CN104578791B - 并联的谐振变换器及其控制方法 - Google Patents

并联的谐振变换器及其控制方法 Download PDF

Info

Publication number
CN104578791B
CN104578791B CN201310481071.3A CN201310481071A CN104578791B CN 104578791 B CN104578791 B CN 104578791B CN 201310481071 A CN201310481071 A CN 201310481071A CN 104578791 B CN104578791 B CN 104578791B
Authority
CN
China
Prior art keywords
voltage
circuit
output bus
current
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310481071.3A
Other languages
English (en)
Other versions
CN104578791A (zh
Inventor
段飞跃
徐�明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FSP Powerland Technology Inc
Original Assignee
FSP Powerland Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FSP Powerland Technology Inc filed Critical FSP Powerland Technology Inc
Priority to CN201310481071.3A priority Critical patent/CN104578791B/zh
Priority to TW103128778A priority patent/TWI565237B/zh
Priority to US14/497,306 priority patent/US9564825B2/en
Publication of CN104578791A publication Critical patent/CN104578791A/zh
Application granted granted Critical
Publication of CN104578791B publication Critical patent/CN104578791B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种并联的谐振变换器,包括:控制电路和并联连接在输入母线和输出母线之间的至少2个谐振变换电路,控制电路为谐振变换电路提供开关频率信号,控制电路利用线性的均流曲线(增益‑频率)的控制输出母线的电压跟随所述开关频率信号在额定范围内线性变化,以使所述至少2个谐振变换电路均流。本发明能够控制并联的谐振变换器的输出电压,减小电源***的输出电压的纹波。

Description

并联的谐振变换器及其控制方法
技术领域
本发明涉及谐振变换器领域,特别涉及一种多相并联的谐振变换器的控制方法。
背景技术
串联谐振变换器LLC‐SRC(LLC series resonant converter)不仅结构简单,而且还具有很多独特的优点,如:原边开关可以在全负载范围内实现零电压开通(Zero voltageswitching ZVS),副边整流开关可实现零电流关断(Zero current switching,ZCS),以及可以通过控制很窄的频率变化就可跟随宽范围的输入电压变化等。但是,由于谐振变换器副边无滤波电感,导致输出电流纹波很大,从而影响输出滤波电容的寿命,而且这个缺点在大电流输出应用中更为明显。为了满足输出电压和电流的纹波指标,人们提出了多相LLC‐SRC交错并联的方法来克服上述缺点。交错并联技术是指并联运行的电路单元中开关管的控制信号频率相同,相角交错。变换器并联后可以构成新的由多通道交错并联单元组成的电源模块,还可以构成新的由多通道交错并联单元组成的电源模块,还可以构成多余度并联电源***。
然而当并联的谐振变换器的谐振参数不同时,其各相直流增益曲线必然存在差异,则无法保证在任意相同开关频率处两相谐振变换器的输出增益相等且能够均流。以两相谐振变换器并联为例进行说明,由于两路输入和输出分别并联,则LLC1和LLC2的电路增益相等:M1=M2=M;其次为了达到均流的目的,设定谐振变换器LLC1的负载电流Io1与谐振变换器LLC2的负载电流Io2相等,Io1=I02=Io/2,谐振变换器LLC1在负载电流为Io/2时的增益‐频率曲线为line1,谐振变换器LLC2在负载电流为Io/2时的增益‐频率曲线为line2,此时,只有LLC1和LLC2的增益‐频率曲线line1和line2的交点A所对应的频率f1能够使LLC1和LLC2均流,如图1所示。然而,当负载电流Io发生变化为Io’,LLC1和LLC2的负载电流Io1’=I02’=Io’/2,负载电流发生了变换将会使得谐振变换器LLC1和LLC2的增益‐频率曲线发生变化,分别变为line1’和line2’,这两条曲线的交点B所对应的频率f2能够使LLC1和LLC2均流,从图1中可以看出此时LLC1和LLC2的增益已经变化为M’,增益的变化使得谐振变换器LLC1和LLC2的输出电压发生变化,然而用电设备通常会对电源***的输出电压的精度有要求,因而现有技术中存在需求,必须要提供一种并联的谐振变换器的控制方法,这种方法既能够使得并联的谐振变换器均流也能够使得其输出电压满足用电设备的要求。
发明内容
为了解决以上技术问题,本发明提出一种谐振变换器均流方法,此方法在满足并联的谐振变换器均流的同时,也能够使得输出电压满足用电设备的要求,本发明具有简单易实现的有益效果。
本发明的技术方案是,提供一种并联的谐振变换器,包括:控制电路和并联连接在输入母线和输出母线之间的至少2个谐振变换电路,其特征在于,所述的控制电路为所述谐振变换电路提供开关信号,并利用所述开关信号控制所述输出母线上的输出电压和输出电流呈现具有下垂特性关系。
其中所述具有下垂特性的线性关系,可以近似表示为:Vo=Vo_max‐(Vo_max‐Vo_min)×Io÷I_full,其中Vo为输出母线上的输出电压,Vo_max为输出母线上允许的最大输出电压值,Vo_min为输出母线上允许的最小输出电压值,I_full为输出母线上的满载电流,Io为输出母线上的输出电流值。
其中所述控制电路,包括,电压采样电路、电流采样电路、运算电路、误差放大电路以及压频转换电路,所述电压采样电路采样输出母线电压并将输出母线电压的采样值传输给所述误差放大电路,所述电流采样电路采样输出母线电流并将输出母线电流的采样值传输给运算电路,所述运算电路计算输出输出电压参考值,并将所述输出电压参考值传输给所述误差放大电路,所述误差放大电路将所述输出母线上电压的采样值和所述输出电压参考值的误差进行放大补偿后由压频转换电路转换为开关频率信号,并提供给每个谐振变换电路。
上述输出电压参考值和所述输出母线的电流的采样值之间的关系为Vref=Vo_max‐(Vo_max‐Vo_min)×Io÷I_full,其中Vref为输出电压参考值,Vo_max为输出母线上允许的最大输出电压值,Vo_min为输出母线上允许的最小输出电压值,I_full为输出母线上的满载电流,Io为输出母线的电流的采样值。
若控制电路采用模拟电路,上述运算电路为一利用运放构成的减法电路,电压采样电路为利用电阻构成的分压电路,电流采样电路由采样电阻和差分电路构成,利用采样电阻串联在输出母线上,并利用差分电路采样采样电阻两端的电压。
若控制电路采用数字控制器,就可以在数字控制器中编写如下所述的控制方法,实现本发明的控制:
步骤一采样输出母线上的输出电压得到输出母线上的输出电压采样值;
步骤二采样输出母线上的输出电流得到输出母线上的输出电流采样值;
步骤三将输出母线上的输出电流采样值转换为输出电压参考值;
步骤四将输出母线上的输出电压采样值和输出电压参考值的误差进行放大补偿后转换为开关频率信号;
步骤五将所述开关频率信号提供给所述谐振变换电路。
其中步骤三中根据关系式Vref=Vo_max‐(Vo_max‐Vo_min)×Io÷I_full,将输出母线上的输出电流采样值转换为输出电压参考值,Vref为输出电压参考值,Vo_max为输出母线上允许的最大输出电压值,Vo_min为输出母线上允许的最小输出电压值,I_full为输出母线上的满载电流,Io为输出母线上的输出电流采样值。
通过上述的发明方案,能够使输出直流母线的输出电压在输出母线上允许的最大输出电压值和最小输出电压值之间变化,同时能够满足均流的要求。
附图说明
图1为两相交错并联的LLC增益曲线图。
图2为本发明第一实施例的框图。
图3为本发明第二实施例的框图。
图4为图1中电流信号Io和参考信号Vref之间的转换关系。
图5为本发明的一具体实施例。
具体实施例
图2为本发明一实施例的框图,请参阅图2,电源***20至少包括:开关电源201、控制单元202,所述控制单元202控制开关电源201的开关频率。所述开关电源201至少包括:一直流输入Vin、谐振变换器LLC1、谐振变换器LLC2、输出滤波电路Co、负载电路Ro,所述谐振变换器LLC1、LLC2的输入端并联后经输入母线IN1和IN2与所述直流输入Vin连接,所述谐振变换器LLC1、LLC2的输出端并联后经输出滤波电路Co由输出母线OUT1和OUT2与所述负载电路Ro连接。所述控制单元202至少包括电压采样电路、电流采样电路、运算电路、误差放大电路以及压频转换电路,所述电压采样电路采样所述输出母线OUT1上的输出电压Vo,并输出采样值Vo’,所述电流采样电路采样所述输出母线OUT1上的输出电流Io,并输出采样值Io’,采样值Io’经过运算电路的转换后变为输出电压参考值Vref,所述电压采样值Vo’与所述输出电压参考值Vref输入给误差放大补偿电路,误差放大补偿电路输出误差值Vc,并传输给压频转换电路转换为开关频率信号fs,所述开关频率信号fs用来控制所述开关电源201中开关管的开关频率,且谐振变换器LLC1和谐振变换器LLC2的开关频率相同,均为fs。
图2中运算电路可以为运算器构成的计算电路,其输入的输出母线上的输出电流采样值Io’和运算电路输出的输出电压参考值Vref之间的关系为:Vref=Vo_max‐(Vo_max‐Vo_min)×Io’÷Ifull,其中Vref为输出电压参考值,Vo_max为输出母线上允许的最大输出电压值,Vo_min为输出母线上允许的最小输出电压值,Ifull为输出母线上的满载电流,Io’为输出母线的电流的采样值。控制电路进而通过误差放大补偿电路控制输出母线上的输出电压Vo与输出电压参考值Vref相等。如图3所示,即为所述图2中输出母线上的输出电压Vo和输出电流Io之间的关系是具有如图3所示的下垂特性的线性关系301,此下垂特性的线性关系可以描述关系式:Vo=Vo_max‐(Vo_max‐Vo_min)×Io÷Ifull,其中Vo为输出母线上的输出电压,Vo_max为输出母线上允许的最大输出电压值,Vo_min为输出母线上允许的最小输出电压值,Ifull为输出母线上的满载电流,Io为输出母线上的输出电流值。
上述输出母线电流值为零时输出母线上电压值为Vo_max,输出母线电流值为Ifull时输出母线上电压值为Vo_min。请再参阅图1,输出母线电流值为零时,谐振变换器LLC1和谐振变换器LLC2的输出电流也为零,且增益‐频率曲线为line1和line2,增益‐频率曲线line1和line2的交点为均流点A,A点的增益为M,开关频率fs=Fn*fr,根据直流母线的输出电压为输出电压值与增益M的乘积,得到此时输出母线上电压值为Vo_max;输出母线电流值为Ifull时,谐振变换器LLC1和谐振变换器LLC2的输出电流Io1’=Io2’=Ifull/2,且增益‐频率曲线为line1’和line2’,增益‐频率曲线line1’和line2’的交点为均流点B,B点的增益为M’,开关频率fs’=Fn’*fr,根据直流母线的输出电压为输出电压值与增益M’的乘积,得到此时输出母线上电压值为Vo_min。
压频转换电路使得直流母线电压Vo和开关频率fs之间转换关系呈现为如图1中线段AB的关系,在直流母线电压为Vo_max时,压频转换电路输出的开关频率fs为Fn*fr,在直流母线电压为Vo_min时,压频转换电路输出的开关频率fs’为Fn’*fr。于是,每个并联的谐振变换器能够均流,即使并联的谐振变换器具有容差,谐振元件的参数并不完全相同,也能够达到良好的均流效果。另外本发明中的电源***10的输出负载电压Vo能够得到良好的控制,其变化范围可以被设置在允许的变化范围最小输出电压Vo_min和最大输出电压Vo_max之间,减小了输出负载电压Vo的纹波。
图4为本发明的一具体实施例,开关电源401为并联的谐振变换器,分别为半桥串联谐振电路,输入电压:Vin=400V,负载电压:Vo_min=11.4V,Vo_max=12.6V;Vo_nom=12V,输出电流:Io_full=80A,半桥串联谐振电路的谐振频率:fr=120KHZ,Lm1为谐振变换器LLC1中变压器T1的激磁电感,Lm2为谐振变换器LLC2中变压器T2的激磁电感,Lr1为谐振变换器LLC1的谐振电感,Lr2为谐振变换器LLC2的谐振电感,Cr1为谐振变换器LLC1的谐振电容,Cr2为谐振变换器LLC2的谐振电容,两相谐振参数容差。图4所示的具体实施例中控制单元402使用了图2中所示的控制单元202,并且电流电压转换电路通过采样电阻Rs来实现,电阻Rs(12mΩ)的串联在输出母线中,通过差分电路采样其两端电压,差分电路的输出作为运算电路的输入,运算电路输出电压参考信号Vref,运算电路的中的算法与图2中的算法相同。控制单元402将开关频率信号fs传输给谐振变换器的开关驱动电路:驱动电路1和驱动电路2,驱动电路1和驱动电路2分别驱动谐振变换器的开关单元SW1和SW2。
图5为本发明另一实施例的框图,请参阅图5,电源***50至少包括:开关电源501、控制单元502,所述控制单元502控制开关电源501的开关频率。所述开关电源501至少包括:一直流输入Vin、谐振变换器LLC1、谐振变换器LLC2、输出滤波电路Co、负载电路Ro,所述谐振变换器LLC1、LLC2的输入端并联后经输入母线IN1和IN2与所述直流输入Vin连接,所述谐振变换器LLC1、LLC2的输出端后经所述输出滤波电路Co由输出母线OUT1和OUT2与所述负载电路Ro连接。所述控制单元502至少包括电压采样电路、电流采样电路、误差放大电路以及压频转换电路,所述电压采样电路采样所述输出母线OUT1的电压,并输出采样信号Vo’所述电流采样电路采样所述输出母线OUT1的电流,并输出采样信号Io’,其中Io’=(Vo_max‐Vo_min)×Io÷Ifull,Vo_max为输出母线上允许的最大输出电压值,Vo_min为输出母线上允许的最小输出电压值,Ifull为输出母线上的满载电流,Io为输出母线上的输出电流值,所述采样信号Io’与采样信号Vo’相加,得到的和与所述参考信号Vref经过误差放大电路和压频转换电路转换为开关频率控制信号fs,所述开关频率控制信号fs用来控制所述开关电源501中谐振变换器LLC1和LLC2的开关频率。其中所述参考信号Vref设定为输出母线上允许的最大输出电压值Vo_max。
通过本发明的控制方法,增益和频率之间关系呈现为图1中的线性关系AB,并使输出电压控制在Vo_max和Vo_min之间。

Claims (13)

1.一种并联的谐振变换器,包括:控制电路和并联连接在输入母线和输出母线之间的至少2个谐振变换电路,所述的控制电路为所述谐振变换电路提供开关频率信号,其特征在于,所述控制电路控制所述输出母线的电压和所述输出母线的电流之间的关系为Vo=Vo_max-(Vo_max-Vo_min)*Io/I_full,I_full为所述输出母线的满载电流,Vo为所述输出母线的电压,Io为所述输出母线的电流,Vo_max为所述输出母线的电压的最大允许值,Vo_min为所述输出母线的电压的最小允许值,所述控制电路控制所述输出母线的电压跟随所述开关频率信号在额定范围内线性变化,使所述至少2个谐振变换电路均流。
2.如权利要求1所述一种并联的谐振变换器,其特征在于,所述额定范围为所述输出母线的电压的最大允许值和所述输出母线的电压的最小允许值之间。
3.如权利要求1所述一种并联的谐振变换器,其特征在于,所述控制电路包括,电压采样电路、电流采样电路、电流电压转换电路、误差放大电路以及压频转换电路,所述电压采样电路采样所述输出母线的电压并将所述输出母线的电压的采样值传输给所述误差放大电路,所述电流采样电路采样所述输出母线的电流并将所述输出母线的电流的采样值经电流电压转换电路转换为电压参考值后传输给所述误差放大电路,所述误差放大电路将所述输出母线电压的采样值和所述电压参考值的误差进行放大补偿后经压频转换电路转换为开关频率信号,并提供给每个谐振变换电路。
4.如权利要求3所述一种并联的谐振变换器,其特征在于所述输出母线电流的采样值与所述电压参考值之间的关系为:Vref=Vo_max-(Vo_max-Vo_min)*Io’/I_full,I_full为所述输出母线的满载电流,Io’为所述输出母线的电流的采样值,Vo_max为所述输出母线的电压的最大允许值,Vo_min为所述输出母线的电压的最小允许值,Vref为所述电压参考值。
5.如权利要求1所述一种并联的谐振变换器,其特征在于,所述控制电路包括,电压采样电路、电流采样电路、加法电路、误差放大电路以及压频转换电路,所述电压采样电路采样所述输出母线的电压并将输出母线电压的采样值传输给所述加法电路,所述电流采样电路采样所述输出母线的电流并将输出母线电流的采样值传输给所述加法电路,所述加法电路的输出和第二电压参考值作为所述误差放大电路的输入,所述误差放大电路的输出经压频转换电路转换为开关频率信号,并提供给每个谐振变换电路。
6.如权利要求5所述一种并联的谐振变换器,其特征在于,所述输出母线电流的采样值和所述输出母线上的输出电流之间的关系为:Io’=(Vo_max-Vo_min)×Io÷I_full,Vo_max为输出母线上允许的最大输出电压值,Vo_min为输出母线上允许的最小输出电压值,I_full为输出母线的满载电流,Io为输出母线上的输出电流值,Io’为所述输出母线电流的采样值。
7.如权利要求6所述一种并联的谐振变换器,其特征在于所述谐振变换电路,包括,逆变桥、谐振电路、整流滤波电路,所述逆变桥、谐振电路、整流滤波电路依次串联。
8.如权利要求7所述一种并联的谐振变换器,其特征在于所述逆变桥是全桥、半桥或三电平结构。
9.如权利要求8所述一种并联的谐振变换器,其特征在于所述谐振电路包括电感、电容和变压器,所述电感、电容和变压器相互串联。
10.一种并联的谐振变换器的控制方法,采用如权利要求1所述的并联的谐振变换器,其特征在于,控制步骤如下:
步骤一采样输出母线电压得到输出母线电压的采样值;
步骤二采样输出母线电流得到输出母线电流的采样值;
步骤三将输出母线电流的采样值换为电压参考信号;
步骤四将输出母线电压的采样值和电压参考信号的误差进行放大补偿后转换为开关频率信号;
步骤五将所述开关频率信号提供给所述谐振变换电路。
11.一种并联的谐振变换器的控制方法,采用如权利要求1所述的并联的谐振变换器,
其特征在于,控制步骤如下:
步骤一采样输出母线电压得到输出母线电压的采样值;
步骤二采样输出母线电流得到输出母线电流的采样值;
步骤三将所述输出母线电流的采样值与所述输出母线电压的采样值相加后与一电压参考信号进行误差计算得到误差值;
步骤四将步骤三中的误差值进行放大补偿后转换为开关频率信号;
步骤五将所述开关频率信号提供给所述谐振变换电路。
12.如权利要求10所述一种并联的谐振变换器的控制方法,其特征在于所述步骤三中输出母线电流的采样值和电压参考信号之间的转换关系为Vref=Vo_max-(Vo_max-Vo_min)*Io’/I_full,I_full为所述输出母线的满载电流,Io’为所述输出母线电流的采样值,Vo_max为所述输出母线的电压的最大允许值,Vo_min为所述输出母线的电压的最小允许值,Vref为电压参考信号。
13.如权利要求11所述一种并联的谐振变换器的控制方法,其特征在于所述步骤二中所述输出母线电流和所述输出母线电流的采样值之间的关系为:Io’=(Vo_max-Vo_min)×Io÷Ifull,Vo_max为输出母线上允许的最大输出电压值,Vo_min为输出母线上允许的最小输出电压值,I_full为所述输出母线的满载电流,Io为输出母线上的输出电流值,Io’为所述输出母线的电流的采样值。
CN201310481071.3A 2013-10-15 2013-10-15 并联的谐振变换器及其控制方法 Active CN104578791B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201310481071.3A CN104578791B (zh) 2013-10-15 2013-10-15 并联的谐振变换器及其控制方法
TW103128778A TWI565237B (zh) 2013-10-15 2014-08-21 並聯的諧振變換器及其控制方法
US14/497,306 US9564825B2 (en) 2013-10-15 2014-09-25 Parallel resonant converter capable of controlling output voltage and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310481071.3A CN104578791B (zh) 2013-10-15 2013-10-15 并联的谐振变换器及其控制方法

Publications (2)

Publication Number Publication Date
CN104578791A CN104578791A (zh) 2015-04-29
CN104578791B true CN104578791B (zh) 2018-01-23

Family

ID=52809512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310481071.3A Active CN104578791B (zh) 2013-10-15 2013-10-15 并联的谐振变换器及其控制方法

Country Status (3)

Country Link
US (1) US9564825B2 (zh)
CN (1) CN104578791B (zh)
TW (1) TWI565237B (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5851832B2 (ja) * 2011-12-28 2016-02-03 三菱日立パワーシステムズ株式会社 電力供給装置及び電力供給切替方法
EP2961053A1 (de) * 2014-06-25 2015-12-30 Siemens Aktiengesellschaft Schaltnetzteil
CN105763032B (zh) * 2014-12-15 2018-07-06 台达电子工业股份有限公司 电子装置及其控制方法
CN104753369B (zh) * 2015-03-18 2017-06-06 深圳市保益新能电气有限公司 一种高频隔离交直流变换电路及其控制方法
CN104883042B (zh) * 2015-05-25 2017-10-31 北京鼎汉技术股份有限公司 一种充电机输出电压纹波的处理方法及装置
CN105576983B (zh) * 2016-02-19 2019-06-04 杭州中恒电气股份有限公司 一种谐振直流/直流变换器
CN106026673A (zh) * 2016-07-05 2016-10-12 陕西科技大学 一种具有高电压增益的宽范围输入llc谐振变换器
US10097095B2 (en) * 2016-09-21 2018-10-09 General Electric Company DC converters with modified droop control and method of use
CN108155791A (zh) * 2016-12-02 2018-06-12 北京机电工程研究所 基于atx电源的可编程控制电源
TWI625923B (zh) * 2017-06-02 2018-06-01 力智電子股份有限公司 直流對直流轉換電路及其多相電源控制器
TWI634729B (zh) * 2017-10-11 2018-09-01 群光電能科技股份有限公司 諧振轉換器
CN109698623B (zh) * 2017-10-20 2021-11-16 泰达电子股份有限公司 一种功率模块以及功率电路
US20190181744A1 (en) * 2017-12-11 2019-06-13 Texas Instruments Incorporated Bus converter current ripple reduction
CN108288909B (zh) * 2018-01-12 2020-03-17 广东美的厨房电器制造有限公司 用于总线电压纹波控制的方法和装置
CN109302069B (zh) * 2018-08-29 2020-08-28 深圳市科华恒盛科技有限公司 一种电动汽车充电机及其提高电流稳定性的谐振电路
CN112019020B (zh) * 2019-05-31 2021-09-24 广东美的制冷设备有限公司 运行控制方法、装置、电路、家电设备和计算机存储介质
CN110572040B (zh) * 2019-09-24 2021-04-02 西北工业大学 半桥llc谐振变换器交错并联电路及其均流控制方法
US11411510B2 (en) * 2020-01-24 2022-08-09 Lear Corporation DC/AC inverter resonance topology
CN117833686B (zh) * 2024-03-05 2024-05-28 广东省洛仑兹技术股份有限公司 一种具有宽增益调节范围的llc谐振变换器控制***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033938A (ja) * 2003-07-08 2005-02-03 Sony Corp 電源装置およびコンバータトランス
CN201266889Y (zh) * 2008-08-29 2009-07-01 艾默生网络能源有限公司 直流-直流变换器
CN101944852A (zh) * 2009-07-07 2011-01-12 台达电子工业股份有限公司 多相开关电源转换电路
CN102324852A (zh) * 2011-08-30 2012-01-18 深圳麦格米特电气股份有限公司 一种多相错相并联双级变换器
CN102638167A (zh) * 2011-02-12 2012-08-15 艾默生网络能源***北美公司 一种并联谐振变换器电路
CN102790533A (zh) * 2011-05-19 2012-11-21 中兴通讯股份有限公司 多相交错谐振变换器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056452A2 (en) * 2001-01-10 2002-07-18 Iwatt Corporation Phase-controlled ac-dc power converter
US8259477B2 (en) * 2007-05-30 2012-09-04 The Regents Of The University Of California Multiphase resonant converter for DC-DC applications
TWI367623B (en) * 2008-03-14 2012-07-01 Delta Electronics Inc Parallel-connected resonant converter circuit and controlling method thereof
WO2010053108A1 (ja) * 2008-11-05 2010-05-14 株式会社 日立メディコ 位相シフト型インバータ回路、それを用いたx線高電圧装置、x線ct装置、および、x線撮影装置
EP2299580A3 (en) * 2009-06-24 2011-07-27 STMicroelectronics S.r.l. Multi-phase resonant converter and method of controlling it
JP5394213B2 (ja) * 2009-11-27 2014-01-22 オリジン電気株式会社 直列共振型コンバータ回路
US20120176817A1 (en) * 2011-01-07 2012-07-12 Texas Instruments Incorporated Dc-dc converter
US20130051082A1 (en) * 2011-08-25 2013-02-28 Samsung Electro-Mechanics Co., Ltd. Switching power supply
US9300214B2 (en) * 2013-03-15 2016-03-29 Power-One, Inc. Multiphase converter with active and passive internal current sharing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033938A (ja) * 2003-07-08 2005-02-03 Sony Corp 電源装置およびコンバータトランス
CN201266889Y (zh) * 2008-08-29 2009-07-01 艾默生网络能源有限公司 直流-直流变换器
CN101944852A (zh) * 2009-07-07 2011-01-12 台达电子工业股份有限公司 多相开关电源转换电路
CN102638167A (zh) * 2011-02-12 2012-08-15 艾默生网络能源***北美公司 一种并联谐振变换器电路
CN102790533A (zh) * 2011-05-19 2012-11-21 中兴通讯股份有限公司 多相交错谐振变换器
CN102324852A (zh) * 2011-08-30 2012-01-18 深圳麦格米特电气股份有限公司 一种多相错相并联双级变换器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LLC谐振变换器交错并联技术研究;刘伟丽等;《电源技术》;20120131;第36卷(第1期);第133-135页 *

Also Published As

Publication number Publication date
US20150103564A1 (en) 2015-04-16
US9564825B2 (en) 2017-02-07
CN104578791A (zh) 2015-04-29
TW201515388A (zh) 2015-04-16
TWI565237B (zh) 2017-01-01

Similar Documents

Publication Publication Date Title
CN104578791B (zh) 并联的谐振变换器及其控制方法
CN110120752B (zh) 功率变换器及其控制方法
CN106533191B (zh) 一种电力电子牵引变压器拓扑结构及其控制方法
CN204068706U (zh) 多级电力转换器
CN103201940B (zh) 级联功率***架构
CN100499343C (zh) 基于正激变换器的交-交型三电平交-交变换器
CN107947588A (zh) 具有自然均压特性的isop***及其控制方法
CN102064700A (zh) 一种可实现pfc均流并联的电路及其控制方法
US20200039375A1 (en) Wide-output voltage range on-board battery charger for electric vehicles
CN104375039B (zh) 一种隔离型直流变压器测试***
CN201754560U (zh) 一种可实现pfc均流并联的电路
CN108648902B (zh) 磁集成器件和电源转换电路
CN107017772A (zh) 一种基于交错并联结构的高升压比双向dc/dc变换器
CN103023366A (zh) 半桥五电平逆变器及高频隔离式半桥五电平逆变器
EP4147339B1 (en) Electrical power converter
CN107294389A (zh) 一种可自由换向双向dc/dc变换器及其控制方法
CN107919807A (zh) 适于宽输入和输出电压范围的高效开关电源的pfc母线调压控制电路及控制方法
CN108599346B (zh) 一种三级式电动汽车充电电路
CN107508474A (zh) 导通时间调整方法、电路及sepic功率因数校正变换器
CN207460027U (zh) 隔离型双向dc/ac电源
CN104578820B (zh) 一种高功率密度交流大电流发生器
CN104993712B (zh) 一种三相‑单相交流变换器控制方法
CN104218843B (zh) 谐振转换器装置及其控制方法
CN101414792B (zh) 差动升降压直流斩波器型高频链逆变器
CN101414791B (zh) 差动降压直流斩波器型高频链逆变器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant