CN104601244A - 一种400Gb/s热插拔高速光收发模块 - Google Patents

一种400Gb/s热插拔高速光收发模块 Download PDF

Info

Publication number
CN104601244A
CN104601244A CN201410804586.7A CN201410804586A CN104601244A CN 104601244 A CN104601244 A CN 104601244A CN 201410804586 A CN201410804586 A CN 201410804586A CN 104601244 A CN104601244 A CN 104601244A
Authority
CN
China
Prior art keywords
chip
optical
data clock
laser
clock recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410804586.7A
Other languages
English (en)
Other versions
CN104601244B (zh
Inventor
李世瑜
余少华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Telecommunication Devices Co Ltd
Original Assignee
Wuhan Telecommunication Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Telecommunication Devices Co Ltd filed Critical Wuhan Telecommunication Devices Co Ltd
Priority to CN201410804586.7A priority Critical patent/CN104601244B/zh
Publication of CN104601244A publication Critical patent/CN104601244A/zh
Application granted granted Critical
Publication of CN104601244B publication Critical patent/CN104601244B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

本发明适用于光通信技术领域,提供了一种400Gb/s热插拔高速光收发模块,包括:光接口单元、光电收发单元和电接口单元,光电收发单元采用光电收发芯片来完成光电转换及高速电信号处理功能;光电收发芯片的内部工作过程包括:发射端数据时钟恢复电路接收所述电接口单元输入的电信号,进行预处理后的电信号通过驱动电路加载到激光器上,激光器将高速电信号转换成高速光信号后,再经过波分复用器复用后输出;接收到的光信号先通过波分解复用器解复用为16路光信号,传输到光探测器,经过光电转换后传送到跨阻放大器和接收端数据时钟恢复电路进行处理,考虑成本、传输损耗、色散、大小要求等因素进行选择不同的光收发模块的实施例,实现长距离单模光纤传输或者短距离多模传输。

Description

一种400Gb/s热插拔高速光收发模块
技术领域
本发明属于光通信技术领域,尤其涉及一种400Gb/s热插拔高速光收发模块。
背景技术
近年来,随着高质量视频业务、云计算、大型数据中心和固定/移动互联网应用的需求持续增长,人们对信息量要求越来越多,对信息传递速率要求越来越快。运营商们也认识到带宽需求会随着数据***不断提升,他们已经加速演进传输网络的步伐,从40G/100G向400Gbps升级,满足人们对速率的热切需求。
2014年3月CDFP行业联盟发布了400G热插拨模块的多源协议CDFP MSA(400Gbpsform-factor pluggable Multi-sources Agreement),用于规范400G模块的机械和电接口设计,其规范以OIF CEI-28GVSR和IEEE 802.3电气和光学接口标准为基础,提供具有热插拨外形尺寸的标准连接器和模块。协议中定义的紧凑的外形尺寸,有短型和长型两种款型。400GCDFP主要用于电信、网络和企业计算环境中的资源密集型应用。
传统的光模块是采用分立元件组装而成的。以100G CFP为例,其包含4个分立的光发射组件(Transmitter Optical Subassembly,TOSA)、4个光接收组件(Receiver OpticalSubassembly,ROSA)、波分复用器(MUX)、波分解复用器(DEMUX)等。其中,4对光收发组件通过柔性电路板(FPC)连接到电路板(PCB)上,PCB板上同时还贴装有微控制器(MicroControllerUnit,MCU)、时钟恢复芯片(Clock and DataRecovery,CDR)等。模块总装配面积约为80*145mm2,如图1所示。可以看出光收发器件占用了光模块的很大一部分面积,而且光收发元件本身的组装成本也不容忽视。随着对信息容量的需求越来越大,在同样光口密度下,需要更高速率的传输,例如,400G CDFP光模块的尺寸仅为100G CFP模块尺寸的三分之一左右,但内部分别包含了16通道的25G接收和发射单元(未来还有8*50G、4*100G等方案)。因此,传统的分立组件的封装技术已经不能满足400G及其以上速率的光模块要求。另一方面,采用分立组件组装会受到封装中寄生效应的影响,使带宽受限。而且,每个分立元件必须在组装前分别进行性能测试,然后进行管壳封装,以确保组装产品的性能合格。例如封装过程中需要先对光发射组件和光接收组件进行性能测试,然后对带控制电路的光模块进行测试,这种封装方法无疑过程复杂,耗时费力。
发明内容
本发明实施例的目的在于提供一种400Gb/s热插拔高速光收发模块,以解决现有技术不能实现400Gb/s高速光收发模块的问题。
本发明实施例是这样实现的,一种400Gb/s热插拔高速光收发模块,光接口单元、光电收发单元和电接口单元;
所述光电收发单元包括:发射端数据时钟恢复电路芯片、驱动器芯片、激光器芯片、光探测器芯片、跨阻放大器芯片、接收端数据时钟恢复电路芯片和控制电路芯片;
所述发射端数据时钟恢复电路芯片接收所述电接口单元输入的电信号,进行预处理后的电信号通过所述驱动器芯片加载到所述激光器芯片上,所述激光器芯片将高速电信号转换成高速光信号后输出;
所述光探测器芯片接收输入光信号,并将所接收的光信号转换成为电信号后,传送到所述跨阻放大器芯片和所述接收端数据时钟恢复电路芯片,进行数据时钟采样和缓存处理,再传送到所述电接口单元;
所述光电收发单元里所述的发射端数据时钟恢复电路芯片、驱动器芯片、激光器芯片、光探测器芯片、跨阻放大器芯片、接收端数据时钟恢复电路芯片和控制电路芯片,通过引线键合或者焊接或者胶粘工艺贴装在电路板或柔性电路板上,进行电连接;
传输距离在500米及以内时,所述激光器芯片为25G垂直腔面发射激光器或直调激光器芯片;所述光探测器芯片为25Gb/s二极管探测器芯片;
传输距离超过500米时,所述光电收发单元还包括波分复用器芯片和波分解复用器芯片,所述激光器芯片将所述高速电信号转换成所述高速光信号后经过所述波分复用器芯片复用后输出;所述波分解复用器芯片接收所述光信号,并将所接收光信号进行解复用,分成16路光信号后由所述光探测器芯片接收;所述激光器芯片为25G直接调制半导体激光器或电吸收调制激光器芯片;所述光探测器芯片为25Gb/s二极管探测器或雪崩二极管探测器芯片。
第二种400Gb/s热插拔高速光收发模块,包括:光接口单元、光电收发单元和电接口单元;传输距离超过500米时,所述光电收发单元包括光电复用/解复用芯片、发射端数据时钟恢复电路芯片、驱动器芯片、跨阻放大器芯片、接收端数据时钟恢复电路芯片和控制电路芯片;
所述发射端数据时钟恢复电路芯片接收所述电接口单元输入的所述电信号,进行预处理后的所述电信号通过所述驱动器芯片加载到所述光电复用/解复用芯片上,通过电光转换后复用输出光信号;输入的光信号经过所述光电复用/解复用芯片解复用,进行光电转换后,传送到所述跨阻放大器芯片和所述接收端数据时钟恢复电路芯片,进行数据时钟采样和缓存处理,再传送到所述电接口单元;
所述光电复用/解复用芯片包含光电转换、电光转换、波分复用和解复用功能。
第三种400Gb/s热插拔高速光收发模块,包括:光接口单元、光电收发单元和电接口单元;
所述电接口单元用于提供模块与外部***的通信接口;
所述光接口单元在传输距离在500米及以内时,为MPO型光接口或带状光纤;传输距离在500米以上时,为双联LC型光接口;
所述光电收发单元至少包括光电收发芯片和激光器芯片,所述光电收发芯片与所述激光器芯片之间的组装是通过微光学元件间的光路耦合后集成或者不耦合直接键合而成的;
传输距离在500米以上时,所述光电收发芯片为光电收发芯片一;
所述光电收发芯片一包括:发射端数据时钟恢复电路、驱动电路、调制电路、波分复用器、波分解复用器、光探测器、跨阻放大器、接收端数据时钟恢复电路和控制电路;
所述激光器芯片为连续激光器或可调激光器芯片;
所述发射端数据时钟恢复电路接收所述电接口单元输入的电信号,进行预处理后的高速电信号输入到驱动电路和调制电路,所述激光器芯片输出的光经过调制器调制后产生高速光信号,再经过所述波分复用器复用后输出;所述波分解复用器接收所述光信号,并将所接收光信号进行解复用,分成16路光信号后由所述光探测器接收,经过光电转换后传送到跨阻放大器和接收端数据时钟恢复电路,进行信号放大、数据时钟采样和缓存处理,再传送到电接口单元;所述控制电路完成对激光器芯片的自动功率控制、消光比补偿、软关断等的智能控制,以及对光探测器接收光功率的实时监控,从而实现对整个所述光收发模块的相关工作状态检测量的实时监控上报;
传输距离在500米及以内时,所述光电收发芯片为光电收发芯片二;
所述光电收发芯片二包括:发射端数据时钟恢复电路、驱动电路、光探测器、跨阻放大器、接收端数据时钟恢复电路和控制电路;
所述激光器芯片为25G垂直腔面发射激光器或直调激光器芯片;
所述发射端数据时钟恢复电路接收电信号,进行预处理后的高速电信号经驱动电路加载到所述激光器芯片上,激光器芯片将高速电信号转换成高速光信号后输出;接收的光信号传输到光接收探测器,经过光电转换后传送到跨阻放大器和接收端数据时钟恢复电路,进行信号放大、数据时钟采样和缓存处理,再传送到电接口单元;所述控制电路完成对激光器芯片的自动功率控制、消光比补偿、软关断等的智能控制,以及对光探测器接收光功率的实时监控,从而实现对整个所述光收发模块的相关工作状态检测量的实时监控上报。
第四种400Gb/s热插拔高速光收发模块,包括:光接口单元、光电收发单元和电接口单元;
所述电接口单元用于提供模块与外部***的通信接口;
传输距离在500米以上时,所述光接口单元为双联LC型光接口;所述光电收发单元至少包括光电收发芯片三;
所述光电收发芯片三包括:发射端数据时钟恢复电路、驱动电路、调制电路、激光器、波分复用器、波分解复用器、光探测器、跨阻放大器、接收端数据时钟恢复电路和控制电路;
所述发射端数据时钟恢复电路接收所述电接口单元输入的电信号,进行预处理后的高速电信号输入到驱动器和调制器,所述激光器输出的光经过调制后产生高速光信号,再经过所述波分复用器复用后输出;接收的光信号由所述波分解复用器解复用为16路光信号,传输到所述光探测器,经过光电转换后传送到所述跨阻放大器和所述接收端数据时钟恢复电路,进行信号放大、数据时钟采样和缓存处理,再传送到所述电接口单元;所述控制电路完成对激光器的自动功率控制、消光比补偿、软关断的智能控制,以及对光探测器芯片接收光功率的实时监控,从而实现对整个所述光收发模块的相关工作状态检测量的实时监控上报。
本发明实施例提供的一种400Gb/s热插拔高速光收发模块的有益效果包括:
1、本发明提供的一种400Gb/s光收发模块是基于每通道25G(支持25.78Gb/s到27.97Gb/s的工作速率,简化为25G),16个收发通道来实现400G信号传输的。故其电接口包含16对差分的25G发射信号引脚、16对差分的25G接收信号引脚、+3.3V电源供电引脚、低速信号引脚和地引脚等。其中低速信号引脚至少包括串行数据引脚、串行时钟引脚等。每个通道具体可达到的光电指标如下:光接收部分的-3dB带宽至少可达18GHZ以上,且响应度高于0.4A/W,每通道OMA灵敏度在25Gb/s下优于-8dBm。光发射部分在大于500米(包括500米)的长距离传输时,采用长波长激光器,其消光比优于3dB,相关强度噪声的OMA值小于-130dB/Hz,光反射指标小于-12dB;在小于500米的短距离传输中采用短波长的激光器,其消光比优于3dB,光反射指标小于-12dB;
2、可以根据该光收发模块的具体应用环境和实现功能的具体要求,以及考虑成本、传输损耗、色散、大小要求等因素进行选择,为各种应用环境提供各种适应性的不同封装结构的光收发模块的实施例,可采用直调激光器或外调激光器,实现长距离单模光纤传输或者短距离多模传输;
3、本发明实施例提供的光电收发芯片,集成了激光器(Laser Diode)阵列、探测器(Photodiode)阵列、波分复用器(Multiplexer,MUX)、波分解复用器(Demultiplexer,DEMUX)以及具有驱动、信号放大、整形、处理和控制等功能的电路,替代了原传统光模块中,分立的光发射组件(Transmitter Optical Subassembly,TOSA)、光接收组件(Receiver OpticalSubassembly,ROSA)、数据时钟恢复芯片(Clock and Data Recovery,CDR)、微控制器(MicroControllerUnit,MCU)等元件,采用晶圆级封装技术,实现光信号收发功能,克服了传统光模块中采用分立组件而导致的尺寸大的问题,将多路光学元件与电学元件单片或混合集成在一起,总体尺寸大大减小,约为CFP的1/3,具有结构紧凑,功耗低,传输速率高等优势,并且减少了分立元件间的组装步骤以及繁琐的光学元件之间的耦合,简化了封装和测试流程,缩短了产品制作的工时,而工效却成倍增升;使用基于互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)的制作工艺,大规模生产,从而具有成本低廉的优势。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为传统CFP结构示意图;
图2是本发明实施例提供的400Gb/s热插拔高速光收发模块的结构示意图;
图3是本发明提供的400Gb/s热插拔高速光收发模块的光电收发单元的第一实施例的结构示意图;
图4是本发明提供的400Gb/s热插拔高速光收发模块的光电收发单元的第二实施例的结构示意图;
图5是本发明提供的400Gb/s热插拔高速光收发模块的光电收发单元的第三实施例的结构示意图;
图6是本发明提供的400Gb/s热插拔高速光收发模块的光电收发单元的第四、第五实施例的结构示意图;
图7是本发明提供的400Gb/s热插拔高速光收发模块的光电收发单元的第六、第七实施例的结构示意图;
图8是本发明实施例提供的光电收发芯片的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
如图2所示为本发明提供的400Gb/s热插拔高速光收发模块的结构示意图,所述光收发模块包括:光接口单元100、光电收发单元101和电接口单元102。
实施例一
本发明提供的实施例一为本发明提供的一种400Gb/s热插拔高速光收发模块的光电收发单元的第一实施例,本实施例为传输距离在500米及以内的实施例,如图3所示为本发明提供的一种400Gb/s热插拔高速光收发模块的光电收发单元的第一实施例的结构示意图,由图3可知,光电收发单元包括:发射端数据时钟恢复电路芯片201、驱动器芯片202、激光器芯片203、光探测器芯片204、跨阻放大器芯片205和接收端数据时钟恢复电路芯片206和控制电路芯片207。
发射端数据时钟恢复电路芯片201接收输入的电信号,进行预处理后的电信号通过驱动器芯片202加载到激光器芯片203上,激光器芯片203将高速电信号转换成高速光信号后输出。光探测器芯片204接收输入光信号,并将所接收的光信号转换成为电信号后,传送到跨阻放大器芯片205和接收端数据时钟恢复电路芯片206,进行数据时钟采样和缓存处理后再输出。
发射端数据时钟恢复电路芯片201、驱动器芯片202、激光器芯片203、光探测器芯片204、跨阻放大器芯片205、接收端数据时钟恢复电路芯片206和控制电路芯片207,通过引线键合或者焊接或者胶粘工艺贴装在电路板或柔性电路板208上,进行电连接。
激光器芯片203为25G垂直腔面发射激光器或直调激光器芯片;光探测器芯片204为25Gb/s二极管探测器芯片。
控制电路芯片207完成对激光器芯片203的自动功率控制、消光比补偿、软关断的智能控制,以及对光探测器芯片204接收光功率的实时监控,从而实现对整个光收发模块的相关工作状态检测量的实时监控上报。
电接口单元102用于提供模块与外部***的通信接口。
光接口单元100为MPO(Multi-fiber Push On)型光接口或带状光纤。
实施例二
本发明提供的实施例二为本发明提供的一种400Gb/s热插拔高速光收发模块的光电收发单元的第二实施例,本实施例为传输距离在500米以上的实施例,如图4所示为本发明提供的一种400Gb/s热插拔高速光收发模块的光电收发单元的第二实施例的结构示意图,由图4可知,光电收发单元包括:发射端数据时钟恢复电路芯片301、驱动器芯片302、激光器芯片303、波分复用器芯片304、波分解复用器芯片305、光探测器芯片306、跨阻放大器芯片307和接收端数据时钟恢复电路芯片308和控制电路芯片309。
波分复用器芯片304是将不同波长的16个光信号复用到一路。举例来说,可被配置为使用诸如粗WDM(CWDM)、密集WDM(DWEM)或光WDM(LWDM)这样的各种WDM方案中的一个方案以进行操作。反之同理,波分解复用器芯片305用于接收光信号进行解复用,将一路分成16路光信号。
发射端数据时钟恢复电路芯片301接收输入的电信号,进行预处理后的电信号通过驱动器芯片302加载到激光器芯片303上,激光器芯片303将高速电信号转换成高速光信号经过波分复用器芯片304复用后输出。波分解复用器芯片305接收光信号,并将所接收光信号进行解复用,分成16路光信号后由光探测器芯片306接收输入光信号,并将所接收的光信号转换成为电信号后,传送到跨阻放大器芯片307和接收端数据时钟恢复电路芯片308,进行数据时钟采样和缓存处理后在输出。
发射端数据时钟恢复电路芯片301、驱动器芯片302、激光器芯片303、波分复用器芯片304、波分解复用器芯片305、光探测器芯片306、跨阻放大器芯片307、接收端数据时钟恢复电路芯片308和控制电路芯片309,通过引线键合或者焊接或者胶粘工艺贴装在电路板或柔性电路板310上,进行电连接。
激光器芯片303为25G直接调制半导体激光器或电吸收调制激光器芯片;光探测器芯片306为25Gb/s二极管探测器或雪崩二极管探测器芯片。
控制电路芯片309完成对激光器芯片303的自动功率控制、消光比补偿、软关断的智能控制,以及对光探测器芯片306接收光功率的实时监控,从而实现对整个光收发模块的相关工作状态检测量的实时监控上报。
电接口单元102用于提供模块与外部***的通信接口。
光接口单元100为双联LC型光接口。
实施例三
本发明提供的实施例三为本发明提供的一种400Gb/s热插拔高速光收发模块的光电收发单元的第三实施例,本实施例为传输距离在500米以上的实施例,如图5所示为本发明提供的一种400Gb/s热插拔高速光收发模块的光电收发单元的第三实施例的结构示意图,由图5可知,光电收发单元包括:光电复用/解复用芯片403、发射端数据时钟恢复电路芯片401、驱动器芯片402、跨阻放大器芯片404、接收端数据时钟恢复电路芯片405和控制电路芯片406。
发射端数据时钟恢复电路芯片401接收电接口单元输入的电信号,进行预处理后的电信号通过驱动器芯片402加载到光电复用/解复用芯片403上,通过电光转换后复用输出光信号;输入的光信号经过光电复用/解复用芯片解复用403,进行光电转换后,传送到跨阻放大器芯片404和接收端数据时钟恢复电路芯片405,进行数据时钟采样和缓存处理,再传送到电接口单元102。
光电复用/解复用芯片403采用硅基或三五族化合物半导体材料制作,其包含光电转换、电光转换、波分复用和解复用功能。
光电收发单元101里的发射端数据时钟恢复电路芯片401、驱动器芯片402、光电复用/解复用芯片403、跨阻放大器芯片404、接收端数据时钟恢复电路芯片405和控制电路芯片406,通过引线键合或者焊接或者胶粘工艺贴装在电路板或柔性电路板407上,进行电连接。
控制电路芯片406完成对激光器的自动功率控制、消光比补偿、软关断的智能控制,以及对光探测器芯片接收光功率的实时监控,从而实现对整个光收发模块的相关工作状态检测量的实时监控上报。
电接口单元102用于提供模块与外部***的通信接口。
光接口单元100为双联LC型光接口。
实施例四
本发明提供的实施例四为本发明提供的一种400Gb/s热插拔高速光收发模块的光电收发单元的第四实施例传输距离在500米以上的情况,如图6所示为本发明提供的一种400Gb/s热插拔高速光收发模块的光电收发单元的第四实施例的结构示意图,光电收发单元101至少包括光电收发芯片一502和激光器芯片501,光电收发芯片一502与激光器芯片501之间的组装是通过微光学元件间的光路耦合后集成或者直接键合而成的。
电接口单元102用于提供模块与外部***的通信接口;光接口单元100为双联LC型光接口。
光电收发芯片一502包括:发射端数据时钟恢复电路、驱动电路、调制电路、波分复用器、波分解复用器、光探测器、跨阻放大器、接收端数据时钟恢复电路和控制电路;激光器芯片501为连续激光器或可调激光器芯片。
发射端数据时钟恢复电路接收电接口单元输入的电信号,进行预处理后的高速电信号输入到驱动电路和调制电路,激光器芯片501输出的光经过调制后产生高速光信号,再经过波分复用器复用后输出;波分解复用器接收光信号,并将所接收光信号进行解复用,分成16路光信号后由光探测器接收,经过光电转换后传送到跨阻放大器和接收端数据时钟恢复电路,进行信号放大、数据时钟采样和缓存处理,再传送到电接口单元;控制电路完成对激光器芯片501的自动功率控制、消光比补偿、软关断等的智能控制,以及对光探测器芯片接收光功率的实时监控,从而实现对整个光收发模块的相关工作状态检测量的实时监控上报。
光电收发芯片502基于SOI的晶圆上,采用CMOS工艺,使多个相同或不同功能的元件在整体上构成阵列化、模块化的单个芯片,实现一种或多种光学和电学信息处理功能。
光电收发芯片502的制作方法包括在SOI衬底上对电学元件和光学元件进行同时制作或者光学元件后于电学元件制作。
电学元件的制作工艺包括掺杂、光刻、刻蚀,形成跨阻放大电路、数据时钟恢复电路、驱动电路和控制电路;光学元件的制作工艺包括光刻、刻蚀、淀积或外延生长其它材料,形成光复用功能、光解复用功能、光探测器。
光电收发芯片502的光耦合接口是模斑变换器结构,或者光栅耦合器结构,或者通过外部微光学元件进行耦合输出。
光电收发芯片502是通过引线键合或者回流焊或者胶粘工艺贴装在电路板(PCB)或柔性电路板(FPC)503上,进行电连接的。
实施例五
本发明提供的实施例四为本发明提供的一种400Gb/s热插拔高速光收发模块的光电收发单元的第四实施例传输距离在500米及以内的情况,如图6所示为本发明提供的一种400Gb/s热插拔高速光收发模块的光电收发单元的第五实施例的结构示意图,光电收发单元至少包括光电收发芯片二502和激光器芯片501,光电收发芯片二502与激光器芯片501之间的组装是通过微光学元件间的光路耦合后集成或者不耦合直接键合而成的。
电接口单元102用于提供模块与外部***的通信接口;光接口单元100为MPO型光接口或带状光纤。
光电收发芯片二502包括:发射端数据时钟恢复电路、驱动电路、光探测器、跨阻放大器、接收端数据时钟恢复电路和控制电路;激光器芯片501为25G垂直腔面发射激光器或直调激光器芯片。
发射端数据时钟恢复电路接收电信号,进行预处理后的高速电信号经驱动电路加载到激光器芯片501上,激光器芯片501将高速电信号转换成高速光信号后输出;接收的光信号传输到光接收探测器,经过光电转换后传送到跨阻放大器和接收端数据时钟恢复电路,进行信号放大、数据时钟采样和缓存处理,再传送到电接口单元;控制电路完成对激光器芯片501的自动功率控制、消光比补偿、软关断等的智能控制,以及对光探测器芯片接收光功率的实时监控,从而实现对整个光收发模块的相关工作状态检测量的实时监控上报。
光电收发芯片502基于SOI的晶圆上,采用CMOS工艺,使多个相同或不同功能的元件在整体上构成阵列化、模块化的单个芯片,实现一种或多种光学和电学信息处理功能。
光电收发芯片502的制作方法包括在SOI衬底上对电学元件和光学元件进行同时制作或者光学元件后于电学元件制作。
电学元件的制作工艺包括掺杂、光刻、刻蚀,形成跨阻放大电路、数据时钟恢复电路、驱动电路和控制电路;光学元件的制作工艺包括光刻、刻蚀、淀积或外延生长其它材料,形成光复用功能、光解复用功能、光探测器。
光电收发芯片502的光耦合接口是模斑变换器结构,或者光栅耦合器结构,或者通过外部微光学元件进行耦合输出。
光电收发芯片502是通过引线键合或者回流焊或者胶粘工艺贴装在电路板(PCB)或柔性电路板(FPC)503上,进行电连接的。
实施例六
本发明提供的实施例六为本发明提供的一种400Gb/s热插拔高速光收发模块的光电收发单元的第五实施例传输距离在500米以上的情况,如图7所示为本发明提供的一种400Gb/s热插拔高速光收发模块的光电收发单元的第六实施例的结构示意图,光电收发单元101至少包括光电收发芯片三601。
电接口单元102用于提供模块与外部***的通信接口;光接口单元100为双联LC型光接口。
光电收发芯片三601包括:发射端数据时钟恢复电路、驱动电路、调制电路、激光器、波分复用器、波分解复用器、光探测器、跨阻放大器、接收端数据时钟恢复电路和控制电路。
发射端数据时钟恢复电路接收电接口单元输入的电信号,进行预处理后的高速电信号输入到驱动器和调制器,激光器输出的光经过调制后产生高速光信号,再经过波分复用器复用后输出;接收的光信号由波分解复用器解复用为16路光信号,传输到光探测器,经过光电转换后传送到跨阻放大器和接收端数据时钟恢复电路,进行信号放大、数据时钟采样和缓存处理,再传送到电接口单元;控制电路完成对激光器的自动功率控制、消光比补偿、软关断的智能控制,以及对光探测器芯片接收光功率的实时监控,从而实现对整个光收发模块的相关工作状态检测量的实时监控上报。
光电收发芯片601基于SOI的晶圆上,采用CMOS工艺,使多个相同或不同功能的元件在整体上构成阵列化、模块化的单个芯片,实现一种或多种光学和电学信息处理功能。
光电收发芯片601的制作方法包括在SOI衬底上对电学元件和光学元件进行同时制作或者光学元件后于电学元件制作;
电学元件的制作工艺包括掺杂、光刻、刻蚀,形成跨阻放大电路、数据时钟恢复电路、驱动电路和控制电路;光学元件的制作工艺包括光刻、刻蚀、淀积或外延生长其它材料,形成光复用功能、光解复用功能、光探测器、激光器;
光电收发芯片601的光耦合接口是模斑变换器结构,或者光栅耦合器结构,或者通过外部微光学元件进行耦合输出;
光电收发芯片601是通过引线键合或者回流焊或者胶粘工艺贴装在电路板或柔性电路板602上,进行电连接的。
实施例七
本发明提供的实施例七为本发明提供的一种400Gb/s热插拔高速光收发模块的光电收发单元的第五实施例传输距离在500米及以内的情况,光接口单元100为MPO型光接口或带状光纤,如图7所示为本发明提供的一种400Gb/s热插拔高速光收发模块的光电收发单元的第七实施例的结构示意图,光电收发单元101至少包括光电收发芯片四601。
光电收发芯片四601包括:发射端数据时钟恢复电路、驱动电路、激光器、光探测器、跨阻放大器、接收端数据时钟恢复电路和控制电路.
发射端数据时钟恢复电路接收电信号,进行预处理后的高速电信号通过驱动器加载到激光器上,激光器将高速电信号转换成高速光信号后输出;光接收探测器分别接收输入光信号,并将所接收的光信号转换成为电信号后,传送到跨阻放大器和接收端数据时钟恢复电路,进行数据时钟采样和缓存处理,再传送到电接口单元;控制电路完成对激光器的自动功率控制、消光比补偿、软关断的智能控制,以及对光探测器芯片接收光功率的实时监控,从而实现对整个光收发模块的相关工作状态检测量的实时监控上报。
光电收发芯片601基于SOI的晶圆上,采用CMOS工艺,使多个相同或不同功能的元件在整体上构成阵列化、模块化的单个芯片,实现一种或多种光学和电学信息处理功能.
光电收发芯片601的制作方法包括在SOI衬底上对电学元件和光学元件进行同时制作或者光学元件后于电学元件制作。
电学元件的制作工艺包括掺杂、光刻、刻蚀,形成跨阻放大电路、数据时钟恢复电路、驱动电路和控制电路;光学元件的制作工艺包括光刻、刻蚀、淀积或外延生长其它材料,形成光复用功能、光解复用功能、光探测器、激光器。
光电收发芯片601的光耦合接口是模斑变换器结构,或者光栅耦合器结构,或者通过外部微光学元件进行耦合输出。
光电收发芯片601是通过引线键合或者回流焊或者胶粘工艺贴装在电路板或柔性电路板602上,进行电连接的。
本发明提供的一种400Gb/s光收发模块是基于每通道25G(支持25.78Gb/s到27.97Gb/s的工作速率,简化为25G),16个收发通道来实现400G信号传输的。故其电接口包含16对差分的25G发射信号引脚、16对差分的25G接收信号引脚、+3.3V电源供电引脚、低速信号引脚和地引脚等。其中低速信号引脚至少包括串行数据引脚、串行时钟引脚等。每个通道具体可达到的光电指标如下:光接收部分的-3dB带宽至少可达18GHZ以上,且响应度高于0.4A/W,每通道OMA灵敏度在25Gb/s下优于-8dBm。光发射部分在大于500米的长距离传输时,采用长波长激光器,其消光比优于3dB,相关强度噪声的OMA值小于-130dB/Hz,光反射指标小于-12dB;在小于500米的短距离传输中采用短波长的激光器,其消光比优于3dB,光反射指标小于-12dB。
本发明实施例,可以根据该光收发模块的具体应用环境和实现功能的具体要求,以及考虑成本、传输损耗、色散、大小要求等因素进行选择,为各种应用环境提供各种适应性的不同封装结构的光收发模块的实施例,可采用直调激光器或外调激光器,实现长距离单模光纤传输或者短距离多模传输。
本发明在500米及以内的应用中的实施例,可采用板上芯片直接封装工艺,即COB(chipon board)实现。具体来说,将数个裸芯片直接封装到柔性或硬性PCB板上,采用引线键合和胶粘接工艺进行电气连接,并以树脂等材料覆盖以保障可靠性。
本发明实施例提供的光电收发芯片基于SOI(semiconductor-on-insultor)的晶圆上,采用CMOS工艺,使多个相同或不同功能的元件在整体上构成阵列化、模块化的单个芯片,以此实现一种或多种光学和电学信息处理功能,如光信号收发、光波分复用和解复用、电流驱动和功率控制等。其中光电收发芯片的制作可采用两种方式来实现:即电学元件和光学元件同时在衬底上制作;光学元件后于电学元件制作,工艺流开始于SOI衬底,然后进行电学元件和光学元件的制作,其中电学元件的制作工艺主要是掺杂、光刻、刻蚀等,用以形成跨阻放大电路、数据时钟恢复电路、驱动电路和控制电路等功能元件。光学元件的制作工艺主要是光刻、刻蚀、淀积或外延生长其它材料等,用以形成光复用/解复用、光探测、光源等元件。
如图8所示为本发明实施例提供的光电收发芯片的结构图,光电收发芯片中集成了LD(Laser Diode)阵列、PD(Photodiode)阵列、MUX、DEMUX以及具有驱动、信号放大、整形、处理和控制等功能的电路,替代了原传统光模块中,分立的光发射组件(TransmitterOptical Subassembly,TOSA)、光接收组件(Receiver Optical Subassembly,ROSA)、数据时钟恢复芯片(Clock and Data Recovery,CDR)、微控制器(MicroControllerUnit,MCU)等元件,采用晶圆级封装技术,实现光信号收发功能,克服了传统光模块中采用分立组件而导致的尺寸大的问题,将多路光学元件与电学元件单片或混合集成在一起,总体尺寸大大减小,约为CFP的1/3,具有结构紧凑,功耗低,传输速率高等优势,并且减少了分立元件间的组装步骤以及繁琐的光学元件之间的耦合,简化了封装和测试流程,缩短了产品制作的工时,而工效却成倍增升。
使用基于互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)的制作工艺,大规模生产,从而具有成本低廉的优势。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种400Gb/s热插拔高速光收发模块,其特征在于,所述光收发模块包括:光接口单元、光电收发单元和电接口单元;
所述光电收发单元包括:发射端数据时钟恢复电路芯片、驱动器芯片、激光器芯片、光探测器芯片、跨阻放大器芯片、接收端数据时钟恢复电路芯片和控制电路芯片;
所述发射端数据时钟恢复电路芯片接收所述电接口单元输入的电信号,进行预处理后的电信号通过所述驱动器芯片加载到所述激光器芯片上,所述激光器芯片将高速电信号转换成高速光信号后输出;
所述光探测器芯片接收输入光信号,并将所接收的光信号转换成为电信号后,传送到所述跨阻放大器芯片和所述接收端数据时钟恢复电路芯片,进行数据时钟采样和缓存处理,再传送到所述电接口单元;
所述光电收发单元里所述的发射端数据时钟恢复电路芯片、驱动器芯片、激光器芯片、光探测器芯片、跨阻放大器芯片、接收端数据时钟恢复电路芯片和控制电路芯片,通过引线键合或者焊接或者胶粘工艺贴装在电路板或柔性电路板上,进行电连接;
传输距离在500米及以内时,所述激光器芯片为25G垂直腔面发射激光器或直调激光器芯片;所述光探测器芯片为25Gb/s二极管探测器芯片;
传输距离超过500米时,所述光电收发单元还包括波分复用器芯片和波分解复用器芯片,所述激光器芯片将所述高速电信号转换成所述高速光信号后经过所述波分复用器芯片复用后输出;所述波分解复用器芯片接收所述光信号,并将所接收光信号进行解复用,分成16路光信号后由所述光探测器芯片接收;所述激光器芯片为25G直接调制半导体激光器或电吸收调制激光器芯片;所述光探测器芯片为25Gb/s二极管探测器或雪崩二极管探测器芯片。
2.如权利要求1所述的光收发模块,其特征在于,
所述控制电路芯片完成对所述激光器芯片的自动功率控制、消光比补偿、软关断的智能控制,以及对光探测器芯片接收光功率的实时监控,从而实现对整个所述光收发模块的相关工作状态检测量的实时监控上报;
所述电接口单元用于提供模块与外部***的通信接口;
所述光接口单元在传输距离在500米及以内时,为MPO型光接口或带状光纤;传输距离在500米以上时,为双联LC型光接口。
3.一种400Gb/s热插拔高速光收发模块,其特征在于,所述光收发模块包括:光接口单元、光电收发单元和电接口单元;传输距离超过500米时,所述光电收发单元包括光电复用/解复用芯片、发射端数据时钟恢复电路芯片、驱动器芯片、跨阻放大器芯片、接收端数据时钟恢复电路芯片和控制电路芯片;
所述发射端数据时钟恢复电路芯片接收所述电接口单元输入的所述电信号,进行预处理后的所述电信号通过所述驱动器芯片加载到所述光电复用/解复用芯片上,通过电光转换后复用输出光信号;输入的光信号经过所述光电复用/解复用芯片解复用,进行光电转换后,传送到所述跨阻放大器芯片和所述接收端数据时钟恢复电路芯片,进行数据时钟采样和缓存处理,再传送到所述电接口单元;
所述光电复用/解复用芯片包含光电转换、电光转换、波分复用和解复用功能。
4.如权利要求3所述的光收发模块,其特征在于,所述光电复用/解复用芯片采用硅基或三五族化合物半导体材料制作;
所述光电收发单元里所述的发射端数据时钟恢复电路芯片、驱动器芯片、光电复用/解复用芯片、跨阻放大器芯片、接收端数据时钟恢复电路芯片和控制电路芯片,通过引线键合或者焊接或者胶粘工艺贴装在电路板或柔性电路板上,进行电连接;
所述控制电路芯片完成对所述激光器芯片的自动功率控制、消光比补偿、软关断的智能控制,以及对光探测器芯片接收光功率的实时监控,从而实现对整个所述光收发模块的相关工作状态检测量的实时监控上报;
所述电接口单元用于提供模块与外部***的通信接口;
所述光接口单元为双联LC型光接口。
5.一种400Gb/s热插拔高速光收发模块,其特征在于,所述光收发模块包括:光接口单元、光电收发单元和电接口单元;
所述电接口单元用于提供模块与外部***的通信接口;
所述光接口单元在传输距离在500米及以内时,为MPO型光接口或带状光纤;传输距离在500米以上时,为双联LC型光接口;
所述光电收发单元至少包括光电收发芯片和激光器芯片,所述光电收发芯片与所述激光器芯片之间的组装是通过微光学元件间的光路耦合后集成或者直接键合而成的;
传输距离在500米以上时,所述光电收发芯片为光电收发芯片一;
所述光电收发芯片一包括:发射端数据时钟恢复电路、驱动电路、调制电路、波分复用器、波分解复用器、光探测器、跨阻放大器、接收端数据时钟恢复电路和控制电路;所述激光器芯片为连续激光器或可调激光器芯片;
所述发射端数据时钟恢复电路接收所述电接口单元输入的电信号,进行预处理后的高速电信号输入到驱动电路和调制电路,所述激光器芯片输出的光经过调制后产生高速光信号,再经过所述波分复用器复用后输出;所述波分解复用器接收所述光信号,并将所接收光信号进行解复用,分成16路光信号后由所述光探测器接收,经过光电转换后传送到跨阻放大器和接收端数据时钟恢复电路,进行信号放大、数据时钟采样和缓存处理,再传送到电接口单元;所述控制电路完成对激光器芯片的自动功率控制、消光比补偿、软关断等的智能控制,以及对光探测器接收光功率的实时监控,从而实现对整个所述光收发模块的相关工作状态检测量的实时监控上报;
传输距离在500米及以内时,所述光电收发芯片为光电收发芯片二;
所述光电收发芯片二包括:发射端数据时钟恢复电路、驱动电路、光探测器、跨阻放大器、接收端数据时钟恢复电路和控制电路;所述激光器芯片为25G垂直腔面发射激光器或直调激光器芯片;
所述发射端数据时钟恢复电路接收电信号,进行预处理后的高速电信号经驱动电路加载到所述激光器芯片上,激光器芯片将高速电信号转换成高速光信号后输出;接收的光信号传输到光接收探测器,经过光电转换后传送到跨阻放大器和接收端数据时钟恢复电路,进行信号放大、数据时钟采样和缓存处理,再传送到电接口单元;所述控制电路完成对激光器芯片的自动功率控制、消光比补偿、软关断等的智能控制,以及对光探测器接收光功率的实时监控,从而实现对整个所述光收发模块的相关工作状态检测量的实时监控上报。
6.如权利要求5所述的光收发模块,其特征在于,所述光电收发芯片基于SOI的晶圆上,采用CMOS工艺,使多个相同或不同功能的元件在整体上构成阵列化、模块化的单个芯片,实现一种或多种光学和电学信息处理功能;
所述光电收发芯片的制作方法包括在SOI衬底上对电学元件和光学元件进行同时制作或者光学元件后于电学元件制作;
所述电学元件的制作工艺包括掺杂、光刻、刻蚀,形成跨阻放大电路、数据时钟恢复电路、驱动电路和控制电路;所述光学元件的制作工艺包括光刻、刻蚀、淀积或外延生长其它材料,形成光复用功能、光解复用功能、光探测器;
所述光电收发芯片的光耦合接口是模斑变换器结构,或者光栅耦合器结构,或者通过外部微光学元件进行耦合输出;
所述光电收发芯片,是通过引线键合或者回流焊或者胶粘工艺贴装在电路板PCB或柔性电路板FPC上,进行电连接的。
7.一种400Gb/s热插拔高速光收发模块,其特征在于,所述光收发模块包括:光接口单元、光电收发单元和电接口单元;
所述电接口单元用于提供模块与外部***的通信接口;
传输距离在500米以上时,所述光接口单元为双联LC型光接口;所述光电收发单元至少包括光电收发芯片三;
所述光电收发芯片三包括:发射端数据时钟恢复电路、驱动电路、调制电路、激光器、波分复用器、波分解复用器、光探测器、跨阻放大器、接收端数据时钟恢复电路和控制电路;
所述发射端数据时钟恢复电路接收所述电接口单元输入的电信号,进行预处理后的高速电信号输入到驱动器和调制器,所述激光器输出的光经过调制后产生高速光信号,再经过所述波分复用器复用后输出;接收的光信号由所述波分解复用器解复用为16路光信号,传输到所述光探测器,经过光电转换后传送到所述跨阻放大器和所述接收端数据时钟恢复电路,进行信号放大、数据时钟采样和缓存处理,再传送到所述电接口单元;所述控制电路完成对激光器的自动功率控制、消光比补偿、软关断的智能控制,以及对光探测器芯片接收光功率的实时监控,从而实现对整个所述光收发模块的相关工作状态检测量的实时监控上报。
8.如权利要求6所述的光收发模块,其特征在于,传输距离在500米及以内时,所述光接口单元为MPO型光接口或带状光纤,将所述光电收发芯片三替换为光电收发芯片四;
所述光电收发芯片四包括:发射端数据时钟恢复电路、驱动电路、激光器、光探测器、跨阻放大器、接收端数据时钟恢复电路和控制电路;
所述发射端数据时钟恢复电路接收电信号,进行预处理后的高速电信号通过所述驱动器加载到所述激光器上,所述激光器将高速电信号转换成高速光信号后输出;所述光接收探测器分别接收输入光信号,并将所接收的光信号转换成为电信号后,传送到所述跨阻放大器和所述接收端数据时钟恢复电路,进行数据时钟采样和缓存处理,再传送到所述电接口单元;所述控制电路完成对激光器的自动功率控制、消光比补偿、软关断的智能控制,以及对光探测器芯片接收光功率的实时监控,从而实现对整个所述光收发模块的相关工作状态检测量的实时监控上报。
9.如权利要求7-8任一项所述的光收发模块,其特征在于,所述光电收发芯片基于SOI的晶圆上,采用CMOS工艺,使多个相同或不同功能的元件在整体上构成阵列化、模块化的单个芯片,实现一种或多种光学和电学信息处理功能;
所述光电收发芯片的制作方法包括在SOI衬底上对电学元件和光学元件进行同时制作或者光学元件后于电学元件制作;
所述电学元件的制作工艺包括掺杂、光刻、刻蚀,形成跨阻放大电路、数据时钟恢复电路、驱动电路和控制电路;所述光学元件的制作工艺包括光刻、刻蚀、淀积或外延生长其它材料,形成光复用功能、光解复用功能、光探测器、激光器;
所述光电收发芯片的光耦合接口是模斑变换器结构,或者光栅耦合器结构,或者通过外部微光学元件进行耦合输出;
所述光电收发芯片,是通过引线键合或者回流焊或者胶粘工艺贴装在电路板或柔性电路板上,进行电连接的。
CN201410804586.7A 2014-12-22 2014-12-22 一种400Gb/s热插拔高速光收发模块 Active CN104601244B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410804586.7A CN104601244B (zh) 2014-12-22 2014-12-22 一种400Gb/s热插拔高速光收发模块

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410804586.7A CN104601244B (zh) 2014-12-22 2014-12-22 一种400Gb/s热插拔高速光收发模块

Publications (2)

Publication Number Publication Date
CN104601244A true CN104601244A (zh) 2015-05-06
CN104601244B CN104601244B (zh) 2017-12-26

Family

ID=53126790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410804586.7A Active CN104601244B (zh) 2014-12-22 2014-12-22 一种400Gb/s热插拔高速光收发模块

Country Status (1)

Country Link
CN (1) CN104601244B (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105305191A (zh) * 2015-10-29 2016-02-03 成都新易盛通信技术股份有限公司 一种基于cfp2接口的100g电缆模块
CN106253990A (zh) * 2016-09-05 2016-12-21 飞昂通讯科技南通有限公司 一种高速低功耗光收发芯片
CN106526608A (zh) * 2016-12-29 2017-03-22 中科和光(天津)应用激光技术研究所有限公司 一种基于vcsel的激光雷达测距装置
WO2017107218A1 (zh) * 2015-12-24 2017-06-29 武汉光迅科技股份有限公司 一种2×100g光收发模块
CN107017947A (zh) * 2017-04-06 2017-08-04 深圳市欧凌克光电科技有限公司 一种cfp2封装100g超长距er4模块
CN107070556A (zh) * 2017-03-17 2017-08-18 深圳市傲科光电子有限公司 一种双向光纤收发电路及双向光纤收发机
WO2018040108A1 (zh) * 2016-09-05 2018-03-08 飞昂通讯科技南通有限公司 一种高速低功耗光收发芯片
CN109412697A (zh) * 2018-11-06 2019-03-01 何玉亭 一种用于信息单向传输的光电模块
CN109981175A (zh) * 2016-01-08 2019-07-05 华为技术有限公司 光模块及信号处理的方法
CN110176960A (zh) * 2019-06-27 2019-08-27 成都光创联科技有限公司 一种新型单纤双向多通道输入光模块
CN110391845A (zh) * 2019-07-24 2019-10-29 光为科技(广州)有限公司 光收发器、光收发组件及光通信***
CN110391847A (zh) * 2019-07-25 2019-10-29 长春理工大学 高速大容量无线存储装置
CN110971304A (zh) * 2019-11-19 2020-04-07 武汉电信器件有限公司 一种基于硅光的光收发组件
CN112311463A (zh) * 2020-10-28 2021-02-02 西安微电子技术研究所 一种光收发电路及光收发装置
CN113701660A (zh) * 2021-09-29 2021-11-26 欧梯恩智能科技(苏州)有限公司 光传感解调模块和光传感***
CN114221710A (zh) * 2021-12-06 2022-03-22 中国电子科技集团公司第十三研究所 基于光电异构集成的微波光子收发电路及微波光子收发器
CN114660710A (zh) * 2020-12-23 2022-06-24 中国科学院半导体研究所 晶圆级光互连与交换片上***
CN115085852A (zh) * 2022-08-19 2022-09-20 南京光智元科技有限公司 时钟信号传输装置及其制造方法、光学时钟平衡装置
CN115134000A (zh) * 2022-06-29 2022-09-30 阿里巴巴(中国)有限公司 一种有源光缆、光通信网络及光通信方法
CN117353825A (zh) * 2023-12-04 2024-01-05 成都英思嘉半导体技术有限公司 集单端焊接fpc与驱动的高速光发射***及控制方法
CN117650848A (zh) * 2024-01-29 2024-03-05 深圳市迅特通信技术股份有限公司 一种800g lr8光模块
CN113701660B (zh) * 2021-09-29 2024-06-21 欧梯恩智能科技(苏州)有限公司 光传感解调模块和光传感***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101995616A (zh) * 2009-08-19 2011-03-30 中国科学院半导体研究所 全硅基材料多通道光收发模块
CN102141660A (zh) * 2010-09-15 2011-08-03 华为技术有限公司 光收发一体装置
CN102710334A (zh) * 2012-05-25 2012-10-03 武汉电信器件有限公司 用于长距离传输的40g cfp光模块
CN202872791U (zh) * 2012-09-10 2013-04-10 胡朝阳 硅光子集成高速光通信收发模块
WO2013185218A1 (en) * 2012-06-13 2013-12-19 Onechip Photonics Inc. Space- wavelength division multiplexing transmitter and receiver photonic integrated circuits

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101995616A (zh) * 2009-08-19 2011-03-30 中国科学院半导体研究所 全硅基材料多通道光收发模块
CN102141660A (zh) * 2010-09-15 2011-08-03 华为技术有限公司 光收发一体装置
CN102710334A (zh) * 2012-05-25 2012-10-03 武汉电信器件有限公司 用于长距离传输的40g cfp光模块
WO2013185218A1 (en) * 2012-06-13 2013-12-19 Onechip Photonics Inc. Space- wavelength division multiplexing transmitter and receiver photonic integrated circuits
CN202872791U (zh) * 2012-09-10 2013-04-10 胡朝阳 硅光子集成高速光通信收发模块

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105305191B (zh) * 2015-10-29 2018-05-25 成都新易盛通信技术股份有限公司 一种基于cfp2 接口的100g 电缆模块
CN105305191A (zh) * 2015-10-29 2016-02-03 成都新易盛通信技术股份有限公司 一种基于cfp2接口的100g电缆模块
WO2017107218A1 (zh) * 2015-12-24 2017-06-29 武汉光迅科技股份有限公司 一种2×100g光收发模块
CN109981175B (zh) * 2016-01-08 2021-10-01 华为技术有限公司 光模块及信号处理的方法
CN109981175A (zh) * 2016-01-08 2019-07-05 华为技术有限公司 光模块及信号处理的方法
US10469173B2 (en) 2016-09-05 2019-11-05 Wingcomm Co. Ltd. High-speed low-power-consumption optical transceiver chip
CN106253990A (zh) * 2016-09-05 2016-12-21 飞昂通讯科技南通有限公司 一种高速低功耗光收发芯片
CN106253990B (zh) * 2016-09-05 2019-07-16 飞昂创新科技南通有限公司 一种高速低功耗光收发芯片
WO2018040108A1 (zh) * 2016-09-05 2018-03-08 飞昂通讯科技南通有限公司 一种高速低功耗光收发芯片
CN106526608A (zh) * 2016-12-29 2017-03-22 中科和光(天津)应用激光技术研究所有限公司 一种基于vcsel的激光雷达测距装置
CN107070556A (zh) * 2017-03-17 2017-08-18 深圳市傲科光电子有限公司 一种双向光纤收发电路及双向光纤收发机
CN107017947A (zh) * 2017-04-06 2017-08-04 深圳市欧凌克光电科技有限公司 一种cfp2封装100g超长距er4模块
CN109412697A (zh) * 2018-11-06 2019-03-01 何玉亭 一种用于信息单向传输的光电模块
CN110176960A (zh) * 2019-06-27 2019-08-27 成都光创联科技有限公司 一种新型单纤双向多通道输入光模块
CN110176960B (zh) * 2019-06-27 2023-11-17 成都光创联科技有限公司 一种新型单纤双向多通道输入光模块
CN110391845A (zh) * 2019-07-24 2019-10-29 光为科技(广州)有限公司 光收发器、光收发组件及光通信***
CN110391847A (zh) * 2019-07-25 2019-10-29 长春理工大学 高速大容量无线存储装置
CN110971304A (zh) * 2019-11-19 2020-04-07 武汉电信器件有限公司 一种基于硅光的光收发组件
CN112311463A (zh) * 2020-10-28 2021-02-02 西安微电子技术研究所 一种光收发电路及光收发装置
CN112311463B (zh) * 2020-10-28 2022-06-14 西安微电子技术研究所 一种光收发电路及光收发装置
CN114660710A (zh) * 2020-12-23 2022-06-24 中国科学院半导体研究所 晶圆级光互连与交换片上***
CN113701660A (zh) * 2021-09-29 2021-11-26 欧梯恩智能科技(苏州)有限公司 光传感解调模块和光传感***
CN113701660B (zh) * 2021-09-29 2024-06-21 欧梯恩智能科技(苏州)有限公司 光传感解调模块和光传感***
CN114221710B (zh) * 2021-12-06 2023-11-10 中国电子科技集团公司第十三研究所 基于光电异构集成的微波光子收发电路及微波光子收发器
CN114221710A (zh) * 2021-12-06 2022-03-22 中国电子科技集团公司第十三研究所 基于光电异构集成的微波光子收发电路及微波光子收发器
CN115134000A (zh) * 2022-06-29 2022-09-30 阿里巴巴(中国)有限公司 一种有源光缆、光通信网络及光通信方法
CN115085852A (zh) * 2022-08-19 2022-09-20 南京光智元科技有限公司 时钟信号传输装置及其制造方法、光学时钟平衡装置
CN117353825A (zh) * 2023-12-04 2024-01-05 成都英思嘉半导体技术有限公司 集单端焊接fpc与驱动的高速光发射***及控制方法
CN117353825B (zh) * 2023-12-04 2024-02-09 成都英思嘉半导体技术有限公司 集单端焊接fpc与驱动的高速光发射***及控制方法
CN117650848A (zh) * 2024-01-29 2024-03-05 深圳市迅特通信技术股份有限公司 一种800g lr8光模块

Also Published As

Publication number Publication date
CN104601244B (zh) 2017-12-26

Similar Documents

Publication Publication Date Title
CN104601244B (zh) 一种400Gb/s热插拔高速光收发模块
CN112925069B (zh) 集成光收发器、紧凑型光引擎以及多通道光引擎
CN107153237A (zh) 一种多通道硅基波分复用高速光收发一体器件
Narasimha et al. A 40-Gb/s QSFP optoelectronic transceiver in a 0.13 μm CMOS silicon-on-insulator technology
CN113759475B (zh) 内封装型光电模块
CN102882601A (zh) 硅光子集成高速光通信收发模块
CN202872791U (zh) 硅光子集成高速光通信收发模块
CN110176960A (zh) 一种新型单纤双向多通道输入光模块
CN107294606B (zh) 一种单模光纤双向光收发器
CN104348553A (zh) Cfp光收发模块
CN105634611A (zh) 光模块及信号处理的方法
CN102710334A (zh) 用于长距离传输的40g cfp光模块
US8606112B2 (en) Pluggable module with bi-directional host-module optical interface
CN111869136B (zh) 光接收、组合收发组件、组合光模块、olt及pon***
CN202798731U (zh) 一种集成光电探测器的100g cfp光模块
CN112346181A (zh) 一种光模块
CN113346954B (zh) 一种用于50g以上无源光网络中的局端设备
CN114257307A (zh) 一种光纤到户混传光收发模块
CN107462956B (zh) 光接收次模块和光模块
CN102833004A (zh) 一种传输距离大于40千米的100g cfp光模块
CN217159714U (zh) 一种光纤到户混传光收发装置
CN115343808B (zh) 光模块装置
CN201886180U (zh) 一种万兆epon网络onu端用光器件
CN107167886A (zh) 一种多波长并行光收发器件
CN113423028A (zh) 一种光模块

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant