CN104597218B - 地下水动态模拟实验平台 - Google Patents

地下水动态模拟实验平台 Download PDF

Info

Publication number
CN104597218B
CN104597218B CN201510081412.7A CN201510081412A CN104597218B CN 104597218 B CN104597218 B CN 104597218B CN 201510081412 A CN201510081412 A CN 201510081412A CN 104597218 B CN104597218 B CN 104597218B
Authority
CN
China
Prior art keywords
water
type shell
pipe
box
simulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510081412.7A
Other languages
English (en)
Other versions
CN104597218A (zh
Inventor
崔海炜
高业新
张冰
左雪峰
崔浩浩
冯欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Hydrogeology and Environmental Geology CAGS
Original Assignee
Institute of Hydrogeology and Environmental Geology CAGS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Hydrogeology and Environmental Geology CAGS filed Critical Institute of Hydrogeology and Environmental Geology CAGS
Priority to CN201510081412.7A priority Critical patent/CN104597218B/zh
Publication of CN104597218A publication Critical patent/CN104597218A/zh
Application granted granted Critical
Publication of CN104597218B publication Critical patent/CN104597218B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

本发明涉及一种地下水动态模拟实验平台,包括有动态模拟装置、曝气装置、模拟雨淋装置和中控计算机。本发明构成典型地下水文地质单元模型,通过对动态模拟装置的在线监测,可模拟污染物从地表进入到地下含水层过程,模拟污染物在地下水含水层中从补给区、径流区到***区的迁移转化过程,能够实现全方位水动力场、水化学场的模拟再现,可清晰地观测药品在包气带土壤及含水层中的运移过程,便于深入分析药品在包气带土壤及含水层中的溶质运移及迁移转化规律。本发明改变了原有物理模拟装置的组成、结构和工作原理,实现包气带与饱水带的有机结合,不仅能满足包气带土壤非饱和渗流模拟,而且具有二维及多维流动模拟能力,能够在实验室内“真实”再现野外水文地质条件。

Description

地下水动态模拟实验平台
技术领域
本发明涉及一种环境水文地质模拟装置,具体地说是一种地下水动态模拟实验平台。
背景技术
地下水资源在我国水资源中占有举足轻重的地位,在维护生态环境安全和经济社会健康发展等方面发挥着不可替代的作用。然而,随着社会经济发展,大量不合理排放的生活废水废物、工业废水废物、农业污染物等,以及地下水无序开发,导致大量污染物进入地下水环境,引起包气带土壤和地下水污染愈加严重,致使地下水环境污染问题日益复杂。
地下水污染是我国面临的严峻问题,控制和修复地下水污染是保护水资源的重要工作之一。包气带结构复杂,污染物通过水流等作用极其缓慢向下迁移转化,因此包气带既是污染物通道,也是污染物储存空间,导致污染物进入含水层,以及在含水层中运动都比较缓慢,污染往往是逐渐发生,发现地下水污染后,确定污染源也远不如地表水那么容易。因此,多年来,众多科研工作者不断开展地下水污染防治的科学研究工作,而探索此类科学问题必须依托相应的模拟地下水环境实验装置,因此设计合理的地下水动态模拟装置成为从事地下水污染修复研究热点问题。
研究发现,当今的地下水物理模拟装置存在如下缺点:首先,从功能上看现有模拟装置大多片面针对包气带或者含水层,缺乏包气带与饱水带两方面模拟功能的有机组合装置,从而缺少污染物从包气带进入饱水带途经模拟监测功能,不能够从整个循环流程上抓住污染物迁移转化过程,导致模拟装置缺乏整体性;其次,从效果上看是箱式壳体较模拟砂柱更能“真实”反应水文地质条件,更大可能的规避边界效应,而相对野外大型试验场箱式壳体又显得更便捷,且投资省、时间短、针对性强,可根据实验设计需要更换填充材料和加注不同药品进行重复实验;最后,从现实意义上看,野外原位进行实验和数据采集往往难以实现。
发明内容
本发明的目的就是提供一种地下水动态模拟实验平台,以解决现有模拟装置功能单一和模拟效果差的问题。
本发明是这样实现的:一种地下水动态实验模拟平台,包括有动态模拟装置、曝气装置、模拟雨淋装置和中控计算机;
所述动态模拟装置的主体为长方形的箱式壳体,所述箱式壳体采用有机玻璃板加工而成,***采用不锈钢方管加固和支撑;在所述箱式壳体的前壁板与后壁板的内侧按100mm的间距设置有若干直立的凹形卡槽,所述卡槽的下沿与所述箱式壳体的底板相接触,所述卡槽的上沿与所述箱式壳体的上口平齐;在所述箱式壳体的前壁板与后壁板上的位置相对的两个所述卡槽之间插接一张矩形的多孔配水板,在所述多孔配水板的板面上密布有孔径为2mm的过流孔眼,所述多孔配水板的下沿与所述箱式壳体的底板相接触,所述多孔配水板的上沿与所述箱式壳体的上口相平齐;
在所述箱式壳体的一端侧壁板上接有分层设置的若干进水口,在所述箱式壳体的另一端的侧壁板上接有分层设置的若干出水口,所述进水口和所述出水口均由孔径为8mm的有机玻璃管制成,在所述箱式壳体的侧壁板上呈矩阵分布;
在所述箱式壳体的前壁板与后壁板上分别设置有若干分层设置的由孔径为8mm有机玻璃管制成的采样口,所述采样口分布在由所述多孔配水板分隔开的每个样品空间所对应的前壁板或后壁板上,在每个所述采样口上安装有取样器或者封接有封口塞,在所述箱式壳体的前壁板与后壁板的两端分别设置有呈纵向排列的一列由孔径为8mm有机玻璃管制成的溢流口,在所述溢流口处安装有取样器或者接有带控制阀的溢流管;
在所述箱式壳体的底板上开有若干排水排泥孔,每个排水排泥孔上接有一个排水排泥管,所述排水排泥管用直径40mm的PVC管制成,在所述排水排泥孔的内孔口处封接有不锈钢纱网,在所述排水排泥管上接有排水排泥控制阀,所有所述排水排泥管的下端共接到一根排水排泥总管上;
在所述箱式壳体的底部架设有底盘,所述底盘由若干脚轮支撑连接;在所述底盘的两端各连接一个折叠式矩形吊架,在所述吊架上安放有高度可调的水箱,一个所述水箱通过连通管路连接到所述箱式壳体的所述进水口上,另一个所述水箱通过连通管路连接到所述箱式壳体的所述出水口上;在所述连通管路上分别安装有电磁阀和流量计,所述流量计上的数据线连接到所述中控计算机上;
在所述箱式壳体内的由所述多孔配水板分隔开的每个样品空间中装填有用于模拟水文地质单元的含水层介质,在每个样品空间中分别插接有若干直立的由管径为20mm的PVC管制成的监测/加药孔管,所述监测/加药孔管的底端与所述箱式壳体的底板相接触,所述监测/加药孔管的顶端与所述箱式壳体的上口相平齐;在所述监测/加药孔管的管壁上沿圆周对称开有四列孔径为2mm的孔眼,每列孔眼的上下间距为10mm,在所述监测/加药孔管的外侧包裹有不锈钢纱网;所述监测/加药孔管供在线监测装置的监测探头***其中,所述监测探头为水质监测探头、水位监测探头、pH监测探头、氧化还原电位监测探头、电导率监测探头、温度监测探头及溶解氧监测探头中的一种或数种,所述监测探头的数据线连接到所述中控计算机上,以传输和处理所采集的实验检测信号;
在所述箱式壳体的上口设置有可掀起或扣合的密封盖;
所述曝气装置包括供气总管、配气管和曝气管;所述曝气管是在管径为10mm的PVC管上沿轴向开有双排气孔,每个气孔的孔径为1mm,每排气孔的孔距为5mm,两排气孔的圆心夹角为45°;所述曝气管水平设置在所述箱式壳体内的由所述多孔配水板分隔开的各样品空间的底部,所述曝气管的一端连接到插接在所述箱式壳体内各样品空间中的所述配气管上,所述配气管的上端连接到设置于所述箱式壳体上方的所述供气总管上,在每根所述配气管上装有曝气控制阀,所述供气总管由鼓风机或高压氮气瓶供气,通过调控所述曝气控制阀形成曝气;
所述模拟雨淋装置包括供水总管、配水管、蛇形管和雨淋管,所述雨淋管包括一根分水管和垂直连接在所述分水管上的若干喷淋管,所述喷淋管是管径为10mm的PVC管,在喷淋管上沿轴向开有双排水孔,每个水孔的孔径为1mm,每排水孔的孔距为5mm,两排水孔的圆心夹角为45°;所述雨淋管分成若干组,其中的喷淋管水平设置在所述箱式壳体的上方,每组所述雨淋管通过所述蛇形管连接到所述配水管的下端,各组的所述配水管的上端共接到所述供水总管上,在每根所述配水管上装有一个雨淋控制阀;所述供水总管由水泵或自来水管供水,通过调控所述雨淋控制阀形成降雨模拟。
所述中控计算机通过对所述动态模拟装置的进水流量和水压的调控,实现对水文地质单元的含水层介质中地下水的流量、流速等参数的模拟和调控。
所述中控计算机通过设置于所述动态模拟装置中各种监测装置的监测探头的信息采集,在所述动态模拟装置中实现对水文地质单元的含水层介质中地下水动力场、地下水化学场的模拟。
本发明通过在所述动态模拟装置上的所述监测/加药孔管中添加药物,在所述动态模拟装置中实现水文地质单元的含水层介质中地下水的污染模拟;通过在所述模拟雨淋装置的所述供水总管中添加药物,在所述动态模拟装置中实现水文地质单元的含水层介质受酸雨影响对地下水产生的污染模拟。
本发明构成一种地下水文地质单元模型,配备完善的在线监测***,可模拟污染物从地表进入到地下含水层过程,模拟污染物在地下水含水层中从补给区、径流区到***区的迁移转化过程,能够实现全方位水动力场、水化学场的模拟再现,可清晰地观测药品在包气带土壤及含水层中的运移过程,便于深入分析药品在包气带土壤及含水层中的溶质运移及迁移转化规律。
本发明改变了原有物理模拟装置的组成、结构和工作原理,实现包气带与饱水带的有机结合,不仅能满足包气带土壤非饱和渗流模拟,而且具有二维及多维流动模拟能力,能够在实验室内“真实”再现野外水文地质条件。本发明可实现药品在包气带到饱水带的溶质运移及在含水层中迁移转化的全方位模拟监测功能,而模拟平台数据采集简单、及时、有效,可实现在线模拟,相对野外现场测量精度更高,数据采集更精准,提高了模拟实验的保真度,降低了模拟实验的成本,扩大了模拟装置的普适性,因此用途也更为广泛。
本发明结构简单,测量数据精确,用途广泛;可针对不同修复工艺(原位曝气技术、原位化学氧化技术、原位生物修复技术、可渗透性反应墙工艺、土壤原位淋洗修复工艺、抽出-处理工艺、监控条件下的衰减法等)进行修复实验设计;可模拟横向污染物运移的模拟实验,可针对垂向污染物的模拟实验,可用于水质演化机理的探讨,还可用于弥散系数等参数测定以及研究降雨对污染物在包气带中迁移转化的模拟实验。本发明利用水力再生原理,针对箱式壳体已堵塞部位进行***再生,可大大延长装置使用寿命,同时对地下水环境不造成二次污染,具有广泛的应用价值和市场价值。
附图说明
图1是本发明的结构示意图。
图2是箱式壳体的俯视结构示意图。
图3是雨淋管的平面布置图。
图4是曝气管的平面布置图。
图中:1、箱式壳体,2、进水口,3、溢流口,4、曝气控制阀,5、雨淋管,6、雨淋控制阀,7、蛇形管,8、配气管,9、采样口,10、出水口,11、卡槽,12、底盘,13、排水排泥管,14、排水排泥控制阀,15、脚轮,16、吊架,17、供水总管,18、配水管,19、供气总管,20、排水排泥总管,21、监测/加药孔管,22、排水排泥孔,23、多孔配水板,24、曝气管,25、加药管口。
具体实施方式
本发明地下水动态实验模拟平台包括有动态模拟装置、曝气装置、模拟雨淋装置和中控计算机等四部分,附图所示是除中控计算机以外的本发明其他部分的结构示意图。
如图1所示,所述动态模拟装置的主体为长方形的箱式壳体1,箱式壳体1采用10mm厚是有机玻璃板加工而成,在有机玻璃板的***用不锈钢方管加固和支撑。在箱式壳体1的前壁板与后壁板的内侧按100mm的间距设置有若干直立的凹形卡槽(图2),卡槽11的下沿与箱式壳体1的底板相接触,卡槽11的上沿与箱式壳体1的上口平齐。在箱式壳体1的前壁板与后壁板上的位置相对的两个卡槽11之间插接一张矩形的多孔配水板23,在多孔配水板23的板面上密布有过流孔眼,过流孔眼的孔径为2mm,孔距为4mm,呈梅花阵分布。多孔配水板23的下沿与箱式壳体1的底板相接触,多孔配水板23的上沿与箱式壳体1的上口相平齐。
在箱式壳体1的右端侧壁板上接有分五层设置的进水口2,每层进水口有至少两个,形成矩阵式分布。在箱式壳体1的左端侧壁板上接有分五层设置的出水口10,每层出水口有至少两个,形成矩阵式分布。进水口2和出水口10均由孔径为8mm的有机玻璃管制成。这样就使得动态模拟装置从右到左依次形成地下水的补给区、径流区和***区。
图1中,在箱式壳体1的前壁板与后壁板上分别设置有分五层设置的采样口9,采样口9由孔径为8mm的有机玻璃管制成,分布在由多孔配水板23分隔开的每个样品空间所对应的前壁板或后壁板上。在每个采样口9上安装有取样器或者封接有封口塞。在箱式壳体1的前壁板与后壁板的左右两端分别设置有呈纵向排列的一列溢流口3,溢流口由孔径为8mm有机玻璃管制成。在溢流口3处安装有取样器或者接有带控制阀的溢流管。
图1中,在箱式壳体1的底板上开有八个排水排泥孔22(图2),每个排水排泥孔22上接有一个排水排泥管13,排水排泥管13用直径40mm的PVC管制成,在排水排泥孔的内孔口处封接有不锈钢纱网,在排水排泥管13上接有排水排泥控制阀14,所有排水排泥管13的下端共接到一根横置的排水排泥总管20上。
在箱式壳体1的底部架设有底盘12,底盘12由6—8个脚轮15支撑连接。在底盘12的两端各连接一个折叠式矩形吊架16,在吊架16上安放有高度可调的水箱(未图示),右端的水箱通过连通管路连接到箱式壳体1右端的进水口2上,左端的水箱通过连通管路连接到箱式壳体1左端的出水口10上。在连通管路上分别安装有电磁阀和流量计,流量计上的数据线连接到中控计算机上。
在箱式壳体1内的由多孔配水板23分隔开的每个样品空间中装填有用于模拟水文地质单元的含水层介质,在每个样品空间中分别插接有若干直立的监测/加药孔管21,监测/加药孔管21由管径为20mm的PVC管制成。监测/加药孔管21的底端与箱式壳体1的底板相接触,监测/加药孔管21的顶端与箱式壳体1的上口相平齐。在监测/加药孔管21的管壁上沿圆周对称开有四列孔径为2mm的孔眼,每列孔眼的上下间距为10mm。在监测/加药孔管21的外侧包裹有不锈钢纱网,以防止泥沙封堵孔眼。各监测/加药孔管21供模拟实验使用的各种在线监测装置上的监测探头***其中,所述监测探头为水质监测探头、水位监测探头、pH监测探头、氧化还原电位监测探头、电导率监测探头、温度监测探头及溶解氧监测探头等多种专业监测探头中的一种或数种,在一个监测/加药孔管21中可以插接一种或数种监测探头。监测探头的数据线连接到中控计算机上,以传输和处理所采集的实验检测信号。
本发明还制有一个封盖箱式壳体1上口的密封盖(未图示),密封盖可以是通过合页连接在箱式壳体1上,也可以是单独设置,在使用时扣盖到箱式壳体1的上口。
如图1、图4所示,所述曝气装置包括供气总管19、配气管8和曝气管24等部分。曝气管24是在管径为10mm的PVC管上沿轴向开有双排气孔,每个气孔的孔径为1mm,每排气孔的孔距为5mm,两排气孔的圆心夹角为45°。曝气管24水平设置在箱式壳体1内的由多孔配水板23分隔开的各样品空间的底部(图4),曝气管24的一端连接到配气管8上,配气管8插接在箱式壳体1内每个样品空间的边缘(图4),配气管8的上端连接到设置于箱式壳体1上方的供气总管19上(图1)。在每根配气管8上装有曝气控制阀4,供气总管19与鼓风机或高压氮气瓶连接,以提供空气或氮气,在曝气控制阀4的调控下,通入箱式壳体1内的含水介质中的空气或氮气形成曝气。
如图1、图3所示,所述模拟雨淋装置设置在所述动态模拟装置的上方,包括有供水总管17、配水管18、蛇形管7和雨淋管5等部分。雨淋管5包括一根分水管和若干喷淋管,若干喷淋管平行设置,端部与一根分水管垂直连接,形成一组固接的雨淋管。喷淋管是由管径为10mm的PVC管制成,在喷淋管上沿轴向开有双排水孔,每个水孔的孔径为1mm,每排水孔的孔距为5mm,两排水孔的圆心夹角为45°,两排水孔的对称中心面垂直向下设置。图3中的雨淋管有三组,水平设置在箱式壳体1的上方,每组雨淋管5通过一根蛇形管7连接到配水管18的下端,以适当调整每组雨淋管的设置高度;配水管18的上端共接到一根横置的供水总管17上,在每根配水管18上装有一个雨淋控制阀6,雨淋控制阀6为电磁阀。供水总管17与水泵或自来水管网相接,由水泵或自来水管供水,通过调控雨淋控制阀6形成降雨模拟。在供水总管17上开有一个加药管口25(图1),管口上设有封堵,打开后可向里加药,通过降雨的淋漓作用,将药品带入箱式壳体1内,从而可以在箱式壳体1内形成持续性的面源污染扩散模拟。模拟雨淋装置可通过升降架吊装在箱式壳体1的上方,通过升降架的调节,使喷淋管距箱式壳体1顶面的高度在100~500mm之间,同时还可根据实验要求进行左右平移,平移距离可在400mm左右。模拟雨淋装置的作用是模拟自然环境中的降雨,可以模拟小雨、中雨、大雨、暴雨等各种自然环境中所出现的降雨状态。
中控计算机是整个模拟实验平台的一部分,其功能是实时、自动的在线采集和处理各种传感器监测的水循环过程数据;通过对动态模拟装置进水流量和水压的调控,实现对水文地质单元的含水层介质中地下水的流量、流速等参数的模拟和调控。
中控计算机通过设置于动态模拟装置中各种监测装置的监测探头的信息采集,在动态模拟装置中实现对水文地质单元的含水层介质中地下水动力场、地下水化学场的模拟。
本发明地下水动态模拟实验平台布设完毕,即可开始利用中控计算机和各种监控装置对水循环过程的各种参数进行实时、自动采集,并观察地下水迁移转化和变化数据。同时可以针对具体的研究目的,设定不同的实验研究方案。利用模拟雨淋装置、水位控制装置可以实现自然界不同水循环过程的模拟和再现,从而为不同的水循环过程研究服务。
本发明通过在动态模拟装置上的监测/加药孔管21中添加药物,在动态模拟装置中实现水文地质单元的含水层介质中地下水的污染模拟;通过在模拟雨淋装置的供水总管17中添加药物(如硫酸、硝酸等),实现模拟含特殊污染因子(酸雨)的降雨过程,在动态模拟装置中实现水文地质单元的含水层介质受酸雨影响对地下水产生的污染模拟。
动态模拟装置中的填充材料在选定研究区选定取土点,按照实验需求进行分层取土,填充过程应严格按照取土顺序进行分层回填;含水层的填充材料主要采用级配河沙填充,粒径在0.1~2.0,渗透系数在20m/d左右,以实现动态模拟装置内含水层中的水为典型潜水的模拟。包气带的填充材料在主要采用砂质粉土,粒径在0.005~0.075mm,渗透系数为0.5m/d左右,以实现动态模拟装置内典型包气带的模拟。
本发明中的模拟雨淋装置和水位控制如采用自来水直接供水控制,则供水主管和箱式壳体进水管前端必须安装防止水倒流的装置,避免在自来水停水或自来水供水压力波动时污水回流而污染自来水管网***。
本发明与实验材料及药品接触部位采用的主要材料由高透明度有机玻璃、PVC管和316不锈钢组成,这些材料具有较强的耐腐蚀性,其物理、化学性能稳定,没有释出物质,可避免实验过程中由于设备本身材料使用不当而造成的人为污染。

Claims (4)

1.一种地下水动态模拟实验平台,其特征是,包括有动态模拟装置、曝气装置、模拟雨淋装置和中控计算机;
所述动态模拟装置的主体为长方形的箱式壳体,所述箱式壳体采用有机玻璃板加工而成,***采用不锈钢方管加固和支撑;在所述箱式壳体的前壁板与后壁板的内侧按100mm的间距设置有若干直立的凹形卡槽,所述卡槽的下沿与所述箱式壳体的底板相接触,所述卡槽的上沿与所述箱式壳体的上口平齐;在所述箱式壳体的前壁板与后壁板上的位置相对的两个所述卡槽之间插接一张矩形的多孔配水板,在所述多孔配水板的板面上密布有孔径为2mm的过流孔眼,所述多孔配水板的下沿与所述箱式壳体的底板相接触,所述多孔配水板的上沿与所述箱式壳体的上口相平齐;
在所述箱式壳体的一端侧壁板上接有分层设置的若干进水口,在所述箱式壳体的另一端的侧壁板上接有分层设置的若干出水口,所述进水口和所述出水口均由孔径为8mm的有机玻璃管制成,在所述箱式壳体的侧壁板上呈矩阵分布;
在所述箱式壳体的前壁板与后壁板上分别设置有若干分层设置的由孔径为8mm有机玻璃管制成的采样口,所述采样口分布在由所述多孔配水板分隔开的每个样品空间所对应的前壁板或后壁板上,在每个所述采样口上安装有取样器或者封接有封口塞,在所述箱式壳体的前壁板与后壁板的两端分别设置有呈纵向排列的一列由孔径为8mm有机玻璃管制成的溢流口,在所述溢流口处安装有取样器或者接有带控制阀的溢流管;
在所述箱式壳体的底板上开有若干排水排泥孔,每个排水排泥孔上接有一个排水排泥管,所述排水排泥管用直径40mm的PVC管制成,在所述排水排泥孔的内孔口处封接有不锈钢纱网,在所述排水排泥管上接有排水排泥控制阀,所有所述排水排泥管的下端共接到一根排水排泥总管上;
在所述箱式壳体的底部架设有底盘,所述底盘由若干脚轮支撑连接;在所述底盘的两端各连接一个折叠式矩形吊架,在所述吊架上安放有高度可调的水箱,一个所述水箱通过连通管路连接到所述箱式壳体的所述进水口上,另一个所述水箱通过连通管路连接到所述箱式壳体的所述出水口上;在所述连通管路上分别安装有电磁阀和流量计,所述流量计上的数据线连接到所述中控计算机上;
在所述箱式壳体内的由所述多孔配水板分隔开的每个样品空间中装填有用于模拟水文地质单元的含水层介质,在每个样品空间中分别插接有若干直立的由管径为20mm的PVC管制成的监测/加药孔管,所述监测/加药孔管的底端与所述箱式壳体的底板相接触,所述监测/加药孔管的顶端与所述箱式壳体的上口相平齐;在所述监测/加药孔管的管壁上沿圆周对称开有四列孔径为2mm的孔眼,每列孔眼的上下间距为10mm,在所述监测/加药孔管的外侧包裹有不锈钢纱网;所述监测/加药孔管供在线监测装置的监测探头***其中,所述监测探头为水质监测探头、水位监测探头、pH监测探头、氧化还原电位监测探头、电导率监测探头、温度监测探头及溶解氧监测探头中的一种或数种,所述监测探头的数据线连接到所述中控计算机上,以传输和处理所采集的实验检测信号;
在所述箱式壳体的上口设置有可掀起或扣合的密封盖;
所述曝气装置包括供气总管、配气管和曝气管;所述曝气管是在管径为10mm的PVC管上沿轴向开有双排气孔,每个气孔的孔径为1mm,每排气孔的孔距为5mm,两排气孔的圆心夹角为45°;所述曝气管水平设置在所述箱式壳体内的由所述多孔配水板分隔开的各样品空间的底部,所述曝气管的一端连接到插接在所述箱式壳体内各样品空间中的所述配气管上,所述配气管的上端连接到设置于所述箱式壳体上方的所述供气总管上,在每根所述配气管上装有曝气控制阀,所述供气总管由鼓风机或高压氮气瓶供气,通过调控所述曝气控制阀形成曝气;
所述模拟雨淋装置包括供水总管、配水管、蛇形管和雨淋管,所述雨淋管包括一根分水管和垂直连接在所述分水管上的若干喷淋管,所述喷淋管是管径为10mm的PVC管,在喷淋管上沿轴向开有双排水孔,每个水孔的孔径为1mm,每排水孔的孔距为5mm,两排水孔的圆心夹角为45°;所述雨淋管分成若干组,其中的喷淋管水平设置在所述箱式壳体的上方,每组所述雨淋管通过所述蛇形管连接到所述配水管的下端,各组的所述配水管的上端共接到所述供水总管上,在每根所述配水管上装有一个雨淋控制阀;所述供水总管由水泵或自来水管供水,通过调控所述雨淋控制阀形成降雨模拟。
2.根据权利要求1所述的地下水动态模拟实验平台,其特征是,所述中控计算机通过对所述动态模拟装置的进水流量和水压的调控,实现对水文地质单元的含水层介质中地下水的流量、流速参数的模拟和调控。
3.根据权利要求1所述的地下水动态模拟实验平台,其特征是,所述中控计算机通过设置于所述动态模拟装置中各种监测装置的监测探头的信息采集,在所述动态模拟装置中实现对水文地质单元的含水层介质中地下水动力场、地下水化学场的模拟。
4.根据权利要求1所述的地下水动态模拟实验平台,其特征是,通过在所述动态模拟装置上的所述监测/加药孔管中添加药物,在所述动态模拟装置中实现水文地质单元的含水层介质中地下水的污染模拟;通过在所述模拟雨淋装置的所述供水总管中添加药物,在所述动态模拟装置中实现水文地质单元的含水层介质受酸雨影响对地下水产生的污染模拟。
CN201510081412.7A 2015-02-15 2015-02-15 地下水动态模拟实验平台 Expired - Fee Related CN104597218B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510081412.7A CN104597218B (zh) 2015-02-15 2015-02-15 地下水动态模拟实验平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510081412.7A CN104597218B (zh) 2015-02-15 2015-02-15 地下水动态模拟实验平台

Publications (2)

Publication Number Publication Date
CN104597218A CN104597218A (zh) 2015-05-06
CN104597218B true CN104597218B (zh) 2016-03-09

Family

ID=53123137

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510081412.7A Expired - Fee Related CN104597218B (zh) 2015-02-15 2015-02-15 地下水动态模拟实验平台

Country Status (1)

Country Link
CN (1) CN104597218B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105225593B (zh) * 2015-10-16 2018-04-20 北京建筑大学 用于模拟岩土地层中地下水环境的进排水***
CN105606495B (zh) * 2016-01-05 2018-06-19 河海大学 一种野外测量潜流交换量的实验装置及其实施方法
CN106840760A (zh) * 2017-01-26 2017-06-13 同济大学 多功能地表水采样器
CN109709002B (zh) * 2019-02-28 2024-03-19 湖北理工学院 一种基于模拟非饱和入渗污染物垂向释放的装置及方法
CN109839491B (zh) * 2019-04-02 2021-11-02 中国地质科学院水文地质环境地质研究所 一种地下水回补模拟实验方法
CN111626504B (zh) * 2020-05-26 2024-04-26 生态环境部环境规划院 傍河型水源污染风险的预警方法、装置、设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6398959B1 (en) * 1997-10-07 2002-06-04 Agrimond, Llc Aerobic treatment of liquids to remove nutrients and control odors
CN102359084A (zh) * 2011-07-29 2012-02-22 中国农业大学 河湖包气带渗滤性能的模拟调控***及其方法
CN103336100A (zh) * 2013-06-07 2013-10-02 中国环境科学研究院 地下水污染过程及污染修复一体化模拟装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6398959B1 (en) * 1997-10-07 2002-06-04 Agrimond, Llc Aerobic treatment of liquids to remove nutrients and control odors
CN102359084A (zh) * 2011-07-29 2012-02-22 中国农业大学 河湖包气带渗滤性能的模拟调控***及其方法
CN103336100A (zh) * 2013-06-07 2013-10-02 中国环境科学研究院 地下水污染过程及污染修复一体化模拟装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
华北平原中部深层含水层水文地质参数研究;靳晓颖 等;《干旱区研究》;20081231;第25卷(第5期);全文 *

Also Published As

Publication number Publication date
CN104597218A (zh) 2015-05-06

Similar Documents

Publication Publication Date Title
CN104597218B (zh) 地下水动态模拟实验平台
CN104569321B (zh) 一种基于地下水动态模拟实验平台的地表及含水层污染源模拟实验方法
CN104596895B (zh) 地下水污染迁移转化与最终归宿一体化移动模拟平台及模拟实验方法
CN104569323B (zh) 一种基于地下水动态模拟实验平台的自然降雨模拟实验方法
CN106908368B (zh) 模拟降雨土柱入渗试验***
CN204116335U (zh) 土壤污染物迁移转化模拟实验装置
CN101556269B (zh) 地下水污染模拟槽
CN108318386B (zh) 河流污染质迁移及下渗规律的多功能模拟实验装置及方法
CN104596737B (zh) 一种基于地下水动态模拟实验平台的地下水位动态模拟实验方法
CN110681685A (zh) 污染场地土壤-地下水一体式模拟修复装置及方法
CN108147551A (zh) 一种浅层地下水氮污染运移双向原位阻断修复***
CN104807961A (zh) 带有井管的人工岸带污染物迁移转化室内模拟装置
CN203929569U (zh) 用于研究湿地土-水界面重金属迁移转化的模拟装置
CN105277476A (zh) 土壤污染物纵向迁移模拟装置
CN109839491A (zh) 一种地下水回补模拟实验方法
CN212964501U (zh) 一种污染物在土壤-地下水体系运移过程的模拟装置
CN210995782U (zh) 污染场地土壤-地下水一体式模拟修复装置
CN104569322B (zh) 一种地下水动态模拟实验平台的构建方法
CN111704180A (zh) 一种强化地下水污染修复的原位注入装置及工艺
CN204064859U (zh) 土壤污染物纵向迁移模拟装置
CN202929029U (zh) 地下水原位化学和生物修复模拟试验装置
CN115046890A (zh) 一种地下环境中污染物迁移转化和修复的三维模拟***及方法
CN112007943A (zh) 原位注入高压旋喷注射修复地下水污染注入药剂扩散半径的确定方法
CN206223767U (zh) 一种模拟地下环境中污染物在饱和非均质含水层中迁移转化的三维可视模拟装置
CN104713806A (zh) 一种平板式二维地下水水动力及水质模型装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160309

Termination date: 20190215

CF01 Termination of patent right due to non-payment of annual fee