CN104580944B - The method that relative detector calibration is carried out to ccd image - Google Patents

The method that relative detector calibration is carried out to ccd image Download PDF

Info

Publication number
CN104580944B
CN104580944B CN201310470414.6A CN201310470414A CN104580944B CN 104580944 B CN104580944 B CN 104580944B CN 201310470414 A CN201310470414 A CN 201310470414A CN 104580944 B CN104580944 B CN 104580944B
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
mfrac
substep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310470414.6A
Other languages
Chinese (zh)
Other versions
CN104580944A (en
Inventor
李传荣
胡坚
周春城
马灵玲
蔡兴文
唐伶俐
李子扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Academy of Opto Electronics of CAS
Original Assignee
Academy of Opto Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academy of Opto Electronics of CAS filed Critical Academy of Opto Electronics of CAS
Priority to CN201310470414.6A priority Critical patent/CN104580944B/en
Publication of CN104580944A publication Critical patent/CN104580944A/en
Application granted granted Critical
Publication of CN104580944B publication Critical patent/CN104580944B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Measurement Of Radiation (AREA)

Abstract

The invention provides a kind of method that relative detector calibration is carried out to ccd image, and the original image progress relative detector calibration for sweeping acquisition is pushed away to one-dimensional CCD camera, including:Step A, test one-dimensional each probe unit of CCD camera using integrating sphere method and export spoke brightness L in different integrating spheresj, different time of integration TkLower radiation calibration dataStep B, by each probe unit of one-dimensional CCD camera in different energy level Lj, different time of integration TkLower radiation calibration dataUsing improved relative detector calibration model, each probe unit relative detector calibration coefficient is calculated;And step C, to each pixel in original image, the relative detector calibration coefficient that probe unit is corresponded to using the pixel carries out radiation intensity correction, and then obtains the image after relative detector calibration.Present invention, avoiding when handling aviation linear array CCD image, due to time of integration difference inside caused same air strips and the problem of obvious aberration that adjacent waterway design image occurs.

Description

Method for performing relative radiation correction on CCD image
Technical Field
The invention relates to the technical field of remote sensing, in particular to a method for performing relative radiation correction on a CCD image.
Background
One of the core components of an aerial optical line load is a CCD (Charge-coupled Device) array, which contains a large number of detection units. Due to the limitation of the manufacturing process, the parameters of each detection unit cannot be guaranteed to be consistent, so that the response characteristics of each detection unit of the CCD array have certain differences. For a push-broom sensor, a remote sensing image is pushed and swept by a linear array CCD array, and due to the difference of response characteristics of all detection units of the CCD array, the final image has the phenomenon of uneven brightness in the whole field of view, and even shows stripe noise.
The radiation correction of the optical remote sensing image comprises relative radiation correction and absolute radiation correction, wherein: the relative radiation correction is to apply relative radiation scaling coefficients to the original image, eliminate the banding effect caused by the inconsistent response of the detection unit, and reduce the influence of the banding to the minimum or completely remove the effect; the absolute radiation correction is to apply an absolute radiation scaling coefficient to the image after the relative radiation correction to obtain the true physical information radiance represented by a dn (digital number) value of the image.
The existing relative radiation correction method is designed by eliminating the physical characteristic difference of the CCD array detection unit on the premise that the integration time of a CCD camera is fixed. FIG. 1A is a diagram of a prior art system for relative radiometric calibration of a CCD camera. Referring to fig. 1A, the method includes:
step S01, placing a standard light source output by m-level radiance in a half integrating sphere, placing a spectral radiometer and a test reflector at one side of an opening of the half integrating sphere, placing a lens of a CCD camera at the center of the opening of the half integrating sphere, and then sequentially connecting a CCD data transmission system, a CCD data transmission SCOE and a data acquisition system;
step S02, initializing j to 1;
step S03, adjusting the radiance output of the semi-integrating sphere light source to LjMeanwhile, a spectrum radiometer is used for measuring the output radiance of the half integrating sphere to verify the uniformity of the light source of the half integrating sphere and synchronously recording the output data of the half integrating sphere of the CCD cameraThe semi-integrating sphere outputs dataComprises the output data of each detection unit of the CCD camera detection array
Step S04, j equals j +1, if j is less than or equal to m, go to step S03, otherwise, execute step S05;
step S05, using CCD camera half integrating sphere output data to solve the scaling coefficient (G) of each detection unit i one by onei,Bi),i=1…N;
That is, for each camera detection unit, a linear equation set composed of m equations is established based on the output data of the CCD camera half integrating sphere recorded in step S03, a relative radiation correction coefficient is calculated using the least square method, a conventional relative radiation correction model is shown in formula (1),
whereinThe radiation brightness output of the ith detection unit at the semi-integrating sphere light source is LjOriginal DN value of time, BiIs the offset of the i-th detection unit, GiIs the gain of the ith detection unit, and N is the number of CCD detection units.
FIG. 1B is a relative radiation calibration curve for the ith detection cell. The abscissa is the actual output DN value of the ith probe, and the ordinate is the corrected output DN value of the ith probe. As can be seen from FIG. 1B, the radiation response of the CCD detection unit has good linearity, and the difference of the radiation response characteristics of the CCD array detection unit can be better corrected by the linear model as shown in formula (1).
For an aviation linear array CCD camera, in order to ensure the imaging quality of the sensor, the integration time generally varies with the flying height and speed of the airplane. The DN values output by CCD cameras vary due to differences in integration times of the CCD cameras, even under the same incident radiation conditions. If the aerial optical linear array load image is subjected to radiation correction by using the relative radiation correction method shown in fig. 1, DN values of the images acquired at different integration times after relative radiation correction are not on the same reference, so that obvious chromatic aberration occurs when corrected adjacent aerial belt images are used for splicing, and the splicing effect is affected. Meanwhile, the images of the same ground feature scene of adjacent navigation zones have different DN values due to dynamic change of integral time, so that the images cannot be subjected to absolute radiometric correction by using a uniform absolute radiometric calibration coefficient, and great difficulty is brought to subsequent absolute radiometric correction.
Disclosure of Invention
Technical problem to be solved
In view of the above technical problems, the present invention provides a method for performing relative radiation correction on CCD images, so as to avoid the problem of significant color difference occurring in the spliced images of the same flight band and adjacent flight bands due to the difference of integration time when processing the aerial linear array CCD images.
(II) technical scheme
The invention provides a method for performing relative radiation correction on a CCD (charge coupled device) image, which performs relative radiation correction on an original image obtained by push scanning of a one-dimensional CCD camera, and comprises the following steps: step A, testing the output radiance L of each detection unit of the one-dimensional CCD camera in different integrating spheres by using an integrating sphere methodjDifferent integration time TkLower radiometric calibration dataB, outputting radiance L by each detection unit of the one-dimensional CCD camera in different integrating spheresjDifferent integration time TkLower radiometric calibration dataCalculating the relative radiation correction coefficient of each detection unit by using the improved relative radiation correction model; and step C, performing radiation intensity correction on each pixel in the original image by using the relative radiation correction coefficient of the detection unit corresponding to the pixel, and further acquiring an image after relative radiation correction.
(III) advantageous effects
According to the technical scheme, the method for performing relative radiation correction on the CCD image has the following beneficial effects: when the image data of each row in the same flight zone and the adjacent flight zone images are subjected to relative radiation correction processing, the chromatic aberration phenomenon caused by dynamic change of the integral time of the detector during acquisition of each data is eliminated, the DN values of the same scenery in different flight zone images are ensured to be consistent, and the quality of image processing is further improved.
Drawings
FIG. 1A is a diagram of a prior art system for relative radiometric calibration of a CCD camera;
FIG. 1B is a graph of relative radiation correction of a single detection cell of a CCD array obtained using the method of FIG. 1A;
FIG. 2 is a flowchart of a method for performing relative radiation calibration on a CCD image according to an embodiment of the present invention;
FIG. 3A is a schematic diagram of a calibration system upon which the step of acquiring relative radiometric calibration data is based in the method of FIG. 2;
FIG. 3B is a flowchart of the step of acquiring relative radiometric calibration data in the method of FIG. 2;
FIG. 4A is a flowchart illustrating a step of calculating the relative radiation correction factors of the detecting elements in the method of FIG. 2;
FIG. 4B is a three-dimensional graph of the relative radiometric calibration curve obtained in the step of calculating the relative radiometric calibration coefficients of the detecting units in the method of FIG. 2;
FIG. 5 is a flow chart of a step in the method of FIG. 2 in which a relatively radiation corrected image is acquired;
FIGS. 6A and 6B are two original images of selected adjacent flight bands of a certain aviation optical linear array load;
FIGS. 7A and 7B are the results of two image corrections using a prior art relative radiation correction method;
fig. 8A and 8B are the results of correcting two images by using the method for correcting an aerial optical linear array load image according to the embodiment.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention is described in further detail below with reference to specific embodiments and the accompanying drawings. It should be noted that in the drawings or description, the same drawing reference numerals are used for similar or identical parts. Implementations not depicted or described in the drawings are of a form known to those of ordinary skill in the art. In addition, directional terms such as "upper", "lower", "front", "rear", "left", "right", and the like, referred to in the following embodiments, are directions only referring to the drawings. Accordingly, the directional terminology is used for purposes of illustration and is in no way limiting.
According to the invention, the consideration of the influence of the integral time is added into the relative radiation correction model, and the normalization processing of the integral time difference is realized, so that the problem of obvious chromatic aberration generated in the spliced images of the same flight band and adjacent flight bands due to the integral time difference when the aerial linear array CCD images are processed is solved.
In one exemplary embodiment of the present invention, a method of relative radiation correction of a CCD image is provided. The method can carry out relative radiation correction on an original aerial optical linear array load image (the image size is M rows multiplied by N columns, wherein M represents the number of the rows of the linear array CCD camera in push scanning, and N represents the number of the detection units of the linear array) obtained by push scanning of a one-dimensional CCD camera comprising N detection units which are transversely arranged.
As shown in fig. 2, the method for performing relative radiation correction on a CCD image of the present embodiment includes:
step A, testing the output radiance L of each detection unit of the one-dimensional CCD camera in different integrating spheresjDifferent integration time TkLower radiometric calibration data
This step is based on the scaling system shown in fig. 3A. Referring to fig. 3A, the scaling system includes: integrating sphere, image acquisition card and controller. The controller is connected with the integrating sphere and a control signal of the CCD camera respectively to generate a control signal for controlling the integrating sphere to output radiance and the integration time of the CCD camera, and the controller is connected with the image acquisition card to store data acquired by the image acquisition card; integrating sphere asThe standard radiation source for the relative radiation calibration data test process has an opening center aligned with the CCD camera lens and an energy level [ L1,…,Lm]Wherein m is the number of energy levels of the integrating sphere light source; the CCD camera is a tested device and is controlled by the controller to convert the optical signal of the integrating sphere into an electric signal; the image acquisition card is connected with the CCD camera and the controller and is responsible for acquiring output data of the CCD camera, transmitting the output data to the controller and storing the output data.
Fig. 3B is a flowchart of the step of acquiring the relative radiometric calibration data in the method for performing the relative radiometric calibration on the CCD image shown in fig. 2. Referring to fig. 3B, the step a of obtaining the parameters for solving the relative radiation correction model is executed by the controller, and includes:
a substep A1, receiving the CCD camera integration time range and step required to be tested input by the user, and calculating the corresponding CCD camera integration time [ T [ ]1,…,Tn]Wherein n is the number of integration time to be tested;
substep a2, initializing camera integration time and integrating sphere light source output radiance, j being 1, k being 1;
sub-step A3, controlling the output radiance of integrating sphere light source to be Lj
Substep A4, controlling the integration time of the CCD camera to be Tk
Substep A5, recording the output data of the CCD camera by the image acquisition card, and outputting the output data of the CCD cameraAnd corresponding integrating sphere light source output radiance LjIntegral time TkStored on a computer, wherein i ═ 1,2, …, N;
substep a6, k ≦ k +1, jumping to substep a4 if k ≦ n, otherwise, performing substep a 7;
sub-step a7, j ≦ j +1, if j ≦ m, go to sub-step A3, otherwise, perform sub-step A8;
substep A8, ending and step a completing.
B, outputting radiance L by each detection unit of the one-dimensional CCD camera in different integrating spheresjDifferent integration time TkLower radiometric calibration dataCalculating the relative radiation correction coefficient of each detection unit by using the improved relative radiation correction model;
in order to eliminate the DN value difference of the images after the relative radiation correction caused by different integration time and facilitate the subsequent absolute radiation correction, the invention improves the conventional relative radiation correction model and adds the normalization treatment based on the linear array load integration time. The improved relative radiation correction model is shown in equation (2):
wherein,to correct for the DN value, it is determined by:
for the ith detection unit at radiance LjIntegration time TkThe original DN value of; t iskIs the integration time of the CCD camera and,the integration time is normalized for the CCD camera,namely the relative radiation correction coefficient of the ith detection unit.
Based on the above principle, as shown in fig. 4A, the step B of solving the relative radiation correction model based on the integral time variation includes:
a substep B1 of initializing i ═ 1, j ═ 1, and k ═ 1;
sub-step B2, extracting the output radiance of integrating sphere as LjThe CCD camera outputs data;
substep B3, calculating the integrating sphere output radiance as LjIntegration time ofAverage value of output data of CCD camera
Sub-step B4, j ≦ j +1, if j ≦ m, jump to sub-step B2, otherwise, perform sub-step B5;
substep B5 of converting the original value output from the i-th detection unitAnd average value of output data of CCD arraySubstituting the improved relative radiation correction model to obtain an equation set consisting of m × n equations, which is as follows:
sub-step B6, solving the above equation set by using least square method to obtain the relative radiation correction coefficient of the i-th detection unitStoring the relative radiation correction coefficient file as a relative radiation correction coefficient file;
sub-step B7, i ═ i +1, if i ≦ N, go to sub-step B5, otherwise, perform sub-step B8;
and sub-step B8, ending.
For each detection unit of a one-dimensional CCD camera, there is a set of relative radiation correction coefficientsThe improved relative radiation correction model of each detection unit of the CCD camera is a three-dimensional curved surface, where one dimension is the load integration time, and the difference caused by the integration time can be eliminated by using it, as shown in fig. 4B.
And step C, carrying out radiation intensity correction on each pixel in the original aerial optical linear array load image (the image size is M rows multiplied by N columns) obtained by actual aerial photography by using the relative radiation correction coefficient of the detection unit corresponding to the pixel, and further obtaining an image after relative radiation correction.
As shown in fig. 5, the step C of acquiring the relative radiation corrected image may further include:
a substep C1, acquiring an original aerial optical linear array load image;
a substep C2 of initializing the row number p to 1;
substep C3, extracting image data of the image of the p-th lineAnd integration time Tp
A substep C4 of initializing column number i equal to 1;
sub-step C5, extracting the relative radiation correction coefficient of the i-th detection unit from the relative radiation correction coefficient file
Substep C6, for image dataEach data inCorrection of model and integration time T using relative radiationpAnd carrying out relative radiation correction on the data, and storing the data after the relative radiation correction:
sub-step C7, i ═ i +1, if i ≦ N, sub-step C5 is performed; otherwise, performing substep C8;
sub-step C8, p ═ p +1, if p ≦ M, sub-step C3 is performed; otherwise, performing substep C9;
and a substep C9 of combining the plurality of relative radiation corrected data into a relative radiation corrected image.
So far, the method for performing relative radiation correction on the CCD image is described in this embodiment.
In order to verify the effectiveness of the embodiment, the processing effects of two frames of original images of adjacent flight zones of a selected certain aviation optical linear array load are compared respectively by adopting the conventional relative radiation correction method and the aviation optical linear array load image correction method of the embodiment.
Fig. 6A and 6B are two frames of original images of adjacent flight bands of a selected aviation optical linear array load, the size of the image is 600 × 1030 (namely, the CCD array has 1030 detection units arranged transversely, and the image is formed by pushing and scanning 600 lines). As shown in fig. 6A and 6B, due to the dynamic variation of the integration time of the load in different strips, the DN values of the original images acquired in the same area have a significant difference, and the brightness of the right strip image is much higher than that of the left strip image.
Fig. 7A and 7B are results of correcting two images by using a conventional relative radiation correction method. As can be seen from fig. 7A and 7B, the image brightness inconsistency caused by the integration time dynamics is not eliminated.
Fig. 8A and 8B show the results of correcting two images by using the method of the present embodiment to perform relative radiation correction on CCD images. As can be seen from fig. 8A and 8B, after the two frames of original images are respectively corrected by using the relative radiation correction method based on the integration time normalization processing in the present embodiment, the phenomenon of image brightness inconsistency caused by dynamic variation of the integration time is better eliminated, and the subsequent absolute radiation correction processing is also facilitated.
Up to this point, the present embodiment has been described in detail with reference to the accompanying drawings. From the above description, those skilled in the art should clearly recognize the method of the present invention for performing relative radiation correction on CCD images. It should be noted that, although the above embodiments are described for processing an aerial image obtained from an aerial optical linear array load, the present invention is not limited thereto, and may be applied to image processing in other fields.
In addition, the above definitions of the respective elements are not limited to the various specific structures or shapes mentioned in the embodiments, and may be simply, commonly and alternatively replaced by those skilled in the art.
In summary, according to the characteristics of acquiring images by the aerial optical linear array load, normalization processing on the integration time is added in the relative radiation correction model, so that the relative radiation correction processing can be effectively carried out on the aerial optical linear array load images, the phenomenon of image brightness inconsistency caused by dynamic change of the integration time can be better eliminated, the DN values of the same scene in different flight zone images are ensured to be consistent horizontally, and further the subsequent absolute radiation correction processing is facilitated.
The above-mentioned embodiments are intended to illustrate the objects, technical solutions and advantages of the present invention in further detail, and it should be understood that the above-mentioned embodiments are only exemplary embodiments of the present invention, and are not intended to limit the present invention, and any modifications, equivalents, improvements and the like made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (6)

1. A method for performing relative radiation correction on a CCD image, which is characterized in that relative radiation correction is performed on an original image obtained by push-scanning a one-dimensional CCD camera, and comprises the following steps:
step A, testing the output radiance L of each detection unit of the one-dimensional CCD camera in different integrating spheres by using an integrating sphere methodjDifferent integration time TkLower radiometric calibration dataWherein:
i is 1,2, … …, N, N is the number of the detection units arranged transversely of the one-dimensional CCD camera;
j is 1,2, … …, m is the energy level number of the integrating sphere light source;
k is 1,2 … …, n, n is the number of integration times;
b, outputting radiance L by each detection unit of the one-dimensional CCD camera in different integrating spheresjDifferent integration time TkLower radiometric calibration dataCalculating the relative radiation correction coefficient of each detection unit by using the improved relative radiation correction model; and
step C, for each pixel in the original image, performing radiation intensity correction by using the relative radiation correction coefficient of the detection unit corresponding to the pixel, and further acquiring an image after relative radiation correction;
in step B, the improved relative radiation correction model is as follows:
<mrow> <msubsup> <mi>DN</mi> <mrow> <mi>c</mi> <mi>a</mi> <mi>l</mi> <mi>i</mi> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mo>|</mo> <mrow> <msub> <mi>L</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>k</mi> </msub> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mi>r</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msubsup> <mi>T</mi> <mi>k</mi> <mi>r</mi> </msubsup> <mo>+</mo> <msubsup> <mi>a</mi> <mrow> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msubsup> <mi>T</mi> <mi>k</mi> <mrow> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <mo>...</mo> <mo>+</mo> <msubsup> <mi>a</mi> <mn>0</mn> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>i</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>DN</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>w</mi> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mo>|</mo> <mrow> <msub> <mi>L</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>k</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow>
wherein, for the ith detection unit at radiance LjIntegration time TkThe original DN value of; t iskIs the integration time of the CCD camera and,the integration time is normalized for the CCD camera,i.e. the relative radiation calibration of the ith detection unitA positive coefficient.
2. The method of claim 1, wherein step B comprises:
substep B1: initializing i-1, j-1, and k-1;
substep B2: extracting L of output radiance of integrating spherejThe CCD camera outputs data;
substep B3: calculating the output radiance of the integrating sphere to be LjIntegration time ofAverage value of output data of CCD camera
Substep B4: j is j +1, if j is less than or equal to m, then go to sub-step B2, otherwise, execute sub-step B5;
substep B5: the original value output by the ith detection unitAnd average value of output data of CCD arraySubstituting the improved relative radiation correction model to obtain a system of m × n equations:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msubsup> <mi>DN</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>w</mi> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mo>|</mo> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>T</mi> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> <mo>&amp;rsqb;</mo> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mi>r</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msubsup> <mi>T</mi> <mn>1</mn> <mi>r</mi> </msubsup> <mo>+</mo> <msubsup> <mi>a</mi> <mrow> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msubsup> <mi>T</mi> <mn>1</mn> <mrow> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msubsup> <mi>a</mi> <mn>0</mn> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>i</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>DN</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>w</mi> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mo>|</mo> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msubsup> <mi>DN</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>w</mi> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mo>|</mo> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>T</mi> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> <mo>&amp;rsqb;</mo> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mi>r</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msubsup> <mi>T</mi> <mn>2</mn> <mi>r</mi> </msubsup> <mo>+</mo> <msubsup> <mi>a</mi> <mrow> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msubsup> <mi>T</mi> <mn>2</mn> <mrow> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msubsup> <mi>a</mi> <mn>0</mn> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>i</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>DN</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>w</mi> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mo>|</mo> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>...</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msubsup> <mi>DN</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>w</mi> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mo>|</mo> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>T</mi> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> <mo>&amp;rsqb;</mo> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mi>r</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msubsup> <mi>T</mi> <mi>n</mi> <mi>r</mi> </msubsup> <mo>+</mo> <msubsup> <mi>a</mi> <mrow> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msubsup> <mi>T</mi> <mi>n</mi> <mrow> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msubsup> <mi>a</mi> <mn>0</mn> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>i</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>DN</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>w</mi> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mo>|</mo> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>n</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msubsup> <mi>DN</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>w</mi> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mo>|</mo> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>T</mi> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> <mo>&amp;rsqb;</mo> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mi>r</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msubsup> <mi>T</mi> <mn>1</mn> <mi>r</mi> </msubsup> <mo>+</mo> <msubsup> <mi>a</mi> <mrow> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msubsup> <mi>T</mi> <mn>1</mn> <mrow> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msubsup> <mi>a</mi> <mn>0</mn> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>i</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>DN</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>w</mi> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mo>|</mo> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>...</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msubsup> <mi>DN</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>w</mi> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mo>|</mo> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>T</mi> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> <mo>&amp;rsqb;</mo> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mi>r</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msubsup> <mi>T</mi> <mi>n</mi> <mi>r</mi> </msubsup> <mo>+</mo> <msubsup> <mi>a</mi> <mrow> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msubsup> <mi>T</mi> <mi>n</mi> <mrow> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msubsup> <mi>a</mi> <mn>0</mn> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>i</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>DN</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>w</mi> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mo>|</mo> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>n</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>...</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msubsup> <mi>DN</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>w</mi> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mo>|</mo> <mrow> <msub> <mi>L</mi> <mi>m</mi> </msub> <mo>,</mo> <msub> <mi>T</mi> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> <mo>&amp;rsqb;</mo> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mi>r</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msubsup> <mi>T</mi> <mn>1</mn> <mi>r</mi> </msubsup> <mo>+</mo> <msubsup> <mi>a</mi> <mrow> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msubsup> <mi>T</mi> <mn>1</mn> <mrow> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msubsup> <mi>a</mi> <mn>0</mn> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>i</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>DN</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>w</mi> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mo>|</mo> <mrow> <msub> <mi>L</mi> <mi>m</mi> </msub> <mo>,</mo> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>...</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msubsup> <mi>DN</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>w</mi> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mo>|</mo> <mrow> <msub> <mi>L</mi> <mi>m</mi> </msub> <mo>,</mo> <msub> <mi>T</mi> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> <mo>&amp;rsqb;</mo> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mi>r</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msubsup> <mi>T</mi> <mi>n</mi> <mi>r</mi> </msubsup> <mo>+</mo> <msubsup> <mi>a</mi> <mrow> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msubsup> <mi>T</mi> <mi>n</mi> <mrow> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msubsup> <mi>a</mi> <mn>0</mn> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>i</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>DN</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>w</mi> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mo>|</mo> <mrow> <msub> <mi>L</mi> <mi>m</mi> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>n</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
substep B6: solving the equation set by using a least square method to obtain the relative radiation correction coefficient of the ith detection unitStoring the relative radiation correction coefficient file as a relative radiation correction coefficient file; and
substep B7: if i is equal to i +1, jumping to sub-step B5 if i is equal to or less than N, otherwise, executing sub-step B8;
substep B8: and (6) ending.
3. The method according to claim 1, characterized in that said step a is carried out based on a calibration system comprising: integrating sphere, image acquisition card and controller, wherein:
the controller is respectively connected with the integrating sphere and the control signal of the CCD camera, generates a control signal for controlling the integrating sphere to output radiance and the integration time of the CCD camera, is connected with the image acquisition card, and stores the data acquired by the image acquisition card;
the integrating sphere is used as a standard radiation source for a relative radiation calibration data test process, the center of an opening of the integrating sphere is aligned with the CCD camera lens, and the energy level of the integrating sphere is [ L ]1,…,Lm]Wherein m is the number of energy levels of the integrating sphere light source;
the CCD camera is a tested device, receives the control of the controller and converts the optical signal of the integrating sphere into an electric signal;
the image acquisition card is connected with the CCD camera and the controller and is responsible for acquiring the output data of the CCD camera and transmitting the output data to the controller.
4. The method of claim 3, wherein step A is performed by the controller and comprises:
substep A1, receiving CCD camera integration time range and step, calculating corresponding CCD camera integration time [ T [ ]1,…,Tn]Wherein n is the number of integration time to be tested;
substep a2, initializing camera integration time and integrating sphere light source output radiance, j being 1, k being 1;
sub-step A3, controlling the output radiance of the integrating sphere light source to be Lj
Sub-step A4, controlling the integration time of the CCD camera to be Tk
Substep A5, the image acquisition card records the output data of the CCD camera and outputs the output data of the CCD cameraAnd corresponding integrating sphere light source output radiance LjIntegral time TkStored on a computer, wherein i ═ 1,2, …, N;
substep a6, k ≦ k +1, jumping to substep a4 if k ≦ n, otherwise, performing substep a 7;
sub-step a7, j ≦ j +1, if j ≦ m, go to sub-step A3, otherwise, perform sub-step A8; and
and substep A8, ending.
5. The method of claim 1, wherein step C comprises:
a substep C1 of obtaining an original image;
a substep C2 of initializing the row number p to 1;
substep C3, extracting image data of the image of the p-th lineAnd integration time Tp
A substep C4 of initializing column number i equal to 1;
sub-step C5, extracting the relative radiation correction coefficient of the i-th detection unit from the relative radiation correction coefficient file
Substep C6, for image dataEach data inCorrection of model and integration time T using relative radiationpRelative radiation correction is performed on it:
<mrow> <msubsup> <mi>DN</mi> <mrow> <mi>c</mi> <mi>a</mi> <mi>l</mi> <mi>i</mi> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mo>|</mo> <mrow> <msub> <mi>L</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>k</mi> </msub> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mi>r</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msubsup> <mi>T</mi> <mi>k</mi> <mi>r</mi> </msubsup> <mo>+</mo> <msubsup> <mi>a</mi> <mrow> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msubsup> <mi>T</mi> <mi>k</mi> <mrow> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <mo>...</mo> <mo>+</mo> <msubsup> <mi>a</mi> <mn>0</mn> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>i</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>DN</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>w</mi> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mo>|</mo> <mrow> <msub> <mi>L</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>k</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow>
and storing the data after the relative radiation correction;
sub-step C7, i ═ i +1, if i ≦ N, sub-step C5 is performed; otherwise, performing substep C8;
sub-step C8, p ═ p +1, if p ≦ M, sub-step C3 is performed; otherwise, performing substep C9; and
and a substep C9 of combining the plurality of relative radiation corrected data into a relative radiation corrected image.
6. The method according to any one of claims 1 to 5, wherein the original image is an aerial optical linear array load image of M rows by N columns, where N represents the number of detection units of the linear array load CCD and M represents the number of rows swept by the linear array load CCD.
CN201310470414.6A 2013-10-10 2013-10-10 The method that relative detector calibration is carried out to ccd image Active CN104580944B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310470414.6A CN104580944B (en) 2013-10-10 2013-10-10 The method that relative detector calibration is carried out to ccd image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310470414.6A CN104580944B (en) 2013-10-10 2013-10-10 The method that relative detector calibration is carried out to ccd image

Publications (2)

Publication Number Publication Date
CN104580944A CN104580944A (en) 2015-04-29
CN104580944B true CN104580944B (en) 2017-11-17

Family

ID=53096035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310470414.6A Active CN104580944B (en) 2013-10-10 2013-10-10 The method that relative detector calibration is carried out to ccd image

Country Status (1)

Country Link
CN (1) CN104580944B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105160631B (en) * 2015-07-02 2018-06-29 山东大学 A kind of method for seeking radiant correction coefficient
CN106485683B (en) * 2016-10-20 2019-04-16 中国科学院上海技术物理研究所启东光电遥感中心 A kind of image adaptive non-uniform correction method based on scene
CN106501701A (en) * 2016-10-26 2017-03-15 上海航天控制技术研究所 A kind of quantitative testing device of star sensor photodetector anti-radiation performance and method
CN106600646B (en) * 2016-11-25 2019-05-24 北京空间机电研究所 A kind of in-orbit image conformity bearing calibration of infrared sweeping camera
CN106840387B (en) * 2016-12-09 2019-03-05 中国科学院国家天文台 A kind of Objective extraction and flat field correction method of the biggish imaging system of gain difference
CN106840198B (en) * 2016-12-21 2019-07-12 北京空间机电研究所 A kind of low-light camera Calibration Method
CN106840613B (en) * 2017-02-14 2018-10-12 中国科学院新疆理化技术研究所 The test method of complementary metal oxide semiconductor photon transfer curve and conversion gain after irradiation
CN111640085B (en) * 2019-02-14 2023-08-29 深圳中科飞测科技股份有限公司 Image processing method and apparatus, detection method and apparatus, and storage medium
CN111397730A (en) * 2019-12-31 2020-07-10 中国科学院合肥物质科学研究院 Optical camera wide-spectrum relative radiation calibration method based on L ED light source
CN111504454A (en) * 2020-03-20 2020-08-07 重庆川仪自动化股份有限公司 CCD correction method and system and spectrometer with CCD correction system
CN115830146B (en) * 2023-02-10 2023-05-09 武汉玄景科技有限公司 On-orbit relative radiation calibration and correction method for aerospace optical remote sensing camera

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1601559A (en) * 2004-10-21 2005-03-30 武汉大学 Correspond rediation correction method for push-scanning satellite images CCD
CN101226639A (en) * 2008-01-29 2008-07-23 航天东方红卫星有限公司 Relative radiometric correction method for star-load TDICCD camera
CN101442608A (en) * 2008-12-31 2009-05-27 中国资源卫星应用中心 Method for improving relative radiation correction of CCD camera
CN101598798A (en) * 2008-12-31 2009-12-09 中国资源卫星应用中心 A kind of system and method to rebuilding spectrum of high spectrum intervention data
CN102752504A (en) * 2012-07-13 2012-10-24 中国资源卫星应用中心 Relative radiation correction method for wide-view-field linear array CCD (Charge Coupled Device) camera

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010014593B4 (en) * 2010-04-09 2021-09-30 K.A. Schmersal Gmbh & Co. Kg Procedure for calibrating a spectrometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1601559A (en) * 2004-10-21 2005-03-30 武汉大学 Correspond rediation correction method for push-scanning satellite images CCD
CN101226639A (en) * 2008-01-29 2008-07-23 航天东方红卫星有限公司 Relative radiometric correction method for star-load TDICCD camera
CN101442608A (en) * 2008-12-31 2009-05-27 中国资源卫星应用中心 Method for improving relative radiation correction of CCD camera
CN101598798A (en) * 2008-12-31 2009-12-09 中国资源卫星应用中心 A kind of system and method to rebuilding spectrum of high spectrum intervention data
CN102752504A (en) * 2012-07-13 2012-10-24 中国资源卫星应用中心 Relative radiation correction method for wide-view-field linear array CCD (Charge Coupled Device) camera

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《基于行频变化的航空高光谱成像仪相对辐射校正方法研究》;周春城 等;《遥感技术与应用》;20120229;第27卷(第1期);第33-38页 *
《相对辐射定标与相对辐射校正场》;高正清 等;《影像技术》;20090831;第48-53页 *

Also Published As

Publication number Publication date
CN104580944A (en) 2015-04-29

Similar Documents

Publication Publication Date Title
CN104580944B (en) The method that relative detector calibration is carried out to ccd image
US20180035057A1 (en) Systems and Methods for Photometric Normalization in Array Cameras
CN103314571B (en) Camera device and camera system
US8831370B2 (en) Wavelength diverse scintillation reduction
CN109963133B (en) Color correction system and method
US9581436B2 (en) Image processing device, image capturing apparatus, and image processing method
CN106871925B (en) A kind of remote sensing satellite relative radiometric calibration processing method of in-orbit comprehensive dynamic adjustment
US20100201853A1 (en) Digital camera and digital camera system
US8976240B2 (en) Spatially-varying spectral response calibration data
CN102844788A (en) Image processing apparatus and image pickup apparatus using the same
US9485442B1 (en) Image sensors for robust on chip phase detection, and associated system and methods
US9589320B2 (en) Image-pickup unit, image-pickup apparatus, and image processing system
CN104333680A (en) Image capturing apparatus and image processing method
US20200120270A1 (en) Method and system for snapshot multi-spectral light field imaging
CN105890873A (en) Apparatus and method for blind pixel detection of thermal infrared hyperspectral imager
US8149292B2 (en) Automatic white balance using non-uniform averaging
US20190110028A1 (en) Method for correcting aberration affecting light-field data
CN101001309A (en) Imaging system and method
CN104813217A (en) Method for designing a passive single-channel imager capable of estimating depth of field
Yanagi et al. Camera calibration in 3D modelling for UAV application
Minařík et al. Rapid radiometric calibration of multiple camera array using in-situ data for uav multispectral photogrammetry
US9210386B2 (en) Filter setup learning for binary sensor
Lluis-Gomez et al. Chromatic aberration correction in RAW domain for image quality enhancement in image sensor processors
CN107846532B (en) Automatic color correction method based on least square method
US8457393B2 (en) Cross-color image processing systems and methods for sharpness enhancement

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant