CN104378905A - High current neutron generating device - Google Patents

High current neutron generating device Download PDF

Info

Publication number
CN104378905A
CN104378905A CN201410437059.7A CN201410437059A CN104378905A CN 104378905 A CN104378905 A CN 104378905A CN 201410437059 A CN201410437059 A CN 201410437059A CN 104378905 A CN104378905 A CN 104378905A
Authority
CN
China
Prior art keywords
deuterium
ion source
target
microwave
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410437059.7A
Other languages
Chinese (zh)
Inventor
明建川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHANGZHOU BORUIHENG ELECTRONIC SCIENCE & TECHNOLOGY Co Ltd
Original Assignee
CHANGZHOU BORUIHENG ELECTRONIC SCIENCE & TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHANGZHOU BORUIHENG ELECTRONIC SCIENCE & TECHNOLOGY Co Ltd filed Critical CHANGZHOU BORUIHENG ELECTRONIC SCIENCE & TECHNOLOGY Co Ltd
Priority to CN201410437059.7A priority Critical patent/CN104378905A/en
Publication of CN104378905A publication Critical patent/CN104378905A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

The invention relates to a device for generating and accelerating deuterium ions through a microwave ion source and generating high current neutrons through deuterium and deuterium (deuterium and tritium) reactions. A solid body with the quite high hydrogen absorbing ability is installed on the upper face of a subcooling target, deuterium is ionized by the microwave ion source and then accelerated to own quite high energy to be shot on the target, the high-energy ions shot on the target react with the deuterium adsorbed on the target, and the neutrons are generated. Compared with a penning ion source scheme commonly adopted at present, the size of the device is increased slightly, while the intensity of deuterium ion beam is increased by several times to dozens of times, the output of the neutrons is multiplied, in addition, the service life of the microwave ion source is long, and thus the service life of the whole device can be several years.

Description

A kind of high current neutron generating means
Technical field
The present invention relates to the device that a kind of deuterium deuterium (or deuterium tritium) reaction produces neutron, be mainly used in neutron correlative study, as directions such as flaw detection, material analysiss, relate to the aspects such as nuclear physics, material analysis, mineral prospecting.
Background technology
Neutron is a kind of electroneutral particle, has the quality that proton is identical, and it plays the part of in a lot of nuclear reaction important role, and many nucleic can capture neutron, production activation products, and then releases Υ ray, and it is the basis of neutron activation analysis.Neutron activation analysis plays an important role containing in the detection etc. of quantitative analysis, security protection explosive at the exploration of the multiple resources such as oil, material element.
The free neutron half-life shorter (10 minutes 11 seconds), therefore can only now-making-now-using.In the lab, the nucleic of release neutron when the most frequently used neutron source is some decay.Such as the spontaneous fission of californium-252 (half-life is 2.65), has in 100 atoms during 3 californium nuclear fissions and can discharge neutron, and each fission on average can produce 3.7 neutrons; The direct neutron produced by nuclear reactor is also had to draw, for relevant research.The former is expensive, and the latter only could obtain in some specific places.
Adopt ion source to accelerate deuterium ion to carry out deuterium deuterium alpha reaction or deuterium-tritium reaction to obtain neutron be a kind of cheap, safe and reliable method, current this device adopts Penning ion source usually, and mainly due to it, to have volume little, the simple feature of structure.But this ion source life is lower, the ion beam of generation is very little, and maximum only have hundreds of microampere, and for some experiment or analytical work, efficiency is very low.The present invention adopts microwave ion source as the generation of neutron generator ion and accelerator, and draw the particle beams and can reach tens to milliampere up to a hundred, neutron generation efficiency improves greatly.
Summary of the invention
The invention provides a kind of relative low price, safe and reliable high current neutron generating means.
The technical solution used in the present invention is:
1) device adopts totally-enclosed structure, and the devices such as microwave ion source main body, water-cooled hydrogen adsorption target, turbomolecular pump and the external world all do not have gas exchanges.
2), during work, ion source produces and ion is accelerated to very high-energy, gets on low-temperature rotary deuterium body absorbing target.These energetic ions, have part and react with the gas that adsorbs on workpiece target, produce neutron.Ion also has some deuteriums (or tritium) gas and releases while getting to and target producing neutron, the gas of releasing is inhaled into molecular pump, microwave ion source is entered from molecular pump steam vent, become ion again, so both ensure the concentration of microwave ion source gas, can ensure that again vacuum chamber is in good vacuum environment.
3) work after certain hour, can vacuum structure be opened when deuterium concentration reduces or in vacuum chamber, vacuum degree is reduced to certain level, change suction tray and again obtain vacuum environment.
4) the present invention also may be used for deuterium-tritium reaction.
5) the present invention also can adopt conventional vacuum to obtain structure, but gas consumption is larger.
accompanying drawing explanation
Fig. 1 is the structural representation of high current neutron generating means of the present invention.
Embodiment
Embodiment 1:
1) as shown in Figure 1, vacuum cavity 1 is cylindrical, diameter 300mm, and microwave ion source 2 is arranged on its top, disalignment, installation site 70mm.Low temperature deuterium adsorption target 3 is arranged on vacuum cavity 1 bottom centre position, and it is rotated by magnetic seal transmission, and inside is connected with cooling fluid cooling.
2) minute pump 4 is connected to above vacuum cavity 1 by 90 degree of bend pipes, and the steam vent of molecular pump connects the air inlet of microwave ion source 2 by gas pipeline 3, the gas of discharge enters ion source again, in ion source, become ion, again injects.
3) the hydrogen Auto-regulator of a cryogenic absorption target 5 with material is equipped with in gas pipeline 3 inside, by the heating and cooling outside gas pipeline 3, the vacuum degree in adjustment vacuum chamber 1 and the air inflow of microwave ion source 2.When neutron generator initialization, in vacuum cavity 1, vacuum degree is high, and molecular pump 4 Exhaust Gas is less, when entering microwave source 3 gas deficiency by gas pipeline 3, to regulating block heating, produces hydrogen, ion source is normally worked.When equipment works long hours, low temperature deuterium adsorption target 5 release gas more time, to regulating block cooling, make its adsorbed hydrogen, under making ion source be operated in more stable air pressure environment.
4) as shown in Figure 1, microwave ion source 2 is placed with cryogenic absorption target 5 bias, microwave ion source 2 extraction system employing defocused design, divergence of ion beam, can prevent from bombarding rear workpiece target local temperature too high; And in injection process, low temperature deuterium adsorption target 5 constantly rotates, change injection phase, make it irradiate evenly.
The present invention is compared with conventional penning source neutron generator, and longer service life, and its height of the yield ratio of neutron about two orders of magnitude, have very high economic worth.

Claims (6)

1. adopt microwave ion source produce and accelerate a deuterium ion, utilize deuterium deuterium (or deuterium tritium) to react the device producing high current neutron.As shown in Figure 1, deuterium (or tritium) is adsorbed on above sub-cooled target, produces deuterium ion by microwave ion source, accelerates to get on cooled target, deuterium (or tritium) the atom generation nuclear reaction of adsorbing with cooled target, produce neutron through high pressure.
2. method according to right 1, microwave ion source adopts 2.45GHz microwave, and magnetic field is produced by permanent magnet or solenoid coil.
3. method according to right 1, deuterium is adsorbed on above target, target body sub-cooled.
4. method according to right 1, sub-cooled dish is circular, can around its central rotation, and deuterium ion bundle is to its eccentric irradiation.
5. method according to right 1, in order to reduce gas consumption, the overall totally-enclosed design of this neutron generating means, in order to improve microwave ion source ion beam current, the built-in miniature molecular pump of equipment, extracting vacuum indoor gas, then sends into ion source, gas circulation uses, and can keep vacuum house vacuum.
6. method according to right 1, the hydrogen adsorbent that ion source in gas built in pipeline temperature can regulate, regulates for the vacuum degree in ion source and vacuum chamber.
CN201410437059.7A 2014-08-29 2014-08-29 High current neutron generating device Pending CN104378905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410437059.7A CN104378905A (en) 2014-08-29 2014-08-29 High current neutron generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410437059.7A CN104378905A (en) 2014-08-29 2014-08-29 High current neutron generating device

Publications (1)

Publication Number Publication Date
CN104378905A true CN104378905A (en) 2015-02-25

Family

ID=52557464

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410437059.7A Pending CN104378905A (en) 2014-08-29 2014-08-29 High current neutron generating device

Country Status (1)

Country Link
CN (1) CN104378905A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104918403A (en) * 2015-06-26 2015-09-16 中国工程物理研究院核物理与化学研究所 Pulsed neutron generator
CN108269639A (en) * 2018-01-12 2018-07-10 中国科学院合肥物质科学研究院 A kind of high current stable state neutron generation device
WO2023185219A1 (en) * 2022-03-31 2023-10-05 戴文韬 Nuclear fusion method and device for hydrogen-deuterium-tritium alloy reactor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0059668B1 (en) * 1981-03-02 1985-10-30 Commissariat à l'Energie Atomique High energy neutron generator
US5215703A (en) * 1990-08-31 1993-06-01 U.S. Philips Corporation High-flux neutron generator tube
CN2775829Y (en) * 2004-12-30 2006-04-26 吉林省科仑辐射技术开发有限公司 High-yield rate neutron tube
US20100202580A1 (en) * 2009-01-28 2010-08-12 Los Alamos National Security, Llc Method and apparatus for neutron generation using liquid targets
CN101916607A (en) * 2010-07-28 2010-12-15 北京大学 Small neutron source adopting windowless gas target
WO2013084004A1 (en) * 2011-12-09 2013-06-13 University Of Lancaster Neutron source
JP2014044214A (en) * 2008-05-02 2014-03-13 Shine Medical Technologies Inc Device and method for producing medical isotopes
CN103813611A (en) * 2014-02-25 2014-05-21 中国工程物理研究院核物理与化学研究所 Small directional high-flux neutron generator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0059668B1 (en) * 1981-03-02 1985-10-30 Commissariat à l'Energie Atomique High energy neutron generator
US5215703A (en) * 1990-08-31 1993-06-01 U.S. Philips Corporation High-flux neutron generator tube
CN2775829Y (en) * 2004-12-30 2006-04-26 吉林省科仑辐射技术开发有限公司 High-yield rate neutron tube
JP2014044214A (en) * 2008-05-02 2014-03-13 Shine Medical Technologies Inc Device and method for producing medical isotopes
US20100202580A1 (en) * 2009-01-28 2010-08-12 Los Alamos National Security, Llc Method and apparatus for neutron generation using liquid targets
CN101916607A (en) * 2010-07-28 2010-12-15 北京大学 Small neutron source adopting windowless gas target
WO2013084004A1 (en) * 2011-12-09 2013-06-13 University Of Lancaster Neutron source
CN103813611A (en) * 2014-02-25 2014-05-21 中国工程物理研究院核物理与化学研究所 Small directional high-flux neutron generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104918403A (en) * 2015-06-26 2015-09-16 中国工程物理研究院核物理与化学研究所 Pulsed neutron generator
CN108269639A (en) * 2018-01-12 2018-07-10 中国科学院合肥物质科学研究院 A kind of high current stable state neutron generation device
WO2023185219A1 (en) * 2022-03-31 2023-10-05 戴文韬 Nuclear fusion method and device for hydrogen-deuterium-tritium alloy reactor

Similar Documents

Publication Publication Date Title
US11238999B2 (en) Apparatus and method for generating medical isotopes
JP5522566B2 (en) Radioisotope production method and apparatus
CN104378905A (en) High current neutron generating device
Vainionpaa et al. Technology and applications of neutron generators developed by Adelphi Technology, Inc
CN111135477A (en) Boron neutron capture treatment system based on electron accelerator
US4008411A (en) Production of 14 MeV neutrons by heavy ions
Radel et al. Detection of highly enriched uranium using a pulsed DD fusion source
Panteleev et al. Project of the radioisotope facility RIC-80 at PNPI
Yoshikawa et al. Research and development of landmine detection system by a compact fusion neutron source
Kulcinski et al. Near term applications of inertial electrostatic confinement fusion research
Loong et al. The pros and cons of preliminary R&D of Boron Neutron Capture Therapy based on compact neutron generators: A plan of collaboration
Panteleev et al. IRIN: installation for production and investigation of neutron-rich nuclides
Chao et al. Reviews Of Accelerator Science And Technology-Volume 8: Accelerator Applications In Energy And Security
Zeman et al. Experimental investigation of the radionuclides produced in massive spallation target
qun; MA Ying-jun; MA Rui-gang; TANG Bing; HUANG Qing-hua; CHEN Li-hua; MA Xie The First On-line Radioactive Ion Beam from BRIF
Krása Neutron Production in Spallation Reactions of Relativistic Light Ions on Thick, Heavy Targets
Avetisyan et al. Neutron-induced reactions investigations in the neutrons energy range up to 16 MeV
Wendt et al. Development and integration of a fission event generator into the Geant4 framework
Panteleev et al. The IRIN Project at the PIK Reactor
Snoj et al. Advances in utilisation of the JSI TRIGA Mark II reactor
Kwon et al. Commissioning of the RI Production Beam Line of KOMAC
Emling Studies of unstable relativistic ion beams at GSI
Rossi Il vuoto, la materia, la ricerca
WO2019102485A1 (en) Dissociative gravitoradiophysical transmutation of elements and apparatus therefor
Panteleev et al. Project of the radioisotope facility RIC-80 (radioactive isotopes at cyclotron C-80) in PNPI

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150225

WD01 Invention patent application deemed withdrawn after publication