CN104736697B - 用于测定神经毒素多肽的生物学活性的细胞测试*** - Google Patents

用于测定神经毒素多肽的生物学活性的细胞测试*** Download PDF

Info

Publication number
CN104736697B
CN104736697B CN201380053762.1A CN201380053762A CN104736697B CN 104736697 B CN104736697 B CN 104736697B CN 201380053762 A CN201380053762 A CN 201380053762A CN 104736697 B CN104736697 B CN 104736697B
Authority
CN
China
Prior art keywords
cell
neurotoxin
supplements
differentiation
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380053762.1A
Other languages
English (en)
Other versions
CN104736697A (zh
Inventor
K-H·艾泽勒
K·哈廷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merz Pharma GmbH and Co KGaA
Original Assignee
Merz Pharma GmbH and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merz Pharma GmbH and Co KGaA filed Critical Merz Pharma GmbH and Co KGaA
Publication of CN104736697A publication Critical patent/CN104736697A/zh
Application granted granted Critical
Publication of CN104736697B publication Critical patent/CN104736697B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5058Neurological cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/32Amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/36Lipids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/38Vitamins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/60Buffer, e.g. pH regulation, osmotic pressure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/06Anti-neoplasic drugs, anti-retroviral drugs, e.g. azacytidine, cyclophosphamide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/30Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from cancer cells, e.g. reversion of tumour cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/948Hydrolases (3) acting on peptide bonds (3.4)
    • G01N2333/95Proteinases, i.e. endopeptidases (3.4.21-3.4.99)
    • G01N2333/952Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from bacteria

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Neurosurgery (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明涉及用于生成神经毒素敏感的、神经元分化的细胞的方法,所述方法包括步骤为:a)在引发所述肿瘤细胞神经元分化的条件和时间下,在培养基中培养能够分化为神经元细胞的肿瘤细胞;和b)在具有100至270mOsm/kg的重量摩尔渗透压浓度,并且包含(i)B27补充物和/或(ii)N2补充物的分化培养基中培养a)的经引发神经元分化的肿瘤细胞至少3天,从而获得神经毒素敏感的、神经元分化的细胞。本发明还涉及通过本发明的方法可获得的神经毒素敏感的、神经元分化的细胞。此外,本发明涵盖用于测定神经毒素多肽的活性的方法,所述方法包括步骤为:a)将通过本发明的方法可获得的神经毒素敏感的、神经元分化的细胞与神经毒素多肽相接触;b)在允许神经毒素多肽发挥其生物学活性的条件下培养步骤a)的神经毒素敏感的、神经元分化的细胞3至74小时或72小时;和c)在根据步骤b)培养后,测定所述细胞中神经毒素多肽的活性。最后,本发明提供包含OptiMEM、FBS、B27补充物、和N2补充物的培养基。

