CN104575699B - 具有负温度系数性能的薄膜及其制造方法 - Google Patents

具有负温度系数性能的薄膜及其制造方法 Download PDF

Info

Publication number
CN104575699B
CN104575699B CN201410549898.8A CN201410549898A CN104575699B CN 104575699 B CN104575699 B CN 104575699B CN 201410549898 A CN201410549898 A CN 201410549898A CN 104575699 B CN104575699 B CN 104575699B
Authority
CN
China
Prior art keywords
semiconductor
silicon
film
silicon nanowires
nanowires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410549898.8A
Other languages
English (en)
Other versions
CN104575699A (zh
Inventor
孙彩明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nano and Advanced Materials Institute Ltd
Original Assignee
Nano and Advanced Materials Institute Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano and Advanced Materials Institute Ltd filed Critical Nano and Advanced Materials Institute Ltd
Publication of CN104575699A publication Critical patent/CN104575699A/zh
Application granted granted Critical
Publication of CN104575699B publication Critical patent/CN104575699B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/10Silicon-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/006Thin film resistors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/183Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer characterised by the use of the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/049Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of organic or organo-metal substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06593Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the temporary binder

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Silicon Compounds (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)
  • Thermistors And Varistors (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本申请公开了一种导电薄膜,其包括粘合剂基质和分散在其中的半导体纳米线。半导体纳米线在薄膜重量百分比的30%至50%的范围内。本发明也公开了制造该薄膜的方法。所述方法包括的步骤有:将多个半导体纳米线与聚合物粘合剂混合,以获得印刷油墨;用溶剂稀释印刷油墨,以取得预定的粘度;将印刷油墨印刷在衬底上,从而在其上形成导电薄膜并以比水的蒸发率更低的速率蒸发溶剂。

Description

具有负温度系数性能的薄膜及其制造方法
相关申请的交叉引用
本申请要求于2013年10月23日提交的编号为61/961,767的美国临时申请的优先权,其通过引用方式整体并入本文。
技术领域
本发明涉及一种薄膜,具体涉及具有负温度系数性能的薄膜。
背景技术
具有负温度系数性能的薄膜已在工业和电子产品,比如电子电路中的热效应补偿和高能电子***中的热量管理中显示了广泛的应用范围。传统上,这些薄膜由过渡金属氧化物,例如MnO2、CoO和NiO使用陶瓷技术工艺制成。该技术需要在高温(高达900℃)下烧结粉末,其反过来限制了可以使用的衬底材料,排除了很多重量轻、柔性材料,比如纸和聚合物薄膜的使用。
近来,一些研究人员提出了基于10nm至100μm尺寸范围的硅颗粒的可印刷材料。为了保证可重现性,在薄膜中使用超过80%部分的硅。而且,通过该硅层的电输运主要由纳米颗粒的互联来支配。因此,必须防止这些纳米颗粒的表面氧化,这是对合成工艺的挑战。
发明内容
根据上述背景技术,本发明的一个目的是提供具有负温度系数性能的薄膜的可选成分和其制造方法。
在一个方面,本发明为导电薄膜,其包括粘合剂基质和分散在其中的半导体纳米线,其中半导体纳米线在薄膜重量百分比的30%至50%的范围内。
在一个实施例中,薄膜的电阻温度系数在5%/℃至8.1%/℃的范围内。
在另一个实施例中,半导体纳米线分散在区域中,其中所述区域具有100μm至1000μm的直径。
根据本发明的另一方面,公开了一种生产导电薄膜的方法。所述方法包括的步骤为:将多个半导体纳米线与聚合物粘合剂混合,以获得印刷油墨;并将印刷油墨印刷在衬底上,从而在其上形成导电薄膜。半导体纳米线在薄膜重量百分比的30%至50%的范围内。
在一个实施例中,所述方法还包括以溶剂稀释印刷油墨,以取得预定的粘度和以比水的蒸发率更低的速率蒸发所述溶剂的步骤。
在一个实施例中,溶剂选自由聚乙二醇和乙二醇组成的组。
在一个实施例中,所述预定粘度在100cps至10,000cps的范围内。
在另一方面,本发明为通过包括以下步骤的工艺形成的导电油墨:将多个半导体纳米线与聚合物粘合剂混合,以获得混合物,和以溶剂稀释所述混合物,以取得所述油墨的预定粘度。半导体纳米线在油墨重量百分比的30%至50%的范围内,并且在室温和外界环境中溶剂具有低于10-4kg/m2-s的蒸发率。
本发明可在室温下进行,而不涉及高温、高压或昂贵的设备和有害材料。而且,纳米线具有比纳米颗粒更高的晶体质量。稀疏互联的纳米线网络形成了连续的薄膜,其对于电子设备具有良好的导电性,因为很高的迁移率,其可望用于薄膜晶体管(TFT)中的半导体层。
附图说明
为了更全面理解本发明,参考下面的详细描述和随附附图,其中:
图1示出了根据本发明的实施例,基于硅纳米线的薄膜制造工艺的流程图;
图2示出了根据本发明的一个实施例,在被蚀刻的硅晶片上的硅纳米线的扫描电子显微镜(SEM)图像。图2(a)和图2(b)分别示出了硅纳米线的横截面图和俯视图;
图3示出了根据图2所示实施例的硅纳米线的透射电子显微镜(TEM)图像。图3(a)为表示整个硅纳米线的低分辨率TEM图像,而图3(b)为表示硅纳米线的表面的高分辨率TEM图像;
图4示出了根据本发明的一个实施例,使用2-丙醇作为溶剂的印刷的硅纳米线薄膜。图4(a)和图4(b)分别示出了使用2-丙醇作为溶剂的硅纳米线薄膜的光学相片和SEM图像。图4(c)为图4(b)的放大图像;
图5示出了根据本发明的一个实施例,使用水作为溶剂的印刷的硅纳米线薄膜。图5(a)和图5(b)分别示出了使用水作为溶剂的硅纳米线薄膜的光学相片和SEM图像。图5(c)为图5(b)的放大图像;
图6示出了根据本发明的一个实施例,使用滴液涂覆技术形成的硅纳米线薄膜;
图7示出了根据本发明的一个实施例,使用丝网印刷技术形成的硅纳米线薄膜;和
图8示出了根据本发明的一个实施例的硅纳米线薄膜的性能。图8(a)示出了使用根据本发明的一个实施例的硅纳米线薄膜制造的温度传感器,而图8(b)示出了如图8(a)所示的温度传感器的电阻-温度曲线(R-T曲线)。
具体实施方式
如本文中所用,“包含”指的是包括下面的元件但不排除其它元件。
图1示出了生产基于硅纳米线的薄膜的方法20。方法20开始于步骤22,其中将硅晶片浸入用作蚀刻剂的氢氟酸-硝酸银(HF-AgNO3)溶液中,以产生硅纳米线。在已知作为金属辅助化学蚀刻法(MaCE)的该合成工艺中,溶解-成核金属在单晶硅晶片的电化学蚀刻中发挥纳米量级电极的作用。金属纳米颗粒,比如银,通过从硅中获取电子来氧化与其接触的硅。然后被氧化的硅或硅氧化物(SiO2)通过蚀刻剂中的氢氟酸被蚀刻掉,在硅表面上留下坑或孔。随着电化学氧化还原反应的进行,金属纳米颗粒进一步向下渗透,并移除下面的硅。最后,硅纳米线产生于没有金属的区域中。
所述方法20的第二步24为将被蚀刻的硅晶片浸入氢氧化钾(KOH)溶液中,目的是从被蚀刻的硅晶片中释放硅纳米线。然后,通过超声波清洗器将硅纳米线分散在溶液中,并且使用步骤26中的离心机进一步与分散剂分离。然后在步骤28中以1:2至1:1的纳米线-粘合剂重量比将硅纳米线与聚合物粘合剂混合。为了有利于后面的制造加工,在步骤30中通过将溶剂加入其中,调节硅纳米线和聚合物粘合剂的混合物的粘度,由此获得了印刷油墨。方法20的最后步骤32为使用在步骤30中获得的印刷油墨形成薄膜。
为了能更好地例示本发明,这里提供了实施例。使用具有15-25Ω-cm电阻率的硼掺杂p-型硅(100)晶片作为合成硅纳米线的起始晶片。在由4.8M的HF、0.03M的AgNO3和去离子(DI)水构成的蚀刻剂中在室温下进行2小时蚀刻。在图2中示出了在晶片上被蚀刻的硅纳米线的扫描电子显微镜(SEM)的图像,其中图2(a)为横截面图像,而图2(b)为俯视图图像。应该观察到获得了长度约为20μm的致密、垂直排列的硅纳米线。
然后通过超声波清洗器中的超声处理将硅纳米线从蚀刻的硅晶片中释放到乙醇中。随后,使用10,000rpm的转速,将乙醇中的硅纳米线进行三次离心分离。每个周期的持续时间为10分钟。最后,在40℃下在真空干燥箱中干燥硅纳米线。通过透射电子显微镜(TEM)检测个别硅纳米线的形态。在图3中示出了相应的图像。参考图3(a),硅纳米线34的直径在50nm至150nm的范围内。现在参考图3(b),该图为具体的硅纳米线34的表面的高分辨率TEM图像,在硅纳米线34的表面上发现了低于2nm的固有的硅氧化物36层。这表示对于MaCE工艺中硅纳米线34之间的电互联,可以忽略硅纳米线34的表面氧化。从释放硅纳米线之前和之后对晶片的重量测量,可发现晶片中约50%的硅被制成硅纳米线。因此,对于本实施例中所用的标准的4英寸硅起始晶片,通过上述工艺可获得大于一克的硅纳米线。
在获得硅纳米线之后,通过将硅纳米线与聚合物粘合剂和溶剂混合而获得了印刷油墨。为了取得所得薄膜的需要的MΩ量级的电阻,使用具有比水更低的蒸发率的溶剂。为了例示溶剂的蒸发率对于所得薄膜的作用,制备了具有不同成分的三种油墨。
实施例1
在该实施例中,使用2-丙醇作为溶剂,使用上述方法获得的0.1g的硅纳米线与0.1g的商业聚合物粘合剂(LUMITEX–GBX,Karan Texchem Pvt.Ltd.)混合,其被溶解在2ml的2-丙醇中。随后,通过将该油墨丝网印刷在衬底上获得图4(a)所示的薄膜。参考图4(b)和图4(c),如图4(a)所示的薄膜的扫描电子显微镜(SEM)图像和薄膜中心部分的放大图像被分别示出。可以观察到,硅纳米线随机分布在薄膜中,这导致了很高的电阻率,即超过GΩcm。这是由于丙醇非常易于蒸发并使印刷薄膜很快干燥。在这种快速的溶剂蒸发期间,对于硅纳米线没有足够的时间聚集。这种高的电阻率使得印刷薄膜不适合于任何NTC应用。
实施例2
在第二个实施例中使用去离子水作为印刷油墨的溶剂,使用溶解于2ml的去离子水中的0.1g的硅纳米线和0.1g的商业聚合物粘合剂(LUMITEX–GBX,Karan TexchemPvt.Ltd.)。由此获得的薄膜如图5(a)所示。图5(b)为如图5(a)所示的薄膜的SEM图像。在其中观察到在区域38内有序排列的纳米线。如图5(b)和图5(c)所示的区域38具有100μm的直径。可以注意到,在薄膜内没有限定区域的范围内也发现了硅纳米线。该薄膜的~10MΩ-cm的电阻率比在第一个实施例中获得的低得多。这是因为有序排列的纳米线起到电路的作用,这使得该印刷薄膜成为期望的NTC材料。
实施例3
在第三个实施例中,将100mg的商业聚合物粘合剂(LUMITEX–GBX,Karan TexchemPvt.Ltd.)溶解在用作溶剂的0.7ml的乙二醇中。在加入0.1g的硅纳米线之后,将混合物在旋转混合器中均匀搅拌两分钟。最后,分别通过将印刷油墨滴液涂覆在1cm×1cm的正方形预定图案上和丝网印刷,形成了两个基于硅纳米线的薄膜。在干燥一夜后使用扫描电子显微镜检测薄膜。使用滴液涂覆和丝网印刷获得的薄膜的SEM图像分别如图6和图7所示。滴液涂覆和丝网印刷的膜都显示为连续的膜。滴液涂覆膜具有超过100μm的厚度,并具有高表面粗糙度,如图6所示,而对于丝网印刷层,厚度为10μm,且表面与滴液涂覆膜比较更加平滑。
然后使用如图7所示的丝网印刷薄膜制造一个1cm×1cm的温度传感器。图8(a)示出了由此获得的温度传感器40。温度传感器40包括1cm×1cm的薄膜42和两个电极44。电极44在两个相对端部与薄膜42耦合。然后测量温度传感器40随温度变化的电阻变化。图8(b)示出了温度传感器40的对应的电阻与温度曲线(R-T曲线)。温度传感器40显示了由等式(1)支配的负温度系数性能。
R=R25exp(B/T-A) (1)
其中R是作为温度T的函数的电阻率,B为材料常数并与温度敏感性相关,并且R25是作为参考值的25℃时的电阻。
从如图8(b)所示的R-T曲线,由等式(2)支配的温度传感器40的薄膜42的电阻α的温度系数从25℃至75℃的平均值为8.1%/℃,其接近于邻近室温时本征硅体材料的报导值8.0-9.5%/℃。
α=(1/R)(dR/dT) (2)
其中,α为电阻的温度系数,并且R为如等式(1)所示的电阻率。
因此本发明的典型实施例被完全描述。尽管说明书涉及具体的实施例,但是对本领域技术人员显而易见的是,本发明可以用这些具体细节的变型来实施。因此该发明不应被认为是局限于这里所述的实施例。
例如,在上述实施例和例子中使用了硅纳米线。然而,其它半导体纳米线,根据使用者的优选,也可以使用例如锗和金属氧化物半导体纳米线。而且,在印刷油墨中使用去离子水和乙二醇作为溶剂。也可使用比水的蒸发率低的其它溶剂,例如聚乙二醇。
在上述实施例中,采用氢氧化钾帮助下的超声处理适合于从被蚀刻的硅纳米晶片中释放硅纳米线。然而,通过刀片的机械刮擦和通过碱金属类氢氧化物的湿化学蚀刻也适合于从被蚀刻的晶片中释放纳米线。

Claims (4)

1.一种导电薄膜,其包括粘合剂基质和分散在其中的半导体纳米线,其中所述半导体纳米线在所述薄膜重量百分比的30%至50%的范围内,所述半导体纳米线是长度为20μm的硅纳米线,所述硅纳米线的直径为50nm-150nm,所述硅纳米线的表面有低于2nm的硅氧化物层,所述硅纳米线有序排列在具有100μm至1000μm的直径的区域中,互联的所述硅纳米线网络形成了连续的、具有负温度系数性能的所述导电薄膜,所述导电薄膜由一种方法制备,所述方法包括以下步骤:
a.将多个硅纳米线与聚合物粘合剂混合,以获得印刷油墨;和
b.将所述印刷油墨印刷在衬底上,从而在所述衬底上形成所述导电薄膜;
其中,所述方法还包括通过金属辅助化学蚀刻法生产所述硅纳米线的步骤,其中生产所述硅纳米线的所述步骤还包括以下步骤:
1).提供半导体晶片;
2).在蚀刻溶液中蚀刻所述半导体晶片,以形成被蚀刻的晶片;
3).将所述被蚀刻的晶片浸入氢氧化钾溶液中,以便从所述被蚀刻的晶片中释放所述硅纳米线;
4).通过超声波清洗器将所述硅纳米线分散在溶液中;
5).将所述溶液进行离心分离,以便将分散在其中的所述硅纳米线分离;和
6).在真空干燥箱中干燥所述硅纳米线;
其中,所述金属辅助化学蚀刻法在室温下进行两小时,所述离心分离步骤在10,000rpm下进行三次,并且每个周期为10分钟;其中所述干燥步骤在40℃下进行。
2.如权利要求1所述的导电薄膜,其中所述薄膜的电阻温度系数为5%/℃-8.1%/℃。
3.如权利要求1所述的导电薄膜,其中所述半导体纳米线横向地分散在所述薄膜中。
4.一种生产导电薄膜的方法,其包括以下步骤:
a.将多个半导体硅纳米线与聚合物粘合剂混合,以获得印刷油墨;和
b.将所述印刷油墨印刷在衬底上,从而在所述衬底上形成所述导电薄膜;
其中,所述半导体硅纳米线在所述薄膜重量百分比的30%至50%的范围内,所述方法还包括通过金属辅助化学蚀刻法生产所述半导体硅纳米线的步骤,其中生产所述半导体纳米线的所述步骤还包括以下步骤:
1).提供半导体晶片;
2).在蚀刻溶液中蚀刻所述半导体晶片,以形成被蚀刻的晶片;
3).将所述被蚀刻的晶片浸入氢氧化钾溶液中,以便从所述被蚀刻的晶片中释放所述半导体硅纳米线;
4).通过超声波清洗器将所述半导体硅纳米线分散在溶液中;
5).将所述溶液进行离心分离,以便将分散在其中的所述半导体硅纳米线分离;和
6).在真空干燥箱中干燥所述半导体硅纳米线;
其中,所述金属辅助化学蚀刻法在室温下进行两小时,所述离心分离步骤在10,000rpm下进行三次,并且每个周期为10分钟;其中所述干燥步骤在40℃下进行。
CN201410549898.8A 2013-10-23 2014-10-16 具有负温度系数性能的薄膜及其制造方法 Active CN104575699B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361961767P 2013-10-23 2013-10-23
US61/961,767 2013-10-23
US61961767 2013-10-23

Publications (2)

Publication Number Publication Date
CN104575699A CN104575699A (zh) 2015-04-29
CN104575699B true CN104575699B (zh) 2017-09-22

Family

ID=51535308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410549898.8A Active CN104575699B (zh) 2013-10-23 2014-10-16 具有负温度系数性能的薄膜及其制造方法

Country Status (5)

Country Link
US (1) US20150108632A1 (zh)
EP (1) EP2866118A1 (zh)
JP (1) JP2015082501A (zh)
KR (1) KR20150047088A (zh)
CN (1) CN104575699B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739209A (zh) * 2019-11-01 2020-01-31 中国电子科技集团公司第四十六研究所 一种锗单晶单面抛光片的清洗工艺

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9828677B2 (en) * 2014-01-16 2017-11-28 The United States Of America, As Represented By The Secretary Of Commerce Article and process for selective etching
KR101588577B1 (ko) * 2014-06-11 2016-01-28 한국표준과학연구원 대면적의 수직 정렬된 갈륨비소 반도체 나노선 어레이 제작 공정
US10034609B2 (en) 2015-11-05 2018-07-31 Nano And Advanced Materials Institute Limited Temperature sensor for tracking body temperature based on printable nanomaterial thermistor
EP3373310A1 (en) * 2017-03-06 2018-09-12 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Printed temperature sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050350A1 (en) * 2002-11-27 2004-06-17 Nanoproducts Corporation Nano-engineered inks, methods for their manufacture and their applications
CN101346441A (zh) * 2005-12-22 2009-01-14 开普敦大学 厚膜半导体油墨
CN101390198A (zh) * 2006-01-23 2009-03-18 奈克松有限公司 蚀刻硅基材料的方法
CN101858794A (zh) * 2009-03-02 2010-10-13 施乐公司 热响应复合元件、相关器件以及包括结构应用的应用
CN103210290A (zh) * 2010-09-13 2013-07-17 Pst传感器(私人)有限公司 印刷温度传感器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022637A2 (en) * 2002-09-05 2004-03-18 Nanosys, Inc. Nanocomposites
US7879696B2 (en) * 2003-07-08 2011-02-01 Kovio, Inc. Compositions and methods for forming a semiconducting and/or silicon-containing film, and structures formed therefrom
US20110068890A1 (en) * 2008-03-12 2011-03-24 University Of Electronic Science And Technology Of China Ntc thin film thermal resistor and a method of producing it
EP3028126B1 (en) * 2013-07-31 2020-10-07 3M Innovative Properties Company Bonding electronic components to patterned nanowire transparent conductors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050350A1 (en) * 2002-11-27 2004-06-17 Nanoproducts Corporation Nano-engineered inks, methods for their manufacture and their applications
CN101346441A (zh) * 2005-12-22 2009-01-14 开普敦大学 厚膜半导体油墨
CN101390198A (zh) * 2006-01-23 2009-03-18 奈克松有限公司 蚀刻硅基材料的方法
CN101858794A (zh) * 2009-03-02 2010-10-13 施乐公司 热响应复合元件、相关器件以及包括结构应用的应用
CN103210290A (zh) * 2010-09-13 2013-07-17 Pst传感器(私人)有限公司 印刷温度传感器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739209A (zh) * 2019-11-01 2020-01-31 中国电子科技集团公司第四十六研究所 一种锗单晶单面抛光片的清洗工艺

Also Published As

Publication number Publication date
CN104575699A (zh) 2015-04-29
US20150108632A1 (en) 2015-04-23
KR20150047088A (ko) 2015-05-04
EP2866118A1 (en) 2015-04-29
JP2015082501A (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
CN104575699B (zh) 具有负温度系数性能的薄膜及其制造方法
US10479905B2 (en) High-resolution patterning of graphene by screen and gravure printing for highly flexible printed electronics
Azadmanjiri et al. Prospective advances in MXene inks: screen printable sediments for flexible micro-supercapacitor applications
JP6271716B2 (ja) シリコン/ゲルマニウム系ナノ粒子及び高粘度アルコール溶媒を含有する印刷用インク
Shin et al. Bimodally dispersed silver paste for the metallization of a crystalline silicon solar cell using electrohydrodynamic jet printing
CN104614413B (zh) 一种无电极式半导体气体传感器及其制备方法
TWI595688B (zh) Thermoelectric conversion material and manufacturing method thereof, and thermoelectric conversion module
Gayen et al. Improvisation of electrical properties of PVDF-HFP: use of novel metallic nanoparticles
JP2015173246A (ja) 印刷可能サーミスタとしてのシリコン−炭素複合体を含む導電性薄膜
CN111081863B (zh) 一种柔性复合薄膜纳米发电机及其制备方法
Meeporn et al. Improved dielectric properties of poly (vinylidene fluoride) polymer nanocomposites filled with Ag nanoparticles and nickelate ceramic particles
Hossain et al. Inkjet-printed MoS2-based field-effect transistors with graphene and hexagonal boron nitride inks
Rasool et al. Enhanced electrical and dielectric properties of polymer covered silicon nanowire arrays
KR20100121978A (ko) 그라핀 박막의 형성 방법
TWI558554B (zh) 使用具有奈米構造之基板的熱電轉換材料及其製造方法
Kirbus et al. Additive manufacturing of 96 MHz surface acoustic wave devices by means of superfine inkjet printing
Fu et al. Self-encapsulation liquid metal materials for flexible and stretchable electrical conductors
Varghese et al. Room temperature curable silica ink
KR101582637B1 (ko) CuO 나노입자와 그의 잉크 및 마이크로파 조사를 통한 CuO 박막으로부터 Cu박막으로 환원시키는 이들의 제조방법
Wang et al. Preparation of waterborne graphene paste with high electrical conductivity
CN112521702B (zh) 一种聚合物组合物、柔性自支撑薄膜及其制备方法和应用
US20220049119A1 (en) Highly conductive, printable ink for highly stretchable soft electronics and highly conductive, ultra-stretchable conductors obtainable therefrom
Wang et al. High temperature-assisted electrohydrodynamic jet printing of sintered type nano silver ink on a heated substrate
Sabri et al. EXPERIMENTAL STUDY: THE ELECTRICAL CONDUCTIVITY OF POLYPYRROLE DOPED ORGANIC ACIDS THIN FILM
Lee et al. Microwave band-pass filter with aerosol-deposited Al2O3-polytetrafluoroethylene composite thick films

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant