CN104637697A - 一种金属氧化物/碳纳米管复合电极材料的制备方法 - Google Patents

一种金属氧化物/碳纳米管复合电极材料的制备方法 Download PDF

Info

Publication number
CN104637697A
CN104637697A CN201510071560.0A CN201510071560A CN104637697A CN 104637697 A CN104637697 A CN 104637697A CN 201510071560 A CN201510071560 A CN 201510071560A CN 104637697 A CN104637697 A CN 104637697A
Authority
CN
China
Prior art keywords
methylimidazole
butyl
metal oxide
carbon nano
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510071560.0A
Other languages
English (en)
Inventor
高博
陈怡彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Technical Institute of Physics and Chemistry of CAS
Original Assignee
Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Technical Institute of Physics and Chemistry of CAS filed Critical Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority to CN201510071560.0A priority Critical patent/CN104637697A/zh
Publication of CN104637697A publication Critical patent/CN104637697A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种金属氧化物/碳纳米管复合电极材料的制备方法,该方法能够由非共价修饰的碳纳米管表面与咪唑金属氯盐咪唑环之间产生范德华力或形成π-π共轭,促使金属氧化物由于金属阳离子-π键的缘故均匀地负载在碳纳米管表面,从而形成金属氧化物/碳材料复合电极材料。该方法能够有效地增加碳材料表面金属氧化物的负载量,在不破坏碳材料表面碳原子杂化结构的同时降低碳材料表面能,使金属氧化物均匀地负载在碳材料表面,所制得的金属氧化物/碳纳米管复合电极材料具有大的比表面积、较高的金属氧化物负载量,适合在各个领域广泛应用。

Description

一种金属氧化物/碳纳米管复合电极材料的制备方法
技术领域
本发明涉及金属氧化物复合碳纳米管的制备方法,特别涉及一种金属氧化物复合碳材料的方法。
背景技术
超级电容器的储能机理从原理上讲可以分为两种:一种是将电荷储存在电极/电解质溶液界面处的双电层中,典型的代表是具有高比表面积的碳电极材料;另一种称之为法拉第赝电容或准电容,是在电极表面或体相中的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸脱附或氧化还原反应,从而产生和电极充电电位相关的电容,一般以某些过渡金属氧化物或具有Schiff碱结构的导电聚合物等作为电极材料,典型的代表是RuO2、聚苯胺等。我们可以将种类繁多的超级电容器电极材料大体上归为三类:碳材料、金属氧化物以及导电聚合物。
目前,碳纳米管是由单层石墨片卷曲而形成的,包括多壁碳纳米管和单壁碳纳米管。于1991年首先由日本人发现,一经报道就引起了人们广泛的关注。碳纳米管具有新颖的结构,管径分布均一、比表面积大,这使它拥有良好的导电性和化学稳定性,有利于双电层的形成。同时,碳纳米管上的碳以sp3原子杂化轨道相互连接形成六元环结构,还有一个多余的杂化轨道可以连接各种官能团,例如羧基、羟基等,使其表面可以高度官能化,而这些官能团可以产生法拉第准电容。这使得碳纳米管有望成为一种理想的超级电容器电极材料。但由于范德华力以及表面能的作用,碳纳米管往往易于团聚或缠绕在一起,限制了溶液中的离子电荷在其内部的扩散,而且价格比较昂贵,就目前的研究成果来看,其比电容距离商业应用还有一定的差距,所以现在多用作高比表面积载体来使用。
纳米复合材料是当今纳米科学领域研究的热点。由于纳米粒子本身的属相造成其相互之间巨大的作用力,所以极易产生团聚现象,形成较大的颗粒,如何有效将它们分散在基底中,从而形成复合材料,并且保持其纳米尺寸不变发挥其纳米材料的优势是当今的难点也是热点。
发明内容
本发明的目的在于,针对碳纳米管材料在其表面复合金属氧化物过程中由于范德华力以及表面能的原因,导致金属氧化物负载量下降,影响其电化学性能的问题,提供一种金属氧化物/碳材料复合电极材料的制备方法,该方法能够由非共价修饰的碳纳米管表面与咪唑金属氯盐咪唑环之间产生范德华力或形成π-π共轭,促使金属氧化物由于金属阳离子-π键的缘故均匀地负载在碳纳米管表面,从而形成金属氧化物/碳材料复合电极材料。其中咪唑金属氯盐不仅由于其咪唑环能与碳纳米管表面未被共价破坏的石墨环产生π-π共轭,而且由于它内氢键和金属键的原因将金属阳离子紧紧地抓附在碳纳米管表面,从而起到了桥的作用。同时,咪唑作为溶剂能够减少碳纳米管在负载金属氧化物过程中的缠绕,降低碳纳米管表面能的又不破坏其表面碳原子的杂化结构,从而有效提高负载金属氧化物的能力,增加材料的利用率,进一步提高金属氧化物/碳材料复合电极材料储能大小和电化学性能。咪唑还能在反应完成后被有效地去除,又不引起其他反应的发生。
本发明所述的一种金属氧化物/碳纳米管复合电极材料的制备方法,按下列步骤进行:
a、将碳材料为碳纳米管或石墨烯在温度40℃浓盐酸条件下回流6h纯化;
b、将N-甲基咪唑和1-氯丁烷按摩尔比1:1混合,并在氮气氛中温度70℃下混合反应72h,并采用乙酸乙酯反复清洗未反应的原料后,生成氯化1-丁基3-甲基咪唑;
c、将步骤b中得到的氯化1-丁基3-甲基咪唑与金属氯化物为氯化镍或氯化钌按摩尔比为1∶1放入三颈瓶内,分别在温度25℃和100℃反应24h,然后在温度90℃乙腈条件下反应完成后,产物冷却至室温,得到1-丁基3-甲基咪唑氯化镍或1-丁基3-甲基咪唑氯化钌;
d、将步骤a纯化后的碳材料为碳纳米管或石墨烯、步骤b得到的1-丁基3-甲基咪唑氯化镍或1-丁基3-甲基咪唑氯化钌和1-丁基3-甲基咪唑按摩尔比1:1:1放入球型研磨机中研磨混合均匀,再按摩尔比1-丁基3-甲基咪唑氯化镍或1-丁基3-甲基咪唑氯化钌∶KOH=1:5在研磨混合物中加入KOH继续球磨8h,得到黑色产物;
e、将步骤d中得到的黑色产物经离心、过滤、水洗、醇洗后,在温度105℃烘至完全干燥,然后在温度200-300℃马弗炉里煅烧1-2h,马弗炉的升温速率为5℃/min,即得到金属氧化物/碳纳米管复合电极材料。
本发明所述的一种金属氧化物/碳纳米管复合电极材料的制备方法,该方法由于使用了离子液体作为溶剂和反应物,因而能够提高碳纳米管表面活性,降低其在复合反应中的表面张力,从而使金属氧化物在范德华力的作用下均匀地沉积在碳纳米管的表面,最终所制备的金属氧化物/碳材料复合电极材料的电化学性能较好,有一定的应用面。
本发明提供一种金属氧化物/碳材料复合电极材料的制备方法,能够有效地增加碳材料表面金属氧化物的负载量,在不破坏碳材料表面碳原子杂化结构的同时降低碳材料表面能,使金属氧化物均匀地负载在碳材料表面,所制得的金属氧化物/碳纳米管复合电极材料具有大的比表面积、较高的金属氧化物负载量,适合在各个领域广泛应用。
本发明所述的一种金属氧化物/碳纳米管复合电极材料的制备方法,该方法的有益效果是:
采用单一的固相研磨就可制得表面均匀负载金属氧化物的碳复合材料;固相研磨法在工业实际应用时方便,降低了制备的成本;本发明方法简单,仅需要将几种物料混合进行研磨即可。
附图说明
图1为本发明实施例1的循环伏安图;
图2为本发明实施例3的循环伏安图;
图3为本发明实施例4的循环伏安图;
图4为本发明实施例1的X-射线衍射图;
图5为本发明实施例3的X-射线衍射图;
图6为本发明实施例4的X-射线衍射图。
具体实施方式
本发明并不局限于所给出的实施例,本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合;
实施例1
a、将碳材料为碳纳米管在温度40℃浓盐酸条件下回流6h纯化;
b、将N-甲基咪唑和1-氯丁烷按摩尔比1:1混合,并在氮气氛中温度70℃下混合反应72h,并采用乙酸乙酯反复清洗未反应的原料后,生成产率约为90%(摩尔百分比)的氯化1-丁基3-甲基咪唑;
c、将步骤b中得到的氯化1-丁基3-甲基咪唑与金属氯化物为氯化镍按摩尔比为1∶1放入三颈瓶内,分别在温度25℃和100℃反应24h,然后在温度90℃乙腈条件下反应完成后,产物冷却至室温,得到1-丁基3-甲基咪唑氯化镍;
d、将步骤a纯化后的碳材料为碳纳米管、步骤b得到的1-丁基3-甲基咪唑氯化镍和1-丁基3-甲基咪唑按摩尔比1:1:1放入球型研磨机中研磨混合均匀,再按摩尔比1-丁基3-甲基咪唑氯化镍∶KOH=1:5在研磨混合物中加入KOH继续球磨8h,得到黑色产物;
e、将步骤d中得到的黑色产物经离心、过滤、水洗、醇洗后,在温度105℃烘至完全干燥,取出,再放入马弗炉里温度300℃煅烧2h,马弗炉升温速率为5℃/min,即得到金属氧化物/碳纳米管复合电极材料。
实施例2
a、将碳材料为石墨烯在温度40℃浓盐酸条件下回流6h纯化;
b、将N-甲基咪唑和1-氯丁烷按摩尔比1:1混合,并在氮气氛中温度70℃下混合反应72h,并采用乙酸乙酯反复清洗未反应的原料后,即生成产率约为90%(摩尔百分比)的氯化1-丁基3-甲基咪唑;
c、将步骤b中得到的氯化1-丁基3-甲基咪唑与金属氯化物为氯化镍按摩尔比为1∶1放入三颈瓶内,分别在温度25℃和100℃反应24h,然后在温度90℃乙腈条件下反应完成后,产物冷却至室温,得到1-丁基3-甲基咪唑氯化镍;
d、将步骤a纯化后的碳材料为石墨烯、步骤b得到的1-丁基3-甲基咪唑氯化镍和1-丁基3-甲基咪唑按摩尔比1:1:1放入球型研磨机中研磨混合均匀,再按摩尔比1-丁基3-甲基咪唑氯化镍∶KOH=1:5在研磨混合物中加入KOH继续球磨8h,得到黑色产物;
e、将步骤d中得到的黑色产物经离心、过滤、水洗、醇洗后,在温度105℃烘至完全干燥,取出,再放入马弗炉里温度200℃煅烧1h,马弗炉升温速率为5℃/min,即得到金属氧化物/石墨烯复合电极材料。
实施例3
a、将碳材料为碳纳米管在温度40℃浓盐酸条件下回流6h纯化;
b、将N-甲基咪唑和1-氯丁烷按摩尔比1:1混合,并在氮气氛中温度70℃下混合反应72h,并采用乙酸乙酯反复清洗未反应的原料后,即生成产率约为90%(摩尔百分比)的氯化1-丁基3-甲基咪唑;
c、将步骤b中得到的氯化1-丁基3-甲基咪唑与金属氯化物为氯化钌按摩尔比为1∶1放入三颈瓶内,分别在温度25℃和100℃反应24h,然后在温度90℃乙腈条件下反应完成后,产物冷却至室温,得到1-丁基3-甲基咪唑氯化钌;
d、将步骤a纯化后的碳材料为碳纳米管、步骤b得到的1-丁基3-甲基咪唑氯化钌和1-丁基3-甲基咪唑按摩尔比1:1:1放入球型研磨机中研磨混合均匀,再按摩尔比1-丁基3-甲基咪唑氯化镍∶KOH=1:5在研磨混合物中加入KOH继续球磨8h,得到黑色产物;
e、将步骤d中得到的黑色产物经离心、过滤、水洗、醇洗后,在温度105℃烘至完全干燥,取出,再放入马弗炉里温度250℃煅烧1.5h,马弗炉升温速率为5℃/min,即得到金属氧化物/碳纳米管复合电极材料。
实施例4
a、将碳材料为石墨烯在温度40℃浓盐酸条件下回流6h纯化;
b、将N-甲基咪唑和1-氯丁烷按摩尔比1:1混合,并在氮气氛中温度70℃下混合反应72h,并采用乙酸乙酯反复清洗未反应的原料后,即生成产率约为90%(摩尔百分比)的氯化1-丁基3-甲基咪唑;
c、将步骤b中得到的氯化1-丁基3-甲基咪唑与金属氯化物为氯化钌按摩尔比为1∶1放入三颈瓶内,分别在温度25℃和100℃反应24h,然后在温度90℃乙腈条件下反应完成后,产物冷却至室温,得到1-丁基3-甲基咪唑氯化钌;
d、将步骤a纯化后的碳材料为石墨烯、步骤b得到的1-丁基3-甲基咪唑氯化钌和1-丁基3-甲基咪唑按摩尔比1:1:1放入球型研磨机中研磨混合均匀,再按摩尔比1-丁基3-甲基咪唑氯化钌∶KOH=1:5在研磨混合物中加入KOH继续球磨8h,得到黑色产物;
e、将步骤d中得到的黑色产物经离心、过滤、水洗、醇洗后,在温度105℃烘至完全干燥,取出,再放入马弗炉里温度230℃煅烧2h,马弗炉升温速率为5℃/min,即得到金属氧化物/石墨烯复合电极材料。
实施例5
将实施例1、实施例3、实施例4中合成的样品粉末注入面积为1cm×1cm的塑料槽内,压平表面,采用X-射线粉末衍射技术,对得到的样品粉末进行测定,所用仪器为Bruker D8-Advance X射线衍射仪,即得到实施例1、实施例3、实施例4中合成的样品粉末的X-射线衍射图。

Claims (1)

1.一种金属氧化物/碳纳米管复合电极材料的制备方法,其特征在于按下列步骤进行:
a、将碳材料为碳纳米管或石墨烯在温度40℃浓盐酸条件下回流6h纯化;
b、将N-甲基咪唑和1-氯丁烷按摩尔比1:1混合,并在氮气氛中温度70℃下混合反应72h,并采用乙酸乙酯反复清洗未反应的原料后,生成氯化1-丁基3-甲基咪唑;
c、将步骤b中得到的氯化1-丁基3-甲基咪唑与金属氯化物为氯化镍或氯化钌按摩尔比为1∶1放入三颈瓶内,分别在温度25℃和100℃反应24h,然后在温度90℃乙腈条件下反应完成后,产物冷却至室温,得到1-丁基3-甲基咪唑氯化镍或1-丁基3-甲基咪唑氯化钌;
d、将步骤a纯化后的碳材料为碳纳米管或石墨烯、步骤b得到的1-丁基3-甲基咪唑氯化镍或1-丁基3-甲基咪唑氯化钌和1-丁基3-甲基咪唑按摩尔比1:1:1放入球型研磨机中研磨混合均匀,再按摩尔比1-丁基3-甲基咪唑氯化镍或1-丁基3-甲基咪唑氯化钌∶KOH=1:5在研磨混合物中加入KOH继续球磨8h,得到黑色产物;
e、将步骤d中得到的黑色产物经离心、过滤、水洗、醇洗后,在温度105℃烘至完全干燥,然后在温度200-300℃马弗炉里煅烧1-2h,马弗炉的升温速率为5℃/min,即得到金属氧化物/碳纳米管复合电极材料。
CN201510071560.0A 2015-02-11 2015-02-11 一种金属氧化物/碳纳米管复合电极材料的制备方法 Pending CN104637697A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510071560.0A CN104637697A (zh) 2015-02-11 2015-02-11 一种金属氧化物/碳纳米管复合电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510071560.0A CN104637697A (zh) 2015-02-11 2015-02-11 一种金属氧化物/碳纳米管复合电极材料的制备方法

Publications (1)

Publication Number Publication Date
CN104637697A true CN104637697A (zh) 2015-05-20

Family

ID=53216325

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510071560.0A Pending CN104637697A (zh) 2015-02-11 2015-02-11 一种金属氧化物/碳纳米管复合电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN104637697A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106683991A (zh) * 2016-12-09 2017-05-17 华中科技大学 一种石墨烯/金属复合电极的碳纳米管器件的互连方法
CN107910191A (zh) * 2017-11-21 2018-04-13 太原理工大学 基于微波辐照的氧化铁/碳纳米管复合电极材料制备方法
CN113161522A (zh) * 2021-03-12 2021-07-23 广东工业大学 一种非晶氧化钒/碳复合材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101255544A (zh) * 2008-03-21 2008-09-03 中国科学院上海硅酸盐研究所 纳米金属或金属氧化物/碳纳米管复合材料的制备方法
CN103560018A (zh) * 2013-11-13 2014-02-05 北京化工大学 一种碳纳米管/氧化镍复合材料及其超级电容器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101255544A (zh) * 2008-03-21 2008-09-03 中国科学院上海硅酸盐研究所 纳米金属或金属氧化物/碳纳米管复合材料的制备方法
CN103560018A (zh) * 2013-11-13 2014-02-05 北京化工大学 一种碳纳米管/氧化镍复合材料及其超级电容器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JONATHAN G. HUDDLESTON 等: "Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation", 《GREEN CHEMISTRY》 *
YITONG CHEN等: "Ionic Liquid-Assisted Synthesis of a NiO/CNTs Composite and Its Electrochemical Capacitance", 《JOURNAL OF NANOMATERIALS》 *
潘文筱等: "碳纳米管与咪唑类离子液体相互作用机制的理论研究", 《中国科学: 化学》 *
范明明等: "1-丁基-3-甲基咪唑氯化锌离子液体的合成表征及催化性能", 《无机化学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106683991A (zh) * 2016-12-09 2017-05-17 华中科技大学 一种石墨烯/金属复合电极的碳纳米管器件的互连方法
CN106683991B (zh) * 2016-12-09 2019-09-24 华中科技大学 一种石墨烯/金属复合电极的碳纳米管器件的互连方法
CN107910191A (zh) * 2017-11-21 2018-04-13 太原理工大学 基于微波辐照的氧化铁/碳纳米管复合电极材料制备方法
CN113161522A (zh) * 2021-03-12 2021-07-23 广东工业大学 一种非晶氧化钒/碳复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Wu et al. Rational design of cobalt–nickel double hydroxides for flexible asymmetric supercapacitor with improved electrochemical performance
Li et al. Three-dimensional porous carbon/Co3O4 composites derived from graphene/Co-MOF for high performance supercapacitor electrodes
Gong et al. Shape-controlled synthesis of Ni-CeO2@ PANI nanocomposites and their synergetic effects on supercapacitors
Cheng et al. Template fabrication of amorphous Co2SiO4 nanobelts/graphene oxide composites with enhanced electrochemical performances for hybrid supercapacitors
Chen et al. Microwave-assisted synthesis of honeycomblike hierarchical spherical Zn-doped Ni-MOF as a high-performance battery-type supercapacitor electrode material
Liu et al. Facile synthesis of Fe2O3 nano-dots@ nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte
Xiang et al. Facile green route to Ni/Co oxide nanoparticle embedded 3D graphitic carbon nanosheets for high performance hybrid supercapacitor devices
Zhang et al. Electropolymerization of graphene oxide/polyaniline composite for high-performance supercapacitor
Wang et al. Enhancing the performance of a battery–supercapacitor hybrid energy device through narrowing the capacitance difference between two electrodes via the utilization of 2D MOF-Nanosheet-derived Ni@ nitrogen-doped-carbon Core–Shell rings as both negative and positive electrodes
Paulose et al. Nanostructured nickel oxide and its electrochemical behaviour—A brief review
Fan et al. High density of free-standing holey graphene/PPy films for superior volumetric capacitance of supercapacitors
Devadas et al. Effect of carbon dots on conducting polymers for energy storage applications
Guo et al. Synthesis of carbon self-repairing porous g-C3N4 nanosheets/NiCo2S4 nanoparticles hybrid composite as high-performance electrode materials for supercapacitors
Ouyang et al. Hierarchically structured spherical nickel cobalt layered double hydroxides particles grown on biomass porous carbon as an advanced electrode for high specific energy asymmetric supercapacitor
Tian et al. Facile synthesis of Mn3O4 nanoplates-anchored graphene microspheres and their applications for supercapacitors
Tao et al. Nickel/cobalt layered double hydroxide hollow microspheres with hydrangea-like morphology for high-performance supercapacitors
Dong et al. The synthesis of graphene/PVDF composite binder and its application in high performance MnO2 supercapacitors
Zhao et al. Hierarchical nanostructures of nitrogen-doped porous carbon polyhedrons confined in carbon nanosheets for high-performance supercapacitors
Dhibar et al. Morphological modulation of conducting polymer nanocomposites with nickel cobaltite/reduced graphene oxide and their subtle effects on the capacitive behaviors
Kalambate et al. Nitrogen-doped graphene/palladium nanoparticles/porous polyaniline ternary composite as an efficient electrode material for high performance supercapacitor
Tang et al. Fabrication of graphene sheets/polyaniline nanofibers composite for enhanced supercapacitor properties
Dinari et al. Construction of Ce-doped NiCo-LDH@ CNT nanocomposite electrodes for high-performance supercapacitor application
Wang et al. A new ternary composite based on carbon nanotubes/polyindole/graphene with preeminent electrocapacitive performance for supercapacitors
Ling et al. Controllable in situ transformation of layered double hydroxides into ultrathin metal–organic framework nanosheet arrays for energy storage
Ji et al. Bismuth oxide/nitrogen-doped carbon dots hollow and porous hierarchitectures for high-performance asymmetric supercapacitors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150520

WD01 Invention patent application deemed withdrawn after publication