二测量值。然后在步骤E中将第二热电偶的绝对温度的第一测量值与第二热电偶的绝对温度的第二测量值相比较。在步骤F中确定第一测量值与第二测量值之间是否存在偏差。如果确定了测量值之间的偏差,那么就在步骤F中对感应元件特征曲线的偏移进行修正。如果确定没有偏差,那么就在步骤A重新启动本方法。即使已经确定了偏差,也在对特性曲线偏移进行修正之后在步骤A重新启动本方法。通过这种方式连续地对感应元件特性曲线进行偏移修正,由此确保空气质量流量计在其整个使用寿命上的高精度测量结果。
图9示出由图8已知的方法的扩展结构。在步骤A中进行对空气质量流量计的第二热电偶的绝对温度的第一测量值的确定,并且额外还进行对第一热电偶的绝对温度的第一测量值的确定。在接下来的步骤A1中形成第二热电偶的绝对温度的第一测量值与第一热电偶的绝对温度的第一测量值的差值。然后在步骤B中:将第二热电偶的绝对温度的第一测量值并且额外还将第一热电偶的绝对温度的第一测量值和/或将空气质量流量计的第二热电偶的绝对温度的第一测量值与第一热电偶的绝对温度的第一测量值之间的差值存储在电子存储器中。
在接下来的方法步骤C中,使内燃机运行并且通过空气质量流量计确定输送至内燃机的空气质量流量。在使内燃机运行时,感应元件可能尤其会在第二热电偶的边缘区域中出现污染。这种通常由油滴所造成的污染使热电偶的测量失真,这会导致所谓的信号漂移。然后可能使内燃机被关闭。
在步骤D中,对第二热电偶的绝对温度的第二测量值进行确定并且额外还在使内燃机运行后对空气质量流量计的第一热电偶的绝对温度的第二测量值进行确定。然后在步骤D1中,从这些测量值中形成第二热电偶的绝对温度的第二测量值与第一热电偶的绝对温度的第二测量值之间的差值。
在方法步骤E中,将第二热电偶的绝对温度的第一测量值与第二热电偶的绝对温度的第二测量值相比较,并且额外还将第一热电偶的绝对温度的第一测量值和/或由第二热电偶的绝对温度的第一测量值与第一热电偶的绝对温度的第一测量值所构成的差值与第一热电偶的绝对温度的第二测量值和/或由第二热电偶的绝对温度的第二测量值与第一热电偶的绝对温度的第二测量值所构成的差值相比较。
在方法步骤F中如果确定了在第一测量值与第二测量值之间的偏差,那么在步骤F1中对感应元件的特性曲线偏移进行修正。然后可以从步骤A开始重新执行本方法。如果确定在第一测量值与第二测量值之间没有偏差,则可以立刻在步骤A重新执行本方法。

Claims (8)

1.一种用于运行空气质量流量计的方法,该空气质量流量计用于确定输送到内燃机的空气质量流量(10),其中该空气质量流量计(2)具有以由微机电***结构形式构成的感应元件(15),该感应元件带有加热元件(12),其中在感应元件(15)上在加热元件(12)的上游设置有第一热电偶(7)并且在加热元件(12)的下游设置有第二热电偶(8),该方法具有下面的方法步骤:
A:确定空气质量流量计(2)的第二热电偶(8)的绝对温度的第一测量值,
B:将空气质量流量计(2)的第二热电偶(8)的绝对温度的第一测量值存储在电子存储器中,
C:使内燃机运行并且通过空气质量流量计(2)确定输送到内燃机的空气质量流量(10),
D:在使内燃机运行后确定空气质量流量计(2)的第二热电偶(8)的绝对温度的第二测量值,
E:将第二热电偶(8)的绝对温度的第一测量值与第二热电偶(8)的绝对温度的第二测量值相比较,
F:在确定出第一测量值与第二测量值之间的偏差的情况下对感应元件(15)的特征曲线的偏移进行修正。
2.根据权利要求1所述的用于运行空气质量流量计(2)的方法,其特征在于,在方法步骤A中对第一热电偶(7)的绝对温度的第一测量值进行额外确定。
3.根据权利要求2所述的用于运行空气质量流量计(2)的方法,其特征在于,在方法步骤A之后并且在方法步骤B之前在方法步骤A1中形成第二热电偶(8)的绝对温度的第一测量值与第一热电偶(7)的绝对温度的第一测量值之间的差。
4.根据权利要求2或3所述的用于运行空气质量流量计(2)的方法,其特征在于,在方法步骤B中额外将第一热电偶(7)的绝对温度的第一测量值和/或将第二热电偶(8)的绝对温度的第一测量值与第一热电偶(7)的绝对温度的第一测量值之间的差存储在电子存储器中。
5.根据权利要求3或4所述的用于运行空气质量流量计(2)的方法,其特征在于,在方法步骤D中进行对第一热电偶(7)的绝对温度的第二测量值的额外确定。
6.根据权利要求4所述的用于运行空气质量流量计(2)的方法,其特征在于,在方法步骤D之后并且在方法步骤E之前在方法步骤D1中形成第二热电偶(8)的绝对温度的第二测量值与第一热电偶(7)的绝对温度的第二测量值之间的差。
7.根据权利要求5或6所述的用于运行空气质量流量计(2)的方法,其特征在于,在方法步骤E中,额外将第一热电偶(7)的绝对温度的第一测量值和/或由第二热电偶(8)的绝对温度的第一测量值与第一热电偶(7)的绝对温度的第一测量值所构成的差与第一热电偶(7)的绝对温度的第二测量值和/或由第二热电偶(8)的绝对温度的第二测量值与第一热电偶(7)的绝对温度的第二测量值之间的差进行比较。
8.根据权利要求7所述的用于运行空气质量流量计(2)的方法,其特征在于,在方法步骤F中,在确定出第一热电偶(7)的绝对温度的第一测量值和/或由第二热电偶(8)的绝对温度的第一测量值与第一热电偶(7)的绝对温度的第一测量值所构成的差与第一热电偶(7)的绝对温度的第二测量值和/或由第二热电偶(8)的绝对温度的第二测量值与第一热电偶(7)的绝对温度的第二测量值所构成的差的偏差的情况下,对感应元件(15)的特征曲线的偏移进行修正。
CN201380055288.6A 2012-10-23 2013-09-24 用于运行空气质量流量计的方法 Pending CN104736978A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012219287.5 2012-10-23
DE102012219287.5A DE102012219287A1 (de) 2012-10-23 2012-10-23 Verfahren zum Betreiben eines Luftmassenmessers
PCT/EP2013/069833 WO2014063887A1 (de) 2012-10-23 2013-09-24 Verfahren zum betreiben eines luftmassenmessers

Publications (1)

Publication Number Publication Date
CN104736978A true CN104736978A (zh) 2015-06-24

Family

ID=49253288

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380055288.6A Pending CN104736978A (zh) 2012-10-23 2013-09-24 用于运行空气质量流量计的方法

Country Status (6)

Country Link
EP (1) EP2912415A1 (zh)
JP (1) JP6177334B2 (zh)
KR (1) KR20150074129A (zh)
CN (1) CN104736978A (zh)
DE (1) DE102012219287A1 (zh)
WO (1) WO2014063887A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107924200A (zh) * 2015-07-09 2018-04-17 法国大陆汽车公司 用于确定通过阀的流率的模型的方法及装置
CN108699982A (zh) * 2016-02-24 2018-10-23 欧陆汽车有限责任公司 用于确定内燃发动机内的空气质量的方法
CN113279869A (zh) * 2020-02-19 2021-08-20 北京福田康明斯发动机有限公司 一种在车辆上修正发动机进气流量传感器的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3910676A1 (de) * 1989-04-03 1990-10-04 Pierburg Gmbh Verfahren und einrichtung zum betreiben eines luftmassenstrommessers
EP1065475A2 (de) * 1999-05-31 2001-01-03 Sensirion AG Verfahren zum Messen eines Gasflusses
CN1501059A (zh) * 2002-11-15 2004-06-02 欧姆龙株式会社 流量传感器及流量计测方法
EP1972906A1 (de) * 2007-03-19 2008-09-24 Vaillant GmbH Verfahren zur Fehlererkennung eines Strömungssensors
DE102009000067A1 (de) * 2009-01-08 2010-08-26 Innovative Sensor Technology Ist Ag Vorrichtung zur Bestimmung und/oder Überwachung eines Massedurchflusses und Vorrichtung zur Bestimmung und/oder Überwachung einer Anlagerung einer Substanz

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4407209C2 (de) 1994-03-04 1996-10-17 Bosch Gmbh Robert Vorrichtung zur Messung der Masse eines in einer Leitung strömenden Mediums
CH694474A5 (de) * 2000-06-23 2005-01-31 Sensirion Ag Gaszähler und Verwendung des Gaszählers.
DE10217884B4 (de) 2002-04-22 2004-08-05 Siemens Ag Vorrichtung zur Messung der in einer Leitung strömenden Luftmasse
JP2008215870A (ja) * 2007-02-28 2008-09-18 Yazaki Corp 流体計測装置及び流体計測方法
EP1965179B1 (en) * 2007-02-28 2017-04-12 Sensirion Holding AG Flow detector device with self check

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3910676A1 (de) * 1989-04-03 1990-10-04 Pierburg Gmbh Verfahren und einrichtung zum betreiben eines luftmassenstrommessers
EP1065475A2 (de) * 1999-05-31 2001-01-03 Sensirion AG Verfahren zum Messen eines Gasflusses
CN1501059A (zh) * 2002-11-15 2004-06-02 欧姆龙株式会社 流量传感器及流量计测方法
EP1972906A1 (de) * 2007-03-19 2008-09-24 Vaillant GmbH Verfahren zur Fehlererkennung eines Strömungssensors
DE102009000067A1 (de) * 2009-01-08 2010-08-26 Innovative Sensor Technology Ist Ag Vorrichtung zur Bestimmung und/oder Überwachung eines Massedurchflusses und Vorrichtung zur Bestimmung und/oder Überwachung einer Anlagerung einer Substanz

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107924200A (zh) * 2015-07-09 2018-04-17 法国大陆汽车公司 用于确定通过阀的流率的模型的方法及装置
CN107924200B (zh) * 2015-07-09 2021-05-04 法国大陆汽车公司 用于确定通过阀的流率的模型的方法及装置
CN108699982A (zh) * 2016-02-24 2018-10-23 欧陆汽车有限责任公司 用于确定内燃发动机内的空气质量的方法
CN108699982B (zh) * 2016-02-24 2021-07-09 欧陆汽车有限责任公司 用于确定内燃发动机内的空气质量的方法
US11092104B2 (en) 2016-02-24 2021-08-17 Vitesco Technologies GmbH Method for determining an air mass in an internal combustion engine
CN113279869A (zh) * 2020-02-19 2021-08-20 北京福田康明斯发动机有限公司 一种在车辆上修正发动机进气流量传感器的方法
CN113279869B (zh) * 2020-02-19 2022-12-09 北京福田康明斯发动机有限公司 一种在车辆上修正发动机进气流量传感器的方法

Also Published As

Publication number Publication date
KR20150074129A (ko) 2015-07-01
WO2014063887A1 (de) 2014-05-01
DE102012219287A1 (de) 2014-04-24
JP6177334B2 (ja) 2017-08-09
EP2912415A1 (de) 2015-09-02
JP2015532440A (ja) 2015-11-09

Similar Documents

Publication Publication Date Title
CN104736977A (zh) 具有感应元件的空气质量流量计
JP5883887B2 (ja) 流量計測装置
US8915119B2 (en) Particulate matter sensor, system, and method of using a correction unit
US9964422B2 (en) Airflow meter
CN102959187B (zh) 内燃机的颗粒状物质检测装置
US9482570B2 (en) Device and method for recalibrating an exhaust gas mass flow sensor
US20100324851A1 (en) Method for Determining the Exhaust Gas Temperature of a Vehicle Engine
CN104736978A (zh) 用于运行空气质量流量计的方法
CN104583679B (zh) 用于调节加热装置的方法和加热装置
KR20160111393A (ko) 채널 구조를 관류하는 유체 매체의 적어도 하나의 매개변수의 측정용 센서 장치
US20070044547A1 (en) Acute angle pressure sensor probe and method
CN103069256A (zh) 热式流体流量测量装置
JP5872349B2 (ja) 外部egrガスの質量流量の算出方法、外部egrガスの質量流量の算出装置、及びエンジン
US7096723B2 (en) Method and device for determining the throughput of a flowing medium
CN104736976A (zh) 空气质量流量计
CN104755886B (zh) 空气质量流量计
EP3021091A1 (en) Thermal flow meter
KR101434808B1 (ko) 배기 가스 질량 유량 센서에 대한 결과적인 총 질량 유량을 결정하기 위한 방법
US20180031403A1 (en) Thermal, flow measuring device with diagnostic function
JP7168340B2 (ja) 熱式流量計
KR0184928B1 (ko) 흡입 공기 유량 검출 장치
JP4650082B2 (ja) 理想値演算装置
US20210108950A1 (en) Sensor element for detecting at least one property of a fluid medium
JPS63165715A (ja) 空気流量計

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150624