Description

用于测定神经毒素多肽的生物学活性的细胞测试***
本发明涉及用于生成神经毒素敏感的、神经元分化的细胞的方法,所述方法包括步骤为:a)在引发所述肿瘤细胞神经元分化的条件和时间下,在培养基中培养能够分化为神经元细胞的肿瘤细胞;和b)在具有100至270mOsm/kg的重量摩尔渗透压浓度,并且包含(i)B27补充物和/或(ii)N2补充物的分化培养基中培养a)的经引发神经元分化的肿瘤细胞至少3天,从而获得神经毒素敏感的、神经元分化的细胞。本发明还涉及通过本发明的方法可获得的神经毒素敏感的、神经元分化的细胞。此外,本发明涵盖用于测定神经毒素多肽的活性的方法,所述方法包括步骤为:a)将通过本发明的方法可获得的神经毒素敏感的、神经元分化的细胞与神经毒素多肽相接触;b)在允许神经毒素多肽发挥其生物学活性的条件下培养步骤a)的神经毒素敏感的、神经元分化的细胞3至74小时或72小时;和c)在根据步骤b)培养后,测定所述细胞中神经毒素多肽的活性。最后,本发明提供包含OptiMEM、FBS、B27补充物、和N2补充物的培养基。
肉毒梭菌(Clostridium botulinum)和破伤风梭菌(Clostridium tetani)生产强力的神经毒素,即分别是肉毒梭菌毒素(BoNT)和破伤风毒素(TeNT)。这些梭菌神经毒素(CNT)特异性结合神经元细胞并且破坏神经递质释放。每种毒素都作为无活性的未加工的约150kDa的单链蛋白质合成。翻译后加工涉及二硫桥的形成,和细菌蛋白酶的有限的蛋白水解作用(切割)。活性神经毒素由两条链组成,约50kDa的N端轻链和约100kDa的重链,两链通过二硫键连接。CNT结构上和功能上由3个结构域组成,即,催化轻链、涵盖了易位结构域(N端一半)和受体结合结构域(C端一半)的重链;参见,例如,Krieglstein 1990,Eur JBiochem 188,39;Krieglstein 1991,Eur J Biochem 202,41;Krieglstein 1994,JProtein Chem 13,49。肉毒梭菌神经毒素是作为分子复合物合成的,所述复合物包含150kDa神经毒素蛋白和相关联的无毒蛋白。复合物大小基于梭菌菌株和范围从300kDa,至500kDa以上,和900kDa的不同神经毒素血清型而不同。这些复合物中的无毒蛋白使神经毒素稳定,并保护其免受降解;参见Silberstein 2004,Pain Practice 4,S19–S26。
肉毒梭菌分泌命名为肉毒梭菌神经毒素(BoNT)的A至G的7种抗原性不同的血清型。所有的血清型与由破伤风梭菌分泌的相关破伤风神经毒素(TeNT)都是Zn2+-内切蛋白酶,其通过切割SNARE蛋白阻断突触的胞外分泌;参见Couesnon,2006,Microbiology,152,759。CNT导致在肉毒中毒和破伤风中所见的弛缓性肌肉麻痹;参见Fischer 2007,PNAS104,10447。
不论其毒性效应,肉毒梭菌毒素复合物已在多种疾病中被用作治疗剂。肉毒梭菌毒素A血清型于1989年在美国被批准用于人用途,用于治疗斜视、睑痉挛和其他病症。它作为肉毒梭菌毒素A(BoNT/A)蛋白制备物是可商购的,例如商标名BOTOX(Allergan Inc)或商标名DYSPORT/RELOXIN(Ipsen Ltd)。改良的、不含复合物的肉毒梭菌毒素A制备物是可商购的,商标名为XEOMIN(Merz Pharmaceuticals GmbH)。出于治疗应用,将制备物直接注射入待治疗的肌肉中。在生理pH下,毒素从蛋白质复合物中释放并且产生所需的药理学作用。肉毒梭菌毒素的效应只是暂时的,这是为何维持治疗效果需要重复施用肉毒梭菌毒素的原因。
梭菌神经毒素弱化主动肌肉强度并且是斜视、局限性肌张力障碍(包括颈肌张力障碍和良性自发性睑痉挛)的有效疗法。其还表现出缓解偏侧面肌痉挛和局部痉挛,并且对广泛的其他适应证有效,例如胃肠道病症、多汗症和美容皱纹校正;见Jost 2007,Drugs67,669。
在生产梭菌神经毒素的过程中,所述神经毒素的定性和定量测定以及生物学活性的神经毒素多肽的质量控制是特别重要的。此外,政府机构仅接受简单、可靠和经验证的肉毒梭菌毒素活性测定法。目前,小鼠LD50生物测定法,一种致死性测试,依然是药物生产商用于分析其制备物的效能的“金标准”;见Arnon等人(2001),JAMA 285,1059-1070。然而,在近些年,已经进行了相当多的努力以寻找备选的方法以减轻对动物测试的需要和与此类型的基于动物的测定法相关的全部缺点、成本和伦理学顾虑。此外,管理机构要求制药公司对肉毒梭菌神经毒素的效能测试应用3“R”原则:“降低(Reduce),精炼(Refine),替代(Replace)”;见Straughan,Altern.Lab.Anim.(2006),34,305-313。因此,已经开发了基于细胞的测试***以提供使用活动物的方法的合理的备选方法。然而,迄今仅有3个已显示对神经毒素多肽足够敏感的细胞测试***对于测定神经毒素生物学活性是可用的。这些基于细胞的测试***包括使用从啮齿类动物胚胎分离的在体外分化的原代神经元(Pellett等人(2011),Biochem.Biophys.Res.Commun.404,388-392),神经元分化的诱导的多能干细胞(Whitemarsh等人(2012),Toxicol.Sci.126,426-35),和SiMa细胞系的亚克隆(WO 2010/105234A1)。
然而,分离原代神经元需要杀死动物并且是费力费时的。此外,使用不同原代神经元的测试***显示了大的变异性。类似地,生成神经元分化的诱导的多能干细胞是困难的并且费时的。此外,此类细胞的贮藏是非常麻烦的。使用肿瘤细胞系的测定法通常对BoNT不够敏感。并且,所述肿瘤细胞系需要复杂的分化方案,这导致使用所述细胞系的测定法的大的变异性和/或高失败率。
有鉴于上述,可被政府机构接受并且提供基于动物的测试***的备选方法的用于测定神经毒素多肽活性的其他测试***是高度渴求的。
因此,本发明的技术问题可以看作为提供符合前述需求的工具和方法。此技术问题由在权利要求书和下文中所表征的实施方式解决。
在第一个方面,本发明涉及生成神经毒素敏感的、神经元分化的细胞的方法,所述方法包括步骤为:
a)在引发所述肿瘤细胞神经元分化的条件和时间下,在培养基中培养能够分化为神经元细胞的肿瘤细胞;和
b)在具有100至270mOsm/kg的重量摩尔渗透压浓度,并且包含(i)B27补充物和/或(ii)N2补充物的分化培养基中培养a)的经引发神经元分化的肿瘤细胞至少3天,从而获得神经毒素敏感的、神经元分化的细胞。
在本发明的方法中,在引发所述肿瘤细胞神经元分化的条件和时间下,首先在细胞培养基中生长能够分化成神经元细胞的肿瘤细胞。之后,将如此经引发神经元分化的肿瘤细胞转移至具有100至270mOsm/kg的重量摩尔渗透压浓度的分化培养基中。此外,此分化培养基至少包含(i)B27补充物和/或(ii)N2补充物。备选地,分化培养基可以包含NS21补充物,代替B27补充物和/或N2补充物。在所述分化培养基中的培养进行至少3天。从而获得神经毒素敏感的、神经元分化的细胞。优选地,分化培养基包含neurobasal培养基。
本发明的此新型分化方法或方案的结果是获得神经毒素敏感的、神经元分化的细胞,其表现出显著改善的对神经毒素多肽的敏感性,如以下实施例中详细所示。
梭茵神经毒素的特征在于其特异性地抑制神经递质从突触前神经末梢分泌。对周围神经元的选择性是通过两个不同受体SV2和GT1b的识别来介导的。神经毒素的生理学作用基于受体结合和神经毒素的轻链易位后的所谓的SNARE复合物的蛋白质的切割。BoNT生物学活性的测定是所述神经毒素蛋白的表征中重要的方面并且尤其为管理机构所要求用于含有BoNT的产品的许可。因此,用于BoNT的生物学活性的测量的可靠的测试是研究、开发和销售含有BoNT的产品的基础。此外,出于伦理学原因,基于细胞的测试***应当代替迄今主要的动物测试。为了建立此类基于细胞的测试***,对于肉毒梭菌神经毒素有足够高敏感性的神经元细胞或细胞系是必要的。然而,为了获得此类高敏感性,迄今需要费力的神经元细胞系的分化方法。结果是仅几个基于细胞的测试***是可用的。为了测定药物产品中肉毒梭菌毒素的生物学活性,神经元细胞或细胞系应当具有以下性质:首先,细胞应当是人、神经元来源的以与靶,即人类患者尽可能相似。其次,细胞***应当对终产品中的赋形剂是强健的并且优选地,对生产过程的中间步骤中的杂质也是强健的(过程控制)。第三,基于细胞的测试***应当表现出动态的测量范围,其允许准确测定小管中BoNT(例如,50UBoNT/A)的生物学活性。考虑到技术因素诸如赋形剂的溶解性,细胞培养基的体积等,必须准确地测量低于1pM的BoNT浓度。根据本发明人最大所知,迄今仅有三个基于细胞的测试***是可用的,其显示对BoNT的足够高的敏感性。这些包括来自啮齿类动物的胚胎的原代神经元、神经元分化的诱导的多能干细胞和SiMa细胞系的亚克隆,如本文别处已经提及的。然而,已报道所述细胞系仅在频繁与大的变异性相关联的复杂的并且费力的分化方案后才表现出足够高的敏感性。相比之下,本发明提供了用于测量肉毒梭菌神经毒素(BoNT)的生物学活性的简单、可靠并且强健的基于细胞的测试***,其满足了上述要求并且较之本领域中描述的细胞测试***进一步改善。
更具体而言,首先如本领域所述培养SiMa(人神经母细胞瘤)和P19(鼠胚胎性癌)肿瘤细胞,然后在多孔板上接种并引发神经元分化,如本文别处和以下实施例所述。在随后的、新的分化步骤中,用包含具有低重量摩尔渗透压浓度,诸如100至270mOsm/kg的重量摩尔渗透压浓度的培养基的分化培养基替换细胞培养基。此类具有低重量摩尔渗透压浓度的培养基的一个实例是neurobasal培养基。在分化一段时间后(例如,3至7天)(在这段时间中用新鲜培养基替代培养基),如果适用,将神经毒素多肽添加至细胞培养基。此外,在本发明的方法中使用GT1b作为对BoNT的敏感性增强剂。例如,在用神经毒素多肽使细胞中毒时和/或之前,将50μM GT1b添加至neurobasal培养基。在用神经毒素多肽再孵育72h后,终止细胞并分析神经毒素多肽的生物学活性。结果是,发现了所述细胞对BoNT的敏感性显著增加。
本发明人已经令人吃惊地发现,分化培养基的低重量摩尔渗透压浓度是由本发明的方法生产的神经毒素敏感的、神经元分化的细胞对BoNT的增加的敏感性的原因,如以下实施例所证明。此发现并非微不足道的任务,如最终以本发明的方法结束的实验历史所证明的:开始时,发明人使用本领域中描述的分化培养基,其包含MEM+N2补充物+B27补充物;见分化培养基2,实施例中。能够由此分化培养基实现的神经元分化的细胞对BoNT的敏感性为约1至2pM。在下一步中,已经发现添加视黄酸仅导致神经元分化的细胞对BoNT的敏感性的少量增加。相比之下,通过使用neurobasal培养基能够实现约7至10倍的显著增加的敏感性。例如,已经发现SiMa细胞的EC50为0.22皮摩尔(2.18x10-13mol/l)当在本发明的方法中使用包含neurobasal培养基+2% B27补充物+1% GlutaMAX+3微摩尔视黄酸(RA)的分化培养基时。此外,能够显示在分化培养基中视黄酸对于神经元分化的细胞的改善的敏感性是不必要的,只要包括neurobasal培养基。出人意料地,发明人能够证明改善的敏感性甚至能够通过使用其在实验系列开始时使用的、本领域中描述的分化培养基(包含MEM+N2补充物+B27补充物)来实现,只要仅仅稀释至225mOsm/kg的重量摩尔渗透压浓度。相比之下,含有所提及的组分的非稀释的分化培养基具有300mOsm/kg的重量摩尔渗透压浓度。因此,由本发明的方法生产的神经毒素敏感的、神经元分化的细胞对BoNT的增加的敏感性是分化培养基的低重量摩尔渗透压浓度的结果。除了改善的敏感性,较之本领域已知的方法,本发明所述新的分化方案显示测试神经毒素多肽的生物学活性的更高准确性和稳健性。
如本文所用,单数形式“a”、“an”和“the”表示单数和复数个参考物,除非上下文明确提示。作为示例,“细胞”表示一个或多于一个细胞。
如本文所用,术语“约”在对陈述的项目、数字、百分比,或术语的值进行定量时,指陈述的项目、数字、百分比,或术语的值的正或负10%、9%、8%、7%、6%、5%、4%、3%、2%、1%的范围。优选的是正或负10%的范围。
术语“包含”如本文所用是“包括”或“含有”的同义词,并且是包括性或开放式的并且不排除额外的、未引述的成员、元件或方法步骤。显而易见,术语“包含”涵盖术语“由…组成”。更具体而言,术语“包含”如本文所用意为权利要求涵盖全部所列出的元件或方法步骤,但也可以包括额外的、未命名的元件或方法步骤。例如,包括步骤a)、b)和c)的方法以其最狭义的含义,涵盖由步骤a)、b)和c)组成的方法。词语“由…组成”意为组合物(或装置、或方法)具有引述的元件(或步骤)并且无其他。相比之下,术语“包含”也可以涵盖除了步骤a)、b)和c),包括其他步骤,例如步骤d)和e)的方法。
在本文使用数值范围的情况下诸如“浓度在0.1和0.5微摩尔之间的视黄酸”,范围不仅仅包括0.1和0.5微摩尔,还包括0.1和0.5微摩尔之间的任何数值,例如0.2、0.3和0.4微摩尔。
术语“在体外”如本文所用表示在动物或人体之外,或外部。术语“在体内”如本文所用应当理解为包括“先体外后体内(ex vivo)”。术语“先体外后体内”通常指从动物或人体移除并在体外,例如在培养容器中培养或繁殖的组织或细胞。术语“在体内”如本文所用表示在动物或人体之内,或内部。
术语“神经毒素敏感的细胞”如本文所用意为对神经毒素多肽易感的细胞,所述神经毒素多肽表现出神经毒素多肽的生物性质特征,即,(a)受体结合,(b)内化,(c)跨核内体膜进入细胞溶胶的易位,和/或(d)对突触泡膜融合中涉及的蛋白质的内切蛋白水解切割。因此,如本文所称的“神经毒素敏感的细胞”对神经毒素中毒易感。更具体而言,“对神经毒素中毒易感”如此处所称意为能够经历全部细胞机制的细胞,藉此神经毒素多肽(例如,BoNT/A)切割神经毒素底物(例如,BoNT/A底物SNAP-25)并且涵盖神经毒素与其对应受体的结合(例如,BoNT/A与BoNT/A受体结合),神经毒素/受体复合物的内化,神经毒素轻链从细胞内囊泡进入细胞质的易位,和神经毒素底物的蛋白水解切割。用于测定神经毒素多肽的生物学活性的测定法是本领域公知的并且也在本文别处描述(见,例如,Pellett等人,Withemarsh等人Toxicological Sciences 126(2),426-435(2012),WO 2010/105234 A1)。如本领域技术人员所理解的,神经毒素敏感的细胞优选能够首先摄入神经毒素并然后经历以上列出的整个细胞机制。如本文所用的神经毒素敏感的细胞可以摄入,例如,约100纳摩尔(nM)、约10nM、约1nM、约500皮摩尔(pM)、约400pM、约300pM、约200pM、约100pM、约90pM、约80pM、约70pM、约60pM、约50pM、约40pM、约30pM、约20pM、约10pM、约9pM、约8pM、约7pM、约6pM、约5pM、约4pM、约3pM、约2pM、约1pM、约0.5pM、或约0.1pM的神经毒素多肽或甚至低于提示的值之一。已经在文献中报道了高于100pM的EC50值。按照定义,对神经毒素中毒易感的细胞必须表达,或者被改造以表达,至少一种神经毒素受体和至少一种神经毒素底物。在本领域中描述了神经毒素的受体和底物。因此,所述细胞优选对如本文定义的生物学活性的或成熟的神经毒素多肽易感。如本文所用的术语“神经毒素敏感的细胞”包含细胞或细胞系,例如,分离的原代细胞或其细胞系或建立的细胞系的细胞或建立的细胞系,优选地如本文定义的神经母细胞瘤细胞或神经母细胞瘤细胞系。优选地,如本文所用的“神经毒素敏感的细胞”以例如,约1nM或更低、500pM或更低、约400pM或更低、约300pM或更低、约200pM或更低、约100pM或更低、约90pM或更低、约80pM或更低、约70pM或更低、约60pM或更低、约50pM或更低、约40pM或更低、约30pM或更低、约20pM或更低、约10pM或更低、约9pM或更低、约8pM或更低、约7pM或更低、约6pM或更低、约5pM或更低、约4pM或更低、约3pM或更低、约2pM或更低、约1pM或更低、约0.9pM或更低、约0.8pM或更低、约0.7pM或更低、约0.6pM或更低、约0.5pM或更低、约0.4pM或更低、约0.3pM或更低、约0.2pM或更低、或甚至约0.1pM或更低对神经毒素中毒易感。例如,通过使用本发明的新型分化方法,对于SiMa细胞已经达到低于0.1pM的极低EC50值并且对于P19细胞达到低于1pM的EC50。如本领域中所知晓,“半最大有效浓度(EC50)”指在一段指明的暴露时间后诱导基线和最大值之间一半的应答的药物、抗体或毒剂的浓度。其通常用作药物的效能的测量。分级的剂量应答曲线的EC50因此代表了观察到其最大效应的50%的化合物的浓度。量子剂量应答曲线的EC50代表了在特别的暴露时间后50%的群体表现出应答的化合物的浓度。
鉴定对神经毒素中毒易感和/或具有神经毒素摄入能力的细胞或细胞系,即如本文定义的神经毒素敏感的细胞的方法是本领域已知的;见,例如US 2012/0122128 A1。在一个方面,神经毒素多肽的生物学活性来自全部上述生物性质。本领域中迄今已经描述了仅一些对神经毒素具有足够高的敏感性、可用于测定神经毒素的生物学活性的基于细胞的测定法,如在本文别处所提示。用于评价神经毒素的生物学活性的体内测定法包括,例如,已经提及的小鼠LD50测定法和先体外后体内小鼠偏侧膈测定法,如Pearce等人和Dressier等人所述;见Pearce 1994,Toxicol.Appl.Pharmacol.128:69-77和Dressier 2005,Mov.Disord.20:1617-1619。本发明的方法提供了较之本领域描述的、需要复杂的分化方案的细胞测试***,具有对神经毒素多肽增加的敏感性的简单、可靠并且强健的基于细胞的测试***。因此,本发明的方法提供了本领域用于测定神经毒素的生物学活性的细胞测试***或动物测试的改进的备选方案。如本领域技术人员已知的,神经毒素的生物学活性通常以小鼠单位(MU)表示。1MU是神经毒性组分的量,其在腹膜内注射后杀死指明的小鼠群体的50%,即小鼠i.p.LD 50。
术语“分化”,“分化的”如本文所用指非特化的或相对较低特化的细胞变成相对更特化的过程。在细胞个体发生的背景中,形容词“分化的”是相对的术语。因此,“分化的细胞”是较之与其相比较的细胞,已经在某发育途径中向下进一步发展的细胞。分化的细胞可以是,例如,终末分化的细胞,即完全特化的细胞,其在生物的多个组织和器官中从事特化的功能,并且可以但并不需要是有丝***后的。在另一个实例中,分化的细胞也可以是分化谱系内的祖细胞,其能够进一步增殖和/或分化。相似地,如果其较之与其相比较的细胞,已经在某发育途径中向下进一步发展,则细胞是“相对更特化的”,其中与之相比较的细胞被认为是“非特化的”或者“相对较不特化的”。相对更特化的细胞可与非特化的或者相对较不特化的细胞在一个或多个可表示的表型特征中不同,诸如,例如,特别的细胞组分或产物,例如RNA、蛋白质、特异性的细胞标志物或其他物质的存在、缺乏或表达水平,某些生化途径的活性、形态学外观、增殖能力和/或动力学,分化潜能和/或对分化信号的应答,等,其中此类特征表示相对更特化的细胞进一步沿着所述发育途径发展。
术语“神经元分化的细胞”如本文所用意为已经达到最终神经元分化态的细胞。例如,在本发明的方法中已经使用的鼠胚胎癌细胞P19细胞首先分化为神经祖细胞,然后其进一步分化为神经元。可以例如,表型地(通过相差显微术)和/或通过神经元分化标志物的表达跟踪神经分化过程;见,例如,Babuska等人(2010),Prague Medical Report 111,289-299或Migliore和Shepherd,Nature Reviews Neuroscience 6,810-818(2005)。可用于测定所述神经元分化标志物的表达的测定法包括,例如,本领域已知的PCR、RT-PCR、Northern印迹、Western印迹或Dot印迹、免疫沉淀分析、酶联免疫吸附分析(ELISA)或FACS分析;见,例如,Sambrook,Molecular Cloning:A Laboratory Manual,Cold Spring HarborLaboratory,第3版,2001。用于测试神经元分化的细胞的其他特征的测定法也是本领域已知的。
术语“能够分化为神经元细胞的肿瘤细胞”如本文所用意为,例如,神经母细胞瘤细胞、胚胎癌细胞、畸胎癌细胞、神经杂交细胞(例如神经元x成胶质细胞瘤细胞),或成纤维细胞瘤细胞。已经使用小鼠和人肿瘤细胞,即P19(鼠胚胎癌)和SiMa(人神经母细胞瘤)细胞分别示例了本发明的方法。
术语“神经母细胞瘤”如本文所用意为从身体的若干区域中发现的神经细胞发展而来的癌症。神经母细胞瘤最常出现在肾上腺中或周围,其与神经细胞具有相似的来源并且坐落于肾的顶部。然而,神经母细胞瘤也可以在其中存在神经细胞组的腹部的其他区域和胸、颈和骨盆中发展。术语“神经母细胞瘤细胞”如本文所用包含一种或多种神经母细胞瘤细胞,其是神经毒素敏感的并且能够分化为神经元细胞。神经母细胞瘤细胞可以是原代神经母细胞瘤细胞或原代神经母细胞瘤细胞系。所述术语也涵盖建立的神经母细胞瘤细胞或细胞系。神经母细胞瘤细胞可以是哺乳动物神经母细胞瘤细胞,例如,啮齿类动物神经母细胞瘤细胞诸如大鼠或小鼠神经母细胞瘤细胞,也可以是猴神经母细胞瘤细胞,诸如恒河猴、猕猴或食蟹猴神经母细胞瘤细胞或灵长类动物神经母细胞瘤细胞诸如黑猩猩神经母细胞瘤细胞或,优选地,人神经母细胞瘤细胞。建立的神经母细胞瘤细胞系的实例涵盖,例如,Neuro-2a(小鼠神经母细胞瘤)、Kelly(人神经母细胞瘤),SH-SY5Y(人神经母细胞瘤)或SiMa(人神经母细胞瘤)。本发明的方法中优选使用人神经母细胞瘤细胞以生成神经毒素敏感的、神经元分化的细胞。更优选地,如本文描述的神经母细胞瘤细胞是SiMa细胞或SiMa细胞系。这因为SiMa细胞易于转移,处于BoNT敏感的形式。此外,它们对BoNT具有高敏感性。另外,较之其他神经母细胞瘤细胞或细胞系,SiMa细胞的分化方案简单并且相当短。如本发明的方法中使用的SiMa细胞可以是亲本SiMa细胞或源自其的(亚)克隆。
在本发明前述方法的步骤a)中,“培养”意为在引发所述肿瘤细胞神经元分化的条件和时间下,在细胞培养基中培养如本文定义的能够分化为神经元细胞的肿瘤细胞。如细胞分化过程中所用的术语“引发(priming)”是本领域已知的;见,例如,Khoo等人,PLOS ONE6(5):e19025,(2011);Steindler,ILAR Journal 48(4),323-338(2007);Vazey和Connor,Stem Cell Research & Therapy 1:41(2010)。如本文所用“引发肿瘤细胞神经元分化”表示通过提示的细胞培养条件、时间和细胞培养基,诱导如本文所定义的肿瘤细胞神经元分化。所述引发肿瘤细胞的神经元分化可以,例如,通过在合适的细胞培养基中培养,并且任选地,通过降低在细胞培养基中的血清和/或添加视黄酸进行。如本领域技术人员所知的,其中所述肿瘤细胞“经诱导神经元分化”或“经引发神经元分化”的肿瘤细胞的分化态的特征在于,例如,如本文别处示出的神经元诱导标志物的表达。如本领域技术人员显而易见的,肿瘤细胞的所述“经引发的”或“经诱导的”分化态,然而,还不代表由本文别处所示出的特征定义的肿瘤细胞的最终神经元分化态,而是代表神经元分化谱系中的先前的分化步骤。只有在进行了本发明的分化方法的步骤b)后,肿瘤细胞是最终分化的,即如本文指明的神经元分化的细胞。在引发所述肿瘤细胞神经元分化的条件和时间下,在培养基中培养如本文定义的肿瘤细胞意为在适当的细胞培养基中在37℃培养所述肿瘤细胞12小时至7天,优选24小时至6天,更优选36小时至5天并且是本领域已知的。可用于引发所述肿瘤细胞神经元分化的适当的细胞培养基(本文也称为“引发培养基”)包括,例如,OptiMEM、MEMα、RPMI-1640、最少必需培养基(MEM)、Ham′s F12培养基、Dulbeccos修改的Eagle`s Medium(DMEM)或DMEM:F12(1:1)。引发培养基可以包含本领域已知的其他组分,诸如血清(例如FBS)、NEAA、视黄酸、生长因子(诸如NGF或FGF)、维生素、脂肪酸、激素和/或抗菌素。用于引发SiMa细胞神经元分化的适当的细胞培养基包含,例如,80至98.6%OptiMEM、1至7.5%FBS、0.2至5%B27补充物、0.2至5%N2补充物,和,任选地,0.1至2.5%非必需氨基酸(NEAA)。有利地,本发明人已经发现,包含92,5%OPTI-、5%FBS、1%非必需氨基酸、1%B-27补充物和0.5%N-2补充物的细胞培养基特别适合于引发SiMa细胞,如以下实施例中所示。为了引发SiMa细胞神经元分化,优选的培养时间是12小时至5天。优选地,在如以下实施例中显示的细胞培养条件下进行SiMa细胞的引发。为了引发P19细胞,例如,可以使用90至99.8%MEM-α、0.2至10%FBS,和0.001至10微摩尔(μM)视黄酸(RA),优选地0.1μMRA。在此,培养时间优选地是3天至7天。
如方法的步骤b)中所用的用于生成本发明的神经毒素敏感的、神经元分化的细胞的术语“分化培养基”是具有100至270mOsm/kg的重量摩尔渗透压浓度的细胞培养基。优选地,分化培养基的重量摩尔渗透压浓度在120至250mOsm/kg之间,更优选地在150和240mOsm/kg之间,甚至更优选地在180mOsm/kg和230mOsm/kg之间,最优选地在200和225mOsm/kg之间并且最优选约225mOsm/kg。如本文别处和以下实施例中所示出,本发明人已经令人吃惊地发现,分化培养基的低重量摩尔渗透压浓度是由本发明的方法生产的神经毒素敏感的、神经元分化的细胞对BoNT的增加的敏感性的原因。可以使用例如,neurobasal培养基、MEM、DMEM:F12或本领域已知的任何基础培养基作为分化培养基如果调整至适当的重量摩尔渗透压浓度,例如,通过降低培养基制剂中NaCl浓度或通过用水稀释培养基。此外,分化培养基包含至少一种补充物。补充物可以是(i)B27补充物,(ii)N2补充物,(iii)NS21补充物,或(iv)其组合。例如,B27补充物可以与N2补充物组合使用。B27补充物是本领域已知的并且一般用于神经元的生长与维持。此外,B27补充物是可商购的,例如,来自LifeTechnologies。通常,在本发明的方法中,B27补充物可以以0.2%至5%的浓度使用。N2补充物(其可从例如,Life Technologies获得)是基于Bottenstein’s N-1制剂的化学确定的,无血清补充物。N2补充物推荐用于生长和表达神经母细胞瘤以及来自周围神经***(PNS)和中枢神经***(CNS)的原代培养物中的有丝***后神经元。在本发明的方法中N2补充物可以以0.2%至5%的浓度使用。NS21补充物是重新定义的和修饰的B27补充物,其中21种不同的成分已经用于神经元培养物,例如如Chen等人(2008),Journal of NeuroscienceMethods 171,239-247的出版物中所描述。通常,在本发明的方法中NS21补充物以0.2%至5%的浓度使用。在上述分化培养基使用的其他成分包含谷氨酰胺或GlutaMax,一种或多种抗菌剂、NEAA,FBS(0.1至20%)、GT1b(0.1至300μM)、视黄酸(RA)(1纳摩尔(nM)至300μM)、生长因子(诸如100ng/ml NGF、40ng/ml BDNF、40ng/ml CNTF、5ng/ml LIF、5ng/ml GDNF、TGF或FGF)或本领域已知的其他分化因子(1% DMSO、1mM双丁酰cAMP、1mM丁酸盐、5μg/ml塞来昔布、Y-27632、SB431542,音猬因子(sonic hedgehog)(SHH)等)。本发明此方法的步骤b)的细胞在所述分化培养基中优选培养至少3天以获得神经毒素敏感的、神经元分化的细胞。培养也可以更长,例如,至少3.5天、4天、4.5天、5天、6天、7天(1周)、8天、9天、10天、11天、12天、13天、14天(2周)、15天、16天、17天、18天、19天、20天、21天(3周)或甚至更长。优选的是培养P19肿瘤细胞2至3周,并且培养SiMa细胞3天至7天。允许神经元分化的优选的分化培养基和细胞培养条件在以下实施例中显示。优选地,所述神经元分化的细胞代表如本文别处定义的最终分化的神经元细胞。
术语“重量摩尔渗透压浓度”如本文所用意为溶质浓度的测量,其可以定义为每千克(kg)溶液的溶质的渗透压摩尔(Osm)数(osmol/kg或Osm/kg)。溶液的重量摩尔渗透压浓度通常以Osm/kg表达。重量摩尔渗透压浓度测量了每单位质量的溶液的溶质颗粒的渗透压摩尔数。摩尔渗透压浓度是每升溶剂的溶质的渗透压摩尔的测量(osmol/l或Osm/l)。重量摩尔渗透压浓度和摩尔渗透压浓度可以在渗透压计上测量。
在另外的方面,本发明的前述方法可以包含额外的步骤。例如,所述额外的步骤可以涵盖用于测定如本文定义的神经毒素多肽的生物学活性的步骤。为此,通过本发明的方法获得的或可获得的神经毒素敏感的、神经元分化的细胞首先与神经毒素多肽相接触。术语“接触”如根据本发明的方法所用指将前述细胞与神经毒素物理接近以允许物理和/或化学和/或生物学相互作用。神经毒素可以由样品,优选地生物学样品诸如细胞、细胞裂解物、血液、血浆、血清或淋巴液包含。允许特异性相互作用的合适的条件是本领域技术人员熟知的。所述条件将依赖于待在本发明的方法中应用的细胞和神经毒素,并且可以由技术人员不费力地调整。此外,技术人员也可以通过常规实验测定足以允许相互作用的时间。例如,可以将特别量的如本文定义的分离的或重组神经毒素多肽或其变体或包含神经毒素多肽的样品添加至神经毒素敏感的、神经元分化的细胞。此后,在允许神经毒素多肽发挥其生物学活性的条件下,用神经毒素多肽孵育细胞至少24h,优选48h,更优选72h。如本文所用的“允许神经毒素多肽发挥其生物学活性的条件”是本领域公知的。随后,例如通过添加裂解缓冲液终止细胞,并例如如以下实施例中所示测定神经毒素多肽的生物学活性。
术语“神经毒素”、“神经毒素多肽”或“神经毒素蛋白”如本发明中所用指7种不同血清型的肉毒梭菌神经毒素,即BoNT/A、BoNT/B、BoNT/C1、BoNT/D、BoNT/E、BoNT/F、BoNT/G,以及指破伤风神经毒素(TeNT),和其变体,如本文所定义。相应的核酸和氨基酸序列是本领域已知的;见,例如,Uniprot或TREMBL序列数据库。优选地,BoNT/A用于本发明的方法中(WO2009/114748)。所述神经毒素的相应的受体和底物已经在本文别处指出。神经毒素多肽可以是天然存在的神经毒素或非天然存在的神经毒素。天然存在的神经毒素多肽是通过天然存在的方法生产的,包括,例如,从翻译后修饰、可变剪接的转录物或自发突变生产的同种型和亚型。例如,BoNT/A亚型是BoNT/A1亚型、BoNT/A2亚型、BoNT/A3亚型、BoNT/A4亚型或BoNT/A5亚型。天然存在的神经毒素多肽包括上述序列,其中添加、取代或缺失了1、2、3、4、5、6、7、8、9、10、20、30、40、50、100或更多个氨基酸残基。已经在引导部分中提及了包含天然存在的BoNT/A的可商购的药物组合物。非天然存在的神经毒素多肽意为其结构在人为操纵的帮助下被修改的任何神经毒素多肽,包括,例如,通过使用随机诱变或理性设计的基因工程生产的具有改变的氨基酸序列的神经毒素多肽,和通过化学合成生成的神经毒素多肽。现有技术中已经描述了此类非天然存在的神经毒素多肽。
在本发明的另一个方面,如本文所定义的,神经毒素多肽具有与BoNT/A、BoNT/B、BoNT/C1、BoNT/D、BoNT/E、BoNT/F、BoNT/G,或破伤风神经毒素的氨基酸序列至少40%、至少50%、至少60%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少98%或至少99%相同的氨基酸序列。如本发明所用相同指氨基酸序列的序列同一性,其中比对序列从而获得最高的顺序匹配。这能够通过使用公开的技术或计算机程序编码的方法来实现,诸如,例如BLASTP、BLASTN、FASTA、Altschul 1990,J Mol Biol 215,403。在一方面,百分比同一性值是对整个氨基酸序列计算的。技术人员可获得基于多种算法的系列程序用于比较不同的序列。在本上下文中,Needleman和Wunsch,或Smith和Waterman的算法给出特别可靠的结果。为了进行序列比对,使用程序PileUp(1987,J Mol Evolution 25,351;Higgins 1989CABIOS 5,151)或程序Gap和BestFit(Needleman和Wunsch 1970,J Mol Biol48;443;Smith和Waterman 1981,Adv Appl Math 2,482),所述程序是GCG软件包(GeneticsComputer Group 1991,575Science Drive,Madison,Wisconsin,USA 53711)的部分。在本发明的一个方面,以下列设置使用程序GAP对整个序列区测定上文以百分比(%)所述的序列同一性值:空位权重:50,长度权重:3,平均匹配:10.000和平均错配:0.000,除非另外说明,否则所述设置应该一直用作序列比对的标准设置。将理解前述变体在本发明一方面将保留神经毒素的生物学性质中至少之一,而在另一方面应保留引述的神经毒素多肽的所有生物学性质。在其他方面,变体能够是具有改良的或改变的生物学性质的神经毒素,例如它们可包含就酶识别改良的切割位点,或者可就受体结合或任何其他上述性质改良。
原则上本文所称的神经毒素包含N端轻链和C端重链。神经毒素是作为单链前体分子生产的,称为“未加工的神经毒素多肽”。由于随后的加工,获得了“经加工的神经毒素多肽”。所述经加工的神经毒素多肽表现出神经毒素的生物学性质特征,即(a)受体结合,(b)内化,(c)跨核内体膜进入细胞溶胶的易位,和/或(d)对突触泡膜融合中涉及的蛋白质的内切蛋白水解切割。因此经加工的神经毒素多肽被称为生物学活性的或成熟的神经毒素多肽。神经毒素多肽的生物学活性,在一方面,起因于全部前述生物学性质,如本文别处所示出。
在另一方面,根据本发明的方法的神经毒素多肽可以是嵌合分子。所述嵌合分子,在一方面,可具有单个结构域取代。因此,在另一方面,神经毒素重链的一部分被抗体的Fc结构域的一部分替换。
如本文所的术语“量”涵盖例如,神经毒素多肽的绝对量,所述多肽的相对量或浓度以及与其相关的或可以从其得到的任何值或参数。
术语“测定量”,例如测定神经毒素多肽的量,指以定量或半定量的方式测量例如神经毒素多肽的绝对量、相对量或浓度。用于检测的合适的方法是本领域技术人员熟知的。将理解神经毒素多肽的量的测定,在一个方面,也需要通过施用具有预先定义的量的神经毒素多肽的标准溶液校准方法。如何进行此类校准是本领域技术人员熟知的。
如本文所用的术语“测定神经毒素多肽的生物学活性”意为测量神经毒素蛋白的生物学活性,即(a)受体结合,(b)内化,(c)跨核内体膜进入细胞溶胶的易位,和/或(d)对突触泡膜融合中涉及的蛋白质的内切蛋白水解切割。更具体而言,神经毒素(例如,BoNT/A)藉此切割神经毒素底物(例如,SNAP-25)的整体细胞机制涵盖神经毒素与其相应受体的结合(例如,BoNT/A与BoNT/A受体的结合),神经毒素/受体复合物的内化,神经毒素轻链从细胞内囊泡进入细胞质的易位以及神经毒素底物的蛋白裂解切割。用于测定神经毒素多肽的生物学活性的体外和体内测定法是本领域熟知的并且已经在本文别处提及(见,例如,Pellett等人,Withemarsh等人Toxicol.Sciences 126(2),426-435(2012),WO 2010/105234 A1)。
如本文所用,术语“对神经毒素(多肽)活性的敏感性”指在由非处理对照检测到的信号或背景信号之上的测定法能够一致地测量的最低剂量。
在本发明的方法的一个方面,如本发明的前述方法的步骤b)中所用的分化培养基还包含视黄酸。优选地,所述视黄酸以0.01微摩尔(μM)和300μM之间的浓度存在于neurobasal培养基中。更优选地,对于P19肿瘤细胞,视黄酸以0.1和0.5μM视黄酸之间的浓度存在,即以0.1、0.2、0.3、0.4或0.5μM视黄酸的浓度存在;并且对于SiMa细胞以1和5μM之间,即以1、2、3、4,或5μM的浓度,最优选地以3μM的浓度存在。视黄酸是已知的神经诱导剂,其能够诱导神经元细胞的分化,包括神经母细胞瘤细胞。已经发现向本发明的方法的步骤b)中所用的分化培养基中添加低浓度的视黄酸有利地增强肿瘤细胞对神经毒素多肽的敏感性。
在本发明的方法的另外的方面,步骤b)中所述分化培养基还包含抗菌剂和/或抑制非神经元细胞生长的细胞抑制剂。例如可以使用青霉素-链霉素作为抗菌剂。例如可以使用胞嘧啶-1-β-D-呋喃***糖苷(AraC)作为细胞抑制剂。添加抗菌剂防止细菌在细胞培养基中生长,而细胞抑制剂抑制了否则可能生长超过本发明的分化方法中的肿瘤细胞的非肿瘤/非神经元细胞的细胞生长和增殖。
仍然在本发明的方法的另一个方面,步骤b)中所述分化培养基还包含GT1b。GT1b是神经节苷脂,其结合神经毒素并潜在地介导神经毒素对神经元的选择性。因此,GT1b可以用作增强剂用于在本发明的方法中BoNT摄入肿瘤细胞中。优选地,所述GT1b以25和75μM之间的浓度存在,即以25μM、30μM、35μM、40μM、45μM、50μM、55μM、60μM、65μM、70μM或75μM的浓度存在,更优选地以50μM的浓度存在。
在本发明的方法的另一个方面,本发明所述方法的步骤a)包含这样的细胞培养条件,其包括从(细胞)培养基中减少血清和/或添加视黄酸。如本文所用的“从培养基中减少血清”意为,例如,以2至5天的间隔,从10%至5%至2.5%至1%至0%,逐步减少血清。备选地,可以在一步中,用无血清细胞培养基替换含有血清的细胞培养基。移除血清中含有的生长因子允许如本文定义的肿瘤细胞的分化。此外或备选地,可以以低浓度将视黄酸添加至培养基,如本文别处所示。
在本发明的方法的一些方面,能够分化为神经元细胞的所述肿瘤细胞是SiMa细胞,其可从DSMZ(德国微生物和细胞培养物保藏中心)以ACC保藏号:164获得。SiMa细胞系DSMZ ACC 164也称为亲本SiMa细胞系。如本发明的方法中使用的SiMa细胞可以是亲本SiMa细胞或其(亚)克隆。此类亚克隆也是本领域已知的;见,例如,WO 2010/105234,US 8,476,068 B2或Ester Fernández-Salas,Joanne Wang,Yanira Molina,Jeremy B.Nelson,Birgitte P.S.Jacky,K.Roger Aoki–PloSOne;20127(11)e49516。
可以根据DMSZ的方案培养SiMa细胞。在一个方面,在本发明的方法的步骤a)中,在引发所述SiMa细胞神经元分化的条件和时间下,在细胞培养基中培养SiMa细胞包括在37℃在细胞培养(或生长)培养基中培养所述SiMa细胞至少12小时(h),至少24小时或优选地至少36小时,所述细胞培养(或生长)培养基至少包含OptiMEM、FBS、B27补充物、N2补充物和任选地,NEAA。
在本发明的方法的一个方面,步骤a)中SiMa细胞的培养或引发培养基包含80%至98.8% OptiMEM、1至10% FBS、0.2至5% B27补充物和/或0.2至5% N2补充物。任选地,SiMa细胞的所述培养基还包含非必需氨基酸和/或抗菌素和/或视黄酸。
优选地,步骤a)中SiMa细胞的培养或引发培养基包含92,5% OptiMEM、5% FBS、1% B27补充物、0.5% N2补充物和1% NEAA。
在本发明的方法的一个方面,步骤b)中的分化培养基包含具有100至270mOsm/kg的重量摩尔渗透压浓度的培养基。优选地,所述培养基是以86至98.8%的浓度使用的neurobasal培养基。分化培养基还可以包含以下成分中的一种或多种:0.2至5% B27补充物和/或0.2至5% N2补充物;0.5至2%非必需氨基酸(NEAA);1至5μM视黄酸;0.5至2%GlutaMAX和/或25至75μM GT1b。
优选地,步骤b)中的分化培养基包含97% neurobasal培养基、2% B27补充物、1% GlutaMAX,和3μM视黄酸。
在本发明的方法的一个方面,在步骤a)中培养SiMa细胞至少36小时。
在本发明的方法的一个方面,在步骤a)中在组织培养皿上培养SiMa细胞,所述组织培养皿用选自以下的至少一种化合物包被:聚-L-赖氨酸、聚-D-赖氨酸、胶原蛋白、层粘连蛋白和明胶。本领域技术人员熟知包被细胞培养皿的方法。优选地,用聚-L-赖氨酸包被组织培养皿。
本发明提供了新的分化方案,使用该方案能够实现SiMa细胞对神经毒素多肽的敏感性显著增加。此外,所述测试***比本领域中描述的用于神经毒素多肽的生物活性的测试更准确和强健。在引发SiMa细胞神经元分化的第一步中,在包含92.5% Opti-、5% FBS、1% B27补充物、0.5% N2补充物和1% NEAA的新型引发培养基中培养SiMa细胞。如果适用,也可以向细胞培养基添加一种或多种抗菌剂。然后在经包被的多孔板上接种细胞。使用以聚-L-赖氨酸包被的细胞培养皿达到了最优的结果。备选地,胶原、聚-D-赖氨酸、层粘连蛋白、明胶,或其组合也可以用于细胞培养皿的包被。在接种的细胞在上述生长培养基或引发培养基中生长至少36h后,已经用6种不同分化培养基取代了所述培养基,相比较之下。在其中已经用新鲜的分化培养基取代了分化培养基的3至7天分化之后,如果适用,将神经毒素多肽(由BoNT/A所示例)添加至分化培养基。在孵育另外75h后,终止细胞并分析添加的神经毒素多肽的生物学活性。相比较之下,具有低重量摩尔渗透压浓度的分化培养基给出了最好的结果:包含含有2% B27补充物、1% GlutaMAX和3μM视黄酸的neurobasal培养基的分化培养基的使用提供了0.22pM的EC50值。所述分化培养基具有约225mOsm/kg的重量摩尔渗透压浓度。对于包含MEM、2% B27补充物、1% N2补充物、和3μM视黄酸,稀释至约225mOsm/kg的分化培养基,发现了0.24pM的EC50值的相似结果。本发明的相对简单的分化方案允许了高可再现性和高敏感性(EC50低于0.3pM;LLOD低于0.1pM),这允许了待分析的样品的高度稀释。因此,通过本发明的分化方法生成的SiMa细胞的敏感性优选地,低于10pM、低于5pM、低于2pM、低于1pM、低于0.5pM或甚至低于0.3pM。
在本发明的方法的其他方面,能够分化为神经元细胞的所述肿瘤细胞是P19细胞,其可以例如以ACC保藏号:316获取自DSMZ,以CRL-1825获取自ATCC或以95102107获取自ECACC。可以根据DSMZ的方案培养P19细胞。在一个方面,在本发明的方法的步骤a)中,在引发所述P19细胞神经元分化的条件和时间下,在细胞培养基中培养P19细胞包括在至少包含MEM-α和FBS的细胞培养(或生长)培养基中在细菌培养皿上培养所述P19肿瘤细胞至少3天,4天或优选地5天使得形成细胞聚集物。在一个方面,P19细胞的所述细胞培养基包含视黄酸,优选地以75和125nM之间的浓度,更优选地100nM的浓度。在一个方面,细胞培养基包含95% MEM-α,5% FBS和0.1μM视黄酸。优选地,收获P19细胞聚集物并通过蛋白酶处理,例如胰蛋白酶处理从聚集物生成经引发神经元分化的分离的细胞。在本发明的方法的一个方面,本发明的方法的步骤b)中的P19细胞在如本文定义的具有低重量摩尔渗透压浓度的分化培养基,优选地具有约225mOsm/kg的重量摩尔渗透压浓度的neurobasal培养基中培养2至3周。
本发明提供了用于P19细胞的新的分化方案,使用该方案能够实现细胞对BoNT的敏感性显著增加,如以下实施例所证明。在本发明的分化方案中,如现有技术中所描述培养P19细胞。为了引发P19细胞神经元分化,将细胞接种在用于细菌的培养皿上(即无细胞培养皿)并添加100nM视黄酸。在5天后,分离并胰蛋白酶化获得的细胞聚集物。之后,将细胞接种在多孔板上并进一步培养。已经由本发明人令人吃惊地发现使用neurobasal培养基(包含2% B27补充物、1% N2补充物和1% GlutaMAX的neurobasal培养基)以及添加低浓度的视黄酸(100nM)能够进一步增加细胞对BoNT的敏感性。通过添加细胞抑制药物(例如,5μMAraC)能够抑制非神经元细胞的生长。此外,已经发现当一用BoNT使细胞中毒就对培养基添加GT1b时,添加GT1b增强了细胞的BoNT摄取。为此目的,例如,使用50μM GT1b。在分化2至3周后,其中如果必要培养基已经被替换,将BoNT添加至细胞培养基。在用BoNT孵育72h后,终止并通过以下实施例中显示的方法分析细胞。
如对于两种不同的细胞系所示例的,本发明提供了用于测定神经毒素的生物学活性的新的基于细胞的测试***。本发明的所述基于细胞的测试***是极其灵敏和强健的并且提供了常规动物测试的备选。此外,本发明的基于细胞的测试***较之本领域中描述的基于细胞的测试***是简单的分化方案,并且允许高可再现性和高敏感性(对于SiMa细胞EC50低于0.1pM,并且对于P19细胞低于1pM),这允许待分析的含有神经毒素的样品的高度稀释。为了以尽可能低的浓度应用所述潜在干扰性物质,样品的此类高度稀释对于赋形剂或待分析的样品中含有的杂质是极为重要。最后,本发明的基于细胞的测试***比本领域中描述的***更灵活并且经济。
应当理解,除非另外说明,以上作出的术语的定义和解释加上必要的变更应用于本说明书中在下文描述的全部方面。
本发明还涉及通过本发明的方法可获得的或获得的神经毒素敏感的、神经元分化的细胞。优选地,在使用SiMa细胞的情况下,所述细胞具有少于10pM、少于5pM、少于2pM、少于1pM、少于0.5pM或甚至少于0.3pM的EC50值。也优选通过本发明的分化方法生成的神经元分化的SiMa细胞的肉毒梭菌神经毒素的敏感性较之在本领域中描述的神经元分化方法中通常使用的具有约290至350mOsm/kg的重量摩尔渗透压浓度的分化培养基中分化的SiMa细胞,增加至少1.5倍、至少2倍、至少3倍、至少4倍、至少5倍、至少6倍、至少7倍、至少8倍、至少9倍或甚至至少10倍。使用P19细胞能够实现相似的结果;见实施例。
此外,本发明提供了用于测定神经毒素多肽的活性的方法,所述方法包括步骤为:
a)将神经毒素敏感的、神经元分化的细胞,优选地通过本发明的方法可获得的或获得的神经毒素敏感的、神经元分化的细胞与神经毒素多肽接触;
b)在允许神经毒素多肽发挥其生物学活性的条件下培养步骤a)的神经毒素敏感的、神经元分化的细胞3至74小时或优选地72小时;和
c)在根据步骤b)的培养后在所述细胞中测定神经毒素多肽的生物学活性。
具体地,所述用于测定神经毒素多肽的活性的方法包括步骤为:
a)在引发所述肿瘤细胞神经元分化的条件和时间下,在培养基中培养能够分化为神经元细胞的肿瘤细胞;
b)具有100至270mOsm/kg的重量摩尔渗透压浓度,并且包含(i)B27补充物和/或(ii)N2补充物的分化培养基中培养步骤a)的经引发神经元分化的肿瘤细胞至少3天,从而获得神经毒素敏感的、神经元分化的细胞;
c)将步骤b)的神经毒素敏感的、神经元分化的细胞与神经毒素多肽接触;
d)在允许神经毒素多肽发挥其生物学活性的条件下,培养步骤c)的神经毒素敏感的、神经元分化的细胞3至74小时,或优选地72小时;和
e)在根据步骤d)的培养后在所述细胞中测定神经毒素多肽的生物学活性。
可以通过本领域中描述的方法进行神经毒素多肽的生物学活性的测定(见,例如,Pellett等人,Withemarsh等人Toxicological Sciences 126(2),426-435(2012),WO2010/105234A1,WO 2009/114748,WO 2012/123370,WO 2013/131991)。优选地,能够分化为神经元细胞的肿瘤细胞是SiMa细胞,更优选地亲本SiMa细胞(DSMZ ACC 164)。神经毒素多肽优选地是BoNT/A。
本发明也涉及如本发明的方法中指明的细胞培养基和/或分化培养基用于从神经元分化的细胞,优选地神经母细胞瘤细胞先体外后体内生成神经毒素敏感的、神经元分化的细胞的用途。
在另外的方面,本发明提供了包含80至98.8% OptiMEM,1至10% FBS,0.2至5%B27补充物和/或0.2至5% N2补充物的细胞培养或引发培养基。备选地,可以使用0.2至5%NS21补充物。优选地,所述培养基包含93.5% OptiMEM,5% FBS,1% B27补充物和0.5%N2补充物。所述培养基对于引发SiMa细胞特别有用。Opti-降低的血清培养基(Life Technologies)是Eagle's最少必需培养基的修改,用HEPES和碳酸氢钠缓冲并补充有次黄嘌呤、胸苷、丙酮酸钠、L-谷氨酰胺、痕量元素和生长因子。在一个方面,培养基还可以包含如本文定义的抗菌剂和/或非必需氨基酸(NEAA)。本发明的所述培养基在使用SiMa细胞生成本发明的神经毒素敏感的、神经元分化的细胞的方法的步骤a)中特别有用。
最后,本发明涉及适用于进行前述方法的试剂盒,所述试剂盒包含含有80至98.8% OptiMEM、1至10% FBS、0.2至5% B27补充物和/或0.2至5% N2补充物和,任选地非必需氨基酸和/或抗菌剂的细胞培养基,和SiMa细胞。优选地,所述细胞培养基包含93.5% OptiMEM,5% FBS,1% B27补充物和0.5% N2补充物,和SiMa细胞。试剂盒还可以包含如本文定义的具有100至270mOsm/kg的重量摩尔渗透压浓度的分化培养基,优选地neurobasal培养基,和如本文提示的至少一种补充物,即B27,N2或NS21补充物。优选地,所述分化培养基包含78至98.3%培养基,1至10% FBS,0.5至2% GlutaMAX,0.2至5% B27补充物,和/或0.2至5% N2补充物。在以下实施例中显示可以在本发明的试剂盒中使用的其他优选的培养基。
应理解本发明的试剂盒是用于实践本文上文中提及的方法的。在一方面,可以想象所有的组分都以即用(ready-to-use)的方式提供,用于实践上文提及的方法。在其他方面,试剂盒含有进行所述方法的说明。说明能够通过纸或电子形式的用户手册来提供。例如,手册可包括用于解释当使用本发明的试剂盒进行前述方法时获得的结果的说明。
此说明书引用的所有参考文献都以其完整的公开内容和本说明书中具体提及的公开内容引入作为参考。
如本文所用的缩写:
OptiMEM:Opti-降低的血清培养基(Life Technologies)是Eagle's最少必需培养基的修改,用HEPES和碳酸氢钠缓冲并补充有次黄嘌呤、胸苷、丙酮酸钠、L-谷氨酰胺、痕量元素和生长因子。在补充有血清的培养基中生长的大多数细胞能够转移至血清最少降低50%的Opti-
FBS:胎牛血清是最广泛使用的用于真核细胞的体外细胞培养的血清补充物。FBS从许多生产商可商购,诸如Sigma-Aldrich、Invitrogen、Life Technologies和其他。
B27补充物:B27补充物一般用于生长和维持神经元。B27补充物作为50x或100x储液可商购,例如从Life Technologies。
N2补充物:作为50x或100x储液可商业获得,例如从Life Technologies。推荐N2补充物用于生长和表达神经母细胞瘤以及来自周围神经***和中枢神经***的原代培养物中的有丝***后神经元。N2补充物可以用作Bottenstein’s N1制剂的替代物。N2补充物可以与补充了生长因子诸如bFGF或EGF的neurobasal培养基使用或与DMEM使用。
NS21补充物:NS21补充物是重新定义的和修饰的B27补充物,其中21种不同的成分已经用于神经元培养物,如例如,在Chen等人(2008),Journal of Neuroscience Methods171,239-247的出版物中所描述。
NEAA:可商购自许多生厂商诸如Invitrogen或Cyagen的非必需氨基酸细胞培养补充物通常作为储液提供,含有若干种非必需氨基酸诸如甘氨酸、L-丙氨酸、L-天冬酰胺、L-谷氨酸、L-天冬氨酸、L-丝氨酸或L-脯氨酸。其用作细胞培养基的补充物用于优化的细胞生长。
P19细胞:P19细胞是胚胎癌细胞系,其衍生自小鼠中源自胚胎的畸胎癌。该细胞系是多能细胞,能够分化为全部三种胚层细胞类型。其也是最受表征的胚胎癌(EC)细胞系,其可以通过不同的特异性处理特异性地诱导为心肌细胞和神经元细胞。将聚集的P19细胞暴露于二甲基亚砜可以导致分化为心肌和骨骼肌。此外,将P19细胞暴露于视黄酸(RA)可以将其分化为神经元细胞(McBurney & Rogers(1982),Dev.Biol 89(2):503-508;Rudnicki,等人(1990)Dev.Biol 138(2):348-358)。
SiMa细胞:SiMa细胞对应于神经母细胞瘤(Nb)细胞系,其携带与差预后Nb相关联的主要的复发性染色体改变,包括通过形成双微小体(dmin)的N-MYC的扩增、der(1)t(1;17)(p35;q12)和der(22)t(17;22)(q22;p13),和11号染色体的丢失,在起始和晚期传代均有记载。与差预后的这些细胞遗传学特征形成对照,通过高压液相色谱(HPLC)测量的儿茶酚胺合成的分析揭示了高度的肾上腺素能分化与高速率的3,4-二羟基苯丙氨酸(DOPA)、去甲肾上腺素、高香草酸(HVA),和香草基扁桃酸(VMA)生产。形成对照地高度的分化和差的预后遗传标志物组合使得SiM成为用于研究Nb的病理学和疗法的独特工具(Marini等人,Cancer Genet.Cytogenet.(1999),112:161-4)。
MEM-α:最少必需培养基α(Invitrogen,Life Technologies)
Neurobasal培养基:培养基(Invitrogen,Life Technologies)是当与补充物使用时满足了产前和胚胎神经元细胞的特殊细胞培养需求的基础培养基。培养基可以用于生长来自海马、皮质和脑的其他区域的神经元细胞。培养基允许均质神经元细胞群体的长程和短程维持而不需要星细胞饲养层。
GlutaMax: GlutaMAXTM培养基是含有来自L-谷氨酰胺的稳定化形式二肽,L-丙氨酰基-L-谷氨酰胺的细胞培养基,所述L-丙氨酰基-L-谷氨酰胺甚至在长程培养过程中防止降解和氨积累。L-丙氨酰基-L-谷氨酰胺二肽在水性溶液中极为稳定,不会像L-谷氨酰胺一样在贮藏或孵育中降解为氨。
本发明现在将以以下实施例说明,然而所述实施例不能理解为限制本发明的范围。
实施例:Neurobasal和MEM培养基之间的差异对肉毒梭菌神经毒素(BoNT)敏感性的影响
i)根据DSMZ(德国微生物和细胞培养物保藏中心)的方案培养SiMa亲本细胞。在将细胞铺板在96孔板上前一天,将培养基改变为92.5% OPTI-(Gibco,LifeTechnologiesTM#51985)+5% FBS(PAA#A15-152)+1%非必需氨基酸(NEAA;Gibco,LifeTechnologiesTM#11140-038)+1% B-27补充物(Gibco,Life TechnologiesTM#17504-044)+0.5% N-2补充物(Gibco,Life TechnologiesTM#17502-048)作为“引发培养基”。将细胞(30.000细胞/cm2)铺板在96孔板(TPP #92096)上,5天后在上述引发培养基中加入肉毒梭菌神经毒素(BoNT)。在将细胞铺板24h后,将培养基更换为以下分化培养基之一:
1. 97% Neurobasal(Gibco,Life TechnologiesTM#21103)+2% B-27补充物(Gibco,Life TechnologiesTM#17504-044)+1% GlutaMAXTM(Gibco,Life TechnologiesTM#35050-038)+3μM视黄酸(RA;Sigma-Aldrich #R2625)
2. 96% MEM(Gibco,Life TechnologiesTM#42360)+2% B-27补充物(见上文)+1% N-2补充物(见上文)+1% NEAA(见上文)+3μM RA(见上文)
3. 96% MEM(见上文)+2% B-27补充物(见上文)+1% N-2补充物(见上文)+1%NEAA(见上文)+3μM RA(见上文)+维生素B12+Fe+Zn(低)
4. 96% MEM(见上文)+2% B-27补充物(见上文)+1% N-2补充物(见上文)+1%NEAA(见上文)+3μM RA(见上文)+维生素B12+Fe+Zn(高)
5. 96% MEM(见上文)+2% B-27补充物(见上文)+1% N-2补充物(见上文)+1%NEAA(见上文)+3μM RA(见上文);稀释至225mOsm/kg
6. 97% Neurobasal(见上文)+2% B-27补充物(见上文)+1% GlutaMAXTM(见上文)+3μM视黄酸(见上文)+Zn(高)
在改变为分化培养基后四天,将每孔一半的培养基更换为含有不同浓度的BoNT/A(从10pM开始在11步中连续1:2稀释加上没有BoNT/A的阴性对照)的新鲜培养基。添加BoNT72小时后,吸出培养基并添加含有核酸酶(benzonase)的裂解缓冲液。在室温(RT)孵育平板并然后添加Roti-load 1(Roth #K929.1)。能够在低于-70℃的温度贮藏如前述制备的样品。低温是关键的因为SNAP-25似乎在较高的贮藏温度特异性降解。之后样品使用SDS-PAGE分离并且随后通过Western印迹分析。测定EC50并且在表1中(给出4次试验的平均)比较数值。
表1:
粗体的EC50数值=对BoNT高敏感性
令人吃惊地,仅通过用Neurobasal培养基取代MEM使得细胞对BoNT/A的敏感性增加了10倍(2.vs.1.)。用MEM缺乏的Neurobasal培养基的组分(铁、维生素B12和锌)补充MEM不影响细胞对BoNT/A的易感性(2.vs.3.和4.)。然而,用无菌的去离子水将MEM稀释至225mOsm/kg产生了与使用Neurobasal培养基相同的惊人的效果。因此,将重量摩尔渗透压浓度从300mOsm/kg降低至225mOsm/kg显著增加了SiMa细胞的敏感性,从~2pM至~0.2pM。
表2显示了分化培养基1至6的重量摩尔渗透压浓度值。
表2:测试的分化培养基的重量摩尔渗透压浓度
例如,MEM具有约300mOsm/kg的重量摩尔渗透压浓度。通常,在现有技术中使用的细胞培养基具有290和350mOsm/kg之间的重量摩尔渗透压浓度。其他成分并不实质上影响细胞培养基的重量摩尔渗透压浓度。对于补充物,选择在理想的范围内的重量摩尔渗透压浓度。
ii)根据DSMZ(德国微生物和细胞培养物保藏中心)的方案培养P19细胞。在将细胞铺板在96孔板上5天前,将细胞转移至细菌级别培养皿上并将培养基改变为补充有5% FBS(PAA #A15-152)和0.1μM视黄酸(RA;Sigma-Aldrich #R2625)的95% MEM-α(Gibco,LifeTechnologiesTM#32571)作为“引发培养基”。在5天的生长过程中,细胞形成块或聚集物。将其胰蛋白酶化并将细胞(30.000细胞/cm2)铺板在96孔板(TPP #92096)上,5天后在上述引发培养基中加入肉毒梭菌神经毒素(BoNT)。在将细胞铺板24h后,将培养基更换为以下分化培养基之一:
1. 97% Neurobasal(Gibco,Life TechnologiesTM#21103)+2% B-27补充物(Gibco,Life TechnologiesTM#17504-044)+1% GlutaMAXTM(Gibco,Life TechnologiesTM#35050-038)+3μM视黄酸(RA;Sigma-Aldrich #R2625);225mOsm/kg。
2. 95% MEM-α(Gibco,Life TechnologiesTM#32571)+5% FBS(PAA #A15-152)+0.1μM视黄酸(RA;Sigma-Aldrich #R2625);300mOsm/kg。
3. 90% MEM-α(Gibco,Life TechnologiesTM#32571)+10% FBS(PAA #A15-152);300mOsm/kg。
4. 97% MEM-α(Gibco,Life TechnologiesTM#32571)+2% B-27补充物(见上文)+1% N-2补充物(见上文)+1% NEAA(见上文)+1μM视黄酸(RA;Sigma-Aldrich#R2625);300mOsm/kg。
在改变为分化培养基后四天,将每孔一半的培养基更换为含有不同浓度的BoNT/A(从10pM开始在11步中连续1:2稀释加上没有BoNT/A的阴性对照)的新鲜培养基。添加BoNT72小时后,吸出培养基并添加含有核酸酶(benzonase)的裂解缓冲液。在室温(RT)孵育平板并然后添加Roti-load 1(Roth #K929.1)。能够在低于-70℃的温度贮藏如前述制备的样品。低温是关键的因为SNAP-25似乎在较高的贮藏温度特异性降解。之后样品使用SDS-PAGE分离并且随后通过Western印迹分析。测定EC50并且在表3中(给出4次试验的平均)比较数值。
表3:
分化培养基 EC50[pM] EC50[mol/l]
1.Neurobasal+B-27+GlutaMax+RA 1.10 1.10x10-12
2.α-MEM+5% FBS+RA 8.84 8.84x10-12
3.α-MEM+10% FBS 17.7 1.77x10-11
4.α-MEM+B-27+NEAA+N-2+RA 12.5 1.25x10-11
粗体EC50值=对BoNT高敏感性。

Claims (18)

1.生成神经毒素敏感的、神经元分化的细胞的方法,所述方法包括步骤为:
a)在引发所述肿瘤细胞神经元分化的条件和时间下,在培养基中培养能够分化为神经元细胞的肿瘤细胞,其中肿瘤细胞是SiMa细胞;和
b)在具有120至250mOsm/kg的重量摩尔渗透压浓度,并且包含(i)B27补充物和/或(ii)N2补充物的分化培养基中培养a)的经引发神经元分化的肿瘤细胞至少3天,从而较之在具有290至350mOsm/kg的重量摩尔渗透压浓度的分化培养基中培养的SiMa细胞,获得对梭菌神经毒素BoNT具有增加的敏感性的神经毒素敏感的、神经元分化的细胞。
2.权利要求1的方法,其中分化培养基还包含视黄酸。
3.权利要求2的方法,其中所述视黄酸以0.01μM和300μM之间的浓度存在。
4.权利要求1的方法,其中分化培养基还包含抗菌剂和/或抑制非神经元细胞生长的细胞抑制剂。
5.权利要求1的方法,其中分化培养基还包含GT1b。
6.权利要求5的方法,其中所述GT1b以25和75μM之间的浓度存在。
7.权利要求5的方法,其中所述GT1b以50μM的浓度存在。
8.权利要求1的方法,其中在权利要求1a)中引发所述细胞神经元分化的所述条件和时间包括从培养基中降低血清和/或添加视黄酸。
9.权利要求1的方法,其中所述肿瘤细胞是SiMa细胞DSMZ ACC保藏号:164。
10.权利要求1或9的方法,其中步骤a)中的培养基包含80至98.8%OptiMEM、1至10%FBS、0.2至5%B27补充物和/或0.2至5%N2补充物和,任选地,非必需氨基酸和/或抗菌素。
11.权利要求1或9的方法,其中步骤b)中的分化培养基具有200至225mOsm/kg的重量摩尔渗透压浓度。
12.权利要求11的方法,其中步骤b)中的分化培养基包含78至98.3%neurobasal培养基,1至10%FBS,0.5至2%GlutaMAX,0.2至5%B27补充物,和/或0.2至5%N2补充物。
13.权利要求1或9的方法,其中在步骤a)中培养SiMa细胞至少36小时。
14.权利要求1或9的方法,其中步骤a)中的所述培养基还包含抗菌剂和/或非必需氨基酸(NEAA)。
15.权利要求1或9的方法,其中在步骤a)中在组织培养皿上培养SiMa细胞,所述组织培养皿用至少一种选自以下组成的组的化合物包被:聚-L-赖氨酸、聚-D-赖氨酸、胶原蛋白、层粘连蛋白和明胶。
16.用于测定神经毒素多肽的活性的方法,所述方法包括步骤为:
a)通过权利要求1至15之任一项的方法获得神经毒素敏感的、神经元分化的细胞,使该细胞与神经毒素多肽相接触;
b)在允许神经毒素多肽发挥其生物学活性的条件下培养步骤a)的神经毒素敏感的、神经元分化的细胞3至74小时;和
c)在根据步骤b)培养后,测定所述细胞中神经毒素多肽的生物学活性。
17.权利要求16的方法,其中在步骤b)中,在允许神经毒素多肽发挥其生物学活性的条件下培养步骤a)的神经毒素敏感的、神经元分化的细胞72小时。
18.根据权利要求1的方法,其中步骤a)中的培养基包含93.5%OptiMEM、5%FBS,1%B27补充物和0.5%N2补充物。
CN201380053762.1A 2012-10-16 2013-10-15 用于测定神经毒素多肽的生物学活性的细胞测试*** Active CN104736697B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261714282P 2012-10-16 2012-10-16
EP12188662 2012-10-16
US61/714,282 2012-10-16
EP12188662.6 2012-10-16
PCT/EP2013/071456 WO2014060373A1 (en) 2012-10-16 2013-10-15 Cellular test systems for the determination of the biological activities of neurotoxin polypeptides

Publications (2)

Publication Number Publication Date
CN104736697A CN104736697A (zh) 2015-06-24
CN104736697B true CN104736697B (zh) 2018-06-01

Family

ID=47071161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380053762.1A Active CN104736697B (zh) 2012-10-16 2013-10-15 用于测定神经毒素多肽的生物学活性的细胞测试***

Country Status (9)

Country Link
US (2) US10125350B2 (zh)
EP (1) EP2909316B1 (zh)
JP (1) JP6300807B2 (zh)
KR (1) KR102073111B1 (zh)
CN (1) CN104736697B (zh)
AU (1) AU2013331771B2 (zh)
CA (1) CA2886939C (zh)
HK (1) HK1208706A1 (zh)
WO (1) WO2014060373A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2271670T3 (pl) * 2008-03-14 2015-05-29 Allergan Inc Testy aktywności serotypu A toksyny botulinowej oparte na immunologii
ES2818986T5 (es) 2013-08-09 2024-01-25 Biomadison Inc Ensayo de toxina botulínica con sensibilidad mejorada
KR102556363B1 (ko) * 2016-10-20 2023-07-18 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 보툴리눔 신경독소의 활성을 측정하기 위한 시험관내 및 세포 기반 검정
EP4092104A4 (en) * 2020-01-14 2024-03-06 Ajinomoto Kk MEDIUM WITH REDUCED OSMOTIC PRESSURE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096728A2 (en) * 2010-02-03 2011-08-11 Samsung Life Public Welfare Foundation Method for proliferating stem cells by activating c-met/hgf signaling and notch signaling

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7011828B2 (en) * 2000-03-14 2006-03-14 Es Cell International Pte. Ltd. Implanting neural progenitor cells derived for human embryonic stem cells
ZA200401646B (en) * 2003-03-12 2004-06-07 Reliance Life Sciences Pvt Ltd Derivation of terminally differentiated dopaminergic neurons from human embryonic stem cells.
FR2859219B1 (fr) * 2003-09-02 2005-10-14 Alain Privat Procede de production de neurones a partir de cellules d'une lignee cellulaire
JP2005179257A (ja) * 2003-12-19 2005-07-07 B Road:Kk 新規胚性幹細胞分化誘導物質
US20060216821A1 (en) * 2004-02-26 2006-09-28 Reliance Life Sciences Pvt. Ltd. Pluripotent embryonic-like stem cells derived from corneal limbus, methods of isolation and uses thereof
PL2271670T3 (pl) 2008-03-14 2015-05-29 Allergan Inc Testy aktywności serotypu A toksyny botulinowej oparte na immunologii
US8492109B2 (en) * 2009-01-20 2013-07-23 Trustees Of Tufts College Methods for the delivery of toxins or enzymatically active portions thereof
EP2406371B1 (en) 2009-03-13 2018-05-09 Allergan, Inc. Cells useful for immuno-based botulinum toxin serotype a activity assays
EP2683816B1 (en) 2011-03-11 2017-05-10 Merz Pharma GmbH & Co. KGaA Method for the determination of botulinum neurotoxin biological activity
EP2798077A2 (en) * 2011-12-31 2014-11-05 Allergan, Inc. Highly Sensitive Cell-Based Assay to Detect the Presence of Active Botulinum Neurotoxin Serotype-A
EP2823053B1 (en) 2012-03-07 2017-08-23 Merz Pharma GmbH & Co. KGaA Means and methods for determining neurotoxin activity based on a modified luciferase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096728A2 (en) * 2010-02-03 2011-08-11 Samsung Life Public Welfare Foundation Method for proliferating stem cells by activating c-met/hgf signaling and notch signaling

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Differentiation of a Human Neuroblastoma Into Neuron-Like Cells Increases Their Susceptibility to Transduction by Herpesviral Vectors;Alfredo Gimenez-Cassina,et al;《Journal of Neuroscience Research》;20060626;第84卷;755–767 *
Neurogenic Neuroepithelial and Radial Glial Cells Generated from Six Human Embryonic Stem Cell Lines in Serum-Free Suspension and Adherent Cultures;ROXANA NAT,et al;《GLIA》;20061206;第55卷;385–399 *
Neuronal Differentiation of P19 Embryonal Carcinoma Cells in Defined Media;M. Yao,et al;《Journal of Neuroscience Research》;19950815;第41卷;792-804 *

Also Published As

Publication number Publication date
US20190032009A1 (en) 2019-01-31
US20150267168A1 (en) 2015-09-24
US10781421B2 (en) 2020-09-22
CN104736697A (zh) 2015-06-24
JP6300807B2 (ja) 2018-03-28
JP2015532105A (ja) 2015-11-09
AU2013331771A1 (en) 2015-04-23
KR102073111B1 (ko) 2020-02-04
KR20150070304A (ko) 2015-06-24
CA2886939A1 (en) 2014-04-24
WO2014060373A1 (en) 2014-04-24
AU2013331771B2 (en) 2018-08-02
CA2886939C (en) 2020-11-03
EP2909316A1 (en) 2015-08-26
US10125350B2 (en) 2018-11-13
EP2909316B1 (en) 2018-09-05
HK1208706A1 (zh) 2016-03-11

Similar Documents

Publication Publication Date Title
Johnson Johnson
Schafer et al. The Wnt adaptor protein ATP6AP2 regulates multiple stages of adult hippocampal neurogenesis
US10781421B2 (en) Cellular test systems for the determination of the biological activities of neurotoxin polypeptides
JP5877617B2 (ja) 毒素産生性試験のための組成物および方法
CN108699528A (zh) 在先天性巨结肠症中通过衍生自多能干细胞的人肠神经嵴谱系可行的基于细胞的治疗和药物开发
JP6670842B2 (ja) 細胞内へのボツリヌス神経毒素の特異的取り込みを強化するための方法
Zhang et al. Three-dimensional cell-culture platform based on hydrogel with tunable microenvironmental properties to improve insulin-secreting function of MIN6 cells
AU2015348254B2 (en) Methods for the determination of the biological activities of neurotoxin polypeptides
Petros et al. Specificity and sufficiency of EphB1 in driving the ipsilateral retinal projection
US10494602B1 (en) Functional astrocytes and cortical neurons from induced pluripotent stem cells and methods of use thereof
Pancrazio et al. Botulinum toxin suppression of CNS network activity in vitro
Kiris et al. Src family kinase inhibitors antagonize the toxicity of multiple serotypes of botulinum neurotoxin in human embryonic stem cell-derived motor neurons
Hubbard et al. Functional evaluation of biological neurotoxins in networked cultures of stem cell-derived central nervous system neurons
Coffield et al. Neuritogenic actions of botulinum neurotoxin A on cultured motor neurons
US8778623B2 (en) Compositions and methods of using differentiated cells sensitized to botulinum neurotoxin
JP6549599B2 (ja) in vitro試験系におけるボツリヌス神経毒に対する細胞の感度を標準化し且つ増加させるためのガングリオシド
Knapska et al. Matrix metalloproteinase 9 (MMP-9) in learning and memory
WO2021212044A1 (en) Methods and compositions for improving sc-beta cells or enhancing their utility
Algeciras et al. Mechanical stretching elevates peptidyl arginine deiminase 2 expression in astrocytes
Koç Investigation of the effect of KX2-361 molecule on post-intoxication of Botulinum Neurotoxin Serotype A, using motor neurons differentiated from mouse embryonic stem cell line HBG3
Long Design of a cell-based in vitro assay for the pharmaceutical potency testing of Botulinum Neurotoxin Type-A
Sheridan et al. Published in Life Sciences, 79, 591-595, 2006
Polack Functional plasticity in the brain. Neuronal integration of ES cell-derived neurons in the hippocampus and the influence of the endocannabinoid system on synaptic plasticity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Eisele Karl-heinz

Inventor after: K hartin

Inventor before: Eisele Karl-heinz

COR Change of bibliographic data
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1208706

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant