CN104404503B - 可分离油水混合物的金属丝网制备方法 - Google Patents

可分离油水混合物的金属丝网制备方法 Download PDF

Info

Publication number
CN104404503B
CN104404503B CN201410667400.8A CN201410667400A CN104404503B CN 104404503 B CN104404503 B CN 104404503B CN 201410667400 A CN201410667400 A CN 201410667400A CN 104404503 B CN104404503 B CN 104404503B
Authority
CN
China
Prior art keywords
woven wire
preparation
coating
solution
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410667400.8A
Other languages
English (en)
Other versions
CN104404503A (zh
Inventor
卢朝霞
黄幸
黄伊琳
周庆云
王继鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN201410667400.8A priority Critical patent/CN104404503B/zh
Publication of CN104404503A publication Critical patent/CN104404503A/zh
Application granted granted Critical
Publication of CN104404503B publication Critical patent/CN104404503B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Filtering Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本发明公开了可分离油水混合物的金属丝网制备方法,包括基底的处理、涂层溶液的制备、金属丝网涂覆处理三个步骤。本发明的制备方法可以在复杂结构表面上大面积的制备,工艺简单,原料易得,成本低,制备的油、水分离涂层水接触角大于150°,滚动角小于5°,分离效率大于98%,具有良好的油、水分离性和防腐性。

Description

可分离油水混合物的金属丝网制备方法
技术领域
本发明涉及金属表面改性技术,具体涉及可分离油水混合物的金属丝网制备方法。
背景技术
石油资源是世界各国经济发展的战略资源,大部分石油是通过水上,特别是通过海上进行开采和运输的。以中国为例,中国进口石油90%依赖海上运输,溢油事故险情不断。美国墨西哥湾原油泄漏事件,引起世人高度关注,全世界为之震惊。因此,在目前国内外工业生产,特别是石油工业的生产过程中,研究开发新型高效的油水分离技术尤为迫切。
科学研究表明,重力分离式的油和水分离现象是由粗糙结构表面和低表面能这两方面因素共同决定。油、水分离表面具有很多独特的表面特性:如自清洁性、防污性、防雾和防结冰等。这些优点使得其在人类生产和生活的各个领域都具有巨大的潜在应用前景。然而在自然环境中,油、水分离表面很容易遭到破坏:一方面是由于大气中的沙尘污染或阳光中的紫外线对油、水分离涂层的低表面能物质的破坏,另一方面是由于机械外力破坏了分离涂层表面的结构。因此,制备一种牢固的分离涂层来延长其使用寿命就变得尤为重要。
金属丝网如不锈钢丝网、铜丝网和铝丝网在我国传统的工业品,在科研、生产和生活等许多领域具有广泛的用途。随着科学技术的高速发展,目前金属丝网用途及石油、化工、汽车、造纸、食品、建筑、航空、航天等产业和高科技领域。因此,对于新型高效的油水分离技术的需求是广泛和迫切的。
发明内容
本发明要解决的技术问题是提供一种可以在复杂结构表面上大面积制备,工艺简单,原料易得,成本低,制备的油、水分离涂层具有良好的油水分离性能和防腐性,可延长金属丝网的使用寿命的可分离油水混合物的金属丝网制备方法。
为解决上述技术问题,本发明采用如下技术方案:
可分离油水混合物的金属丝网制备方法,包括以下步骤:
<1>基底的处理:将金属丝网在丙酮中超声清洗,然后用氮气干燥,再在乙醇中超声清洗,取出并氮气吹干;
<2>涂层溶液的制备:将碳纳米管粉末置于氯仿溶剂中,超声分散3-10分钟,得到均匀溶液相,质量体积浓度为0.1—1g/L;将聚二甲基硅氧烷加入该溶液相中形成质量体积浓度为0.01—1g/L的复合溶液;
<3>金属丝网涂覆处理:将步骤<2>所得复合溶液涂覆于金属丝网表面,用氮气干燥金属丝网或烘烤金属丝网后在干燥环境中冷却至室温。
所述步骤<1>中在丙酮中和在乙醇中超声清洗的时间均为10分钟。
所述步骤<2>中的碳纳米管为单壁碳纳米管、双壁碳纳米管或多壁碳纳米管。
所述步骤<2>中的聚二甲基硅氧烷,用聚四甲基硅氧烷或环五聚二甲基硅氧烷代替。
所述步骤<3>中烘烤的温度为90摄氏度,烘烤时间为1小时。
所述步骤<3>中涂覆的方法为浸涂、旋涂或喷涂。
所述的金属丝网材料为银、铜、铬、金、铝、钛、钢、铁或钨。
与现有技术相比,本发明的优点在于:
1、可以在复杂结构表面上大面积的制备;
2、工艺简单,原料易得,成本低;
3、制备的油、水分离涂层水接触角大于150°,滚动角小于5°,分离效率大于等于98%,具有良好的油水分离性能和防腐性。
具体实施方式:
以下结合具体实施例对本发明进行详细说明。
实施例1:
先将钢丝网浸泡在丙酮中超声清洗10分钟。取出用氮气干燥后,置入乙醇中再超声清洗10分钟,取出并氮气吹干。将1克单壁碳纳米管粉末置于1升氯仿溶剂中,超声分散10分钟,得到均匀溶液相;将1克聚二甲基硅氧烷加入分散好的溶液相中制备碳纳米管聚二甲基硅氧烷复合溶液。将清洗后的钢丝网垂直水平面悬挂并以600毫米/分钟的速度浸入上述复合溶液中并停留5分钟,然后以300毫米/分钟的速度提拉出来。涂覆有碳纳米管聚二甲基硅氧烷复合溶液的钢丝网置于90摄氏度烘箱中加热1小时,取出后,在干燥皿中冷却至室温。所制备的油、水分离涂层,其接触角为156°,滚动角小于2°,油水分离效率99%。
实施例2:
铝丝网的清洗、干燥同实施例1。
将0.8克双壁碳纳米管粉末置于1升氯仿溶剂,超声分散8分钟,得到均匀溶液相;将500毫克聚二甲基硅氧烷加入分散好的溶液相中制备出碳纳米管聚二甲基硅氧烷复合溶液。将清洗后的铝丝网采用喷涂方法将碳纳米管聚二甲基硅氧烷复合溶液涂覆在铝丝网表面。喷涂过程使用连接在氮气上的喷枪进行,压强控制在4Bar,喷涂距离为10cm,喷涂量为0.5mL/cm2。将铝丝网水平放置并氮气吹干。所制备的油、水分离涂层,其接触角为152°,滚动角小于2°,油水分离效率98%。
实施例3:
铜丝网的清洗、干燥同实施例1。
将0.5克多壁碳纳米管粉末置于1升氯仿溶剂中,超声分散5分钟,得到均匀溶液相;将80毫克聚四甲基硅氧烷加入分散好的溶液相中制备出碳纳米管聚四甲基硅氧烷复合溶液。将清洗后的铜丝网通过喷涂方法将碳纳米管聚四甲基硅氧烷复合溶液涂覆在铜丝网表面。喷涂过程使用连接在氮气上的喷枪进行,喷涂压强控制在4Bar,喷涂距离为10cm,喷涂量为0.5mL/cm2。将铜丝网水平放置并氮气吹干。所制备的油、水分离涂层,其接触角为158°,滚动角小于2°,油水分离效率98%。
实施例4:
不锈钢丝网的清洗、干燥同实施例1。
将0.1克多壁碳纳米管粉末置于1升氯仿溶剂中,超声分散3分钟,得到均匀溶液相;将10毫克环五聚二甲基硅氧烷加入分散好的溶液相中制备出碳纳米管环五聚二甲基硅氧烷复合溶液。将清洗后的不锈钢丝网垂直水平面悬挂并以300毫米/分钟的速度浸入上述复合溶液中并停留3分钟,然后以100毫米/分钟的速度提拉出来。涂覆有碳纳米管环五聚二甲基硅氧烷复合溶液的不锈钢丝网置于90摄氏度烘箱中加热1小时,然后在干燥皿中冷却至室温。所制备的油、水分离涂层,其接触角为155°,滚动角小于2°,油水分离效率98%。

Claims (1)

1.可分离油水混合物的金属丝网制备方法,其特征在于,包括以下步骤:
<1>基底的处理:将金属丝网在丙酮中超声清洗,然后用氮气干燥,再在乙醇中超声清洗,取出并氮气吹干;
<2>涂层溶液的制备:将碳纳米管粉末置于氯仿溶剂中,超声分散3-10分钟,得到均匀溶液相,质量体积浓度为0.1—1g/L;将聚二甲基硅氧烷或聚四甲基硅氧烷或环五聚二甲基硅氧烷加入该溶液相中形成质量体积浓度为0.01—1g/L的复合溶液;
<3>金属丝网浸涂处理:将步骤<2>所得复合溶液涂覆于金属丝网表面,用氮气干燥金属丝网后在干燥环境中冷却至室温;
所述步骤<1>中在丙酮中和在乙醇中超声清洗的时间均为10分钟;
所述步骤<2>中的碳纳米管为单壁碳纳米管、双壁碳纳米管或多壁碳纳米管;
所述的金属丝网材料为银、铜、铬、金、铝、钛、钢、铁或钨;
所述步骤<3>中涂覆的方法为浸涂、旋涂或喷涂。
CN201410667400.8A 2014-11-20 2014-11-20 可分离油水混合物的金属丝网制备方法 Active CN104404503B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410667400.8A CN104404503B (zh) 2014-11-20 2014-11-20 可分离油水混合物的金属丝网制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410667400.8A CN104404503B (zh) 2014-11-20 2014-11-20 可分离油水混合物的金属丝网制备方法

Publications (2)

Publication Number Publication Date
CN104404503A CN104404503A (zh) 2015-03-11
CN104404503B true CN104404503B (zh) 2017-06-27

Family

ID=52642165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410667400.8A Active CN104404503B (zh) 2014-11-20 2014-11-20 可分离油水混合物的金属丝网制备方法

Country Status (1)

Country Link
CN (1) CN104404503B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019246325A1 (en) * 2018-06-22 2019-12-26 Board Of Trustees Of The University Of Arkansas Magnetic, superhydrophobic and superoleophilic medium, synthesizing methods and applications of same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1721030A (zh) * 2005-06-09 2006-01-18 南京大学 一种超疏水/超亲油的油水分离网

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1721030A (zh) * 2005-06-09 2006-01-18 南京大学 一种超疏水/超亲油的油水分离网

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
碳纳米管/氟碳树脂复合材料的制备及性能研究;陆春华等;《涂料工业》;20090731;第39卷(第7期);第21页 *

Also Published As

Publication number Publication date
CN104404503A (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
Gong et al. Highly durable superhydrophobic polydimethylsiloxane/silica nanocomposite surfaces with good self-cleaning ability
Si et al. A robust epoxy resins@ stearic acid-Mg (OH) 2 micronanosheet superhydrophobic omnipotent protective coating for real-life applications
Ma et al. Nature-inspired chemistry toward hierarchical superhydrophobic, antibacterial and biocompatible nanofibrous membranes for effective UV-shielding, self-cleaning and oil-water separation
Jin et al. Superhydrophobic self-cleaning hierarchical micro-/nanocomposite coating with high corrosion resistance and durability
Yin et al. Mussel-inspired fabrication of superior superhydrophobic cellulose-based composite membrane for efficient oil emulsions separation, excellent anti-microbial property and simultaneous photocatalytic dye degradation
Yin et al. Self-cleaning, underwater writable, heat-insulated and photocatalytic cellulose membrane for high-efficient oil/water separation and removal of hazardous organic pollutants
Song et al. Underwater superoleophobic mesh based on BiVO4 nanoparticles with sunlight-driven self-cleaning property for oil/water separation
Zhan et al. Fabrication of superwetting Cu@ Cu2O cubic film for oil/water emulsion separation and photocatalytic degradation
Xu et al. Preparation and properties of hydrophobically modified nano-SiO2 with hexadecyltrimethoxysilane
Zeng et al. Robust coating with superhydrophobic and self-cleaning properties in either air or oil based on natural zeolite
Lin et al. Robust waterborne superhydrophobic coatings with reinforced composite interfaces
Liu et al. Transparent, durable and thermally stable PDMS-derived superhydrophobic surfaces
Li et al. Superhydrophilic–underwater superoleophobic ZnO-based coated mesh for highly efficient oil and water separation
Feng et al. Preparation of a rice straw-based green separation layer for efficient and persistent oil-in-water emulsion separation
Gao et al. Construction of superhydrophobic and superoleophilic nickel foam for separation of water and oil mixture
Zhang et al. Superhydrophobic CuO@ Cu2S nanoplate vertical arrays on copper surfaces
Sutar et al. Facile approach to fabricate a high-performance superhydrophobic PS/OTS modified SS mesh for oil-water separation
Yeom et al. Purification of oily seawater/wastewater using superhydrophobic nano-silica coated mesh and sponge
CN104802488B (zh) 用于油水分离的具有阶层粗糙结构的超疏水涂层、超疏水材料及其制备方法
Xu et al. Fabrication of TiO2/SiO2 superhydrophobic coating for efficient oil/water separation
Li et al. Construction of a robust MOF-based superhydrophobic composite coating with the excellent performance in antifouling, drag reduction, and organic photodegradation
Liu et al. Covalent cross-linking mediated TA-APTES NPs to construct a high-efficiency GO composite membrane for dye/salt separation
CN105214344B (zh) 一种具有自清洁功能的超疏水超亲油油水分离网膜及其制备方法
Zhu et al. Sprayed superamphiphilic copper foams for long term recoverable oil-water separation
Wang et al. Advances in the research of carbon-, silicon-, and polymer-based superhydrophobic nanomaterials: synthesis and potential application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Lu Chaoxia

Inventor after: Huang Xing

Inventor after: Huang Yilin

Inventor after: Zhou Qingyun

Inventor after: Wang Jipeng

Inventor before: Mo Yufei

Inventor before: Lu Chaoxia

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant