CN104373227A - 一种柴油/液化石油气混烧*** - Google Patents

一种柴油/液化石油气混烧*** Download PDF

Info

Publication number
CN104373227A
CN104373227A CN201310349608.0A CN201310349608A CN104373227A CN 104373227 A CN104373227 A CN 104373227A CN 201310349608 A CN201310349608 A CN 201310349608A CN 104373227 A CN104373227 A CN 104373227A
Authority
CN
China
Prior art keywords
gas
matrix
pressure
room
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310349608.0A
Other languages
English (en)
Inventor
游素月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201310349608.0A priority Critical patent/CN104373227A/zh
Publication of CN104373227A publication Critical patent/CN104373227A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

本发明提供一种柴油/液化石油气混烧***,包括:一柴油引擎,该柴油引擎与一进气歧管相连;一柴油输送管路,该柴油输送管路将一柴油油箱的柴油输送到柴油引擎;一液化石油气输送管路,该液化石油气输送管路与一液化石油气储气桶相连,将储气桶内液化石油气经过两个空压式流量控制阀输送到进气歧管相应的部位,取得最佳的燃气喷入量,使柴油/液化石油气获得优异的混烧效果,达到节能减碳的效果。

Description

一种柴油/液化石油气混烧***
技术领域
本发明涉及柴油/液化石油气混烧领域,尤指一种以机械式空压闭回路来控制燃气流量的柴油/液化石油气混烧***。
背景技术
众所周知,车辆深入你我的生活中,成为不可或缺的一环,带来交通便利的同时,也会污染周遭环境,对人体健康造成不良的影响。而且,国际油价高涨成为省能及低污染型环保车辆研发的推手,尤以瓦斯车、油电混合车及柴油/液化石油气(又称瓦斯)混烧车的发展最为成功。
从环境污染的分析不难发现,任何一种具有柴油引擎的发动机,是依照狄塞尔循环(Diesel Cycle)的四个行程而运行。因此,汽缸内的活塞上行压缩至上死点前,位于汽缸头的高压喷嘴喷出适时适量的柴油,压缩点火,使汽缸内高压高温的油气燃烧***。气体***后,打击活塞做功而下行至下死点,完成膨胀行程,再排出废气。
由于柴油的闪火点(Flash Point)高约52℃,在活塞下行至下死点时,通常有20至25%的油气来不及完全燃烧,反而排放至外界,形成大量浓郁的黑烟及颗粒状物质,对周遭环境造成严重污染。
已知的柴油/液化石油气混烧***,则在引擎的空气进气行程阀门即将关闭的瞬间,将液化石油气喷入汽缸中。因为液化石油气的闪火点较低(约-74℃),在活塞下行至下死点前,帮助汽缸内尚未点燃的油气加速燃烧至几近于完全燃烧为止,以致汽缸只剩下约2至5%的油气尚未燃烧。如此,便有20至23%未被燃烧的能量被回收利用,相对提升20至23%引擎热效率的同时,还能消除黑烟及颗粒状物质。所以,柴油/液化石油气混烧***确实能获得节能减碳的效果。
这也就是电子控制燃气流量式柴油/液化石油气混烧***声称可以达到20%省油效果、降低50%黑烟及粒状污染物质排放量的理由。
电子式柴油/液化石油气混烧***优化设计流程,一般是针对柴油引擎进行马力与扭矩动力图测试(转速约为rpm),并测量出NOx,CO及HC各项的污染值,同时测量出油耗,利用烟度计进行黑烟度测试,在不同扭矩负载及不同引擎转速下,通过电子开关讯号控制的喷嘴将液化石油气从进气歧管与进气阀门邻近部位喷进汽缸内,逐点建立最佳的液化石油气喷气量图。
这样的喷气量图以平面的纵轴为油门开度,横轴为引擎转速,垂直高度相当于喷气量(通常是以若干微秒来表现)。此处所称喷气量,以该点产生的制动比油耗(BSFC)为佳;也即燃料用量除以马力乘以小时的最小值为准。此种历经长时间调校的三维喷气图软件,都会以保密且安全的技术内建于混烧***的电子控制器中。
但是,电子式柴油/液化石油气混烧***需要安装精密的电控喷气喷嘴及喷气控制单元,不仅制作成本昂贵,还要专门的技术人员才能执行调校操作,以致回厂维修相当耗时。
因此,想要取得节能减碳的功效,又不必安装昂贵的电控喷气喷嘴及喷气控制单元,就成为本发明亟待解决的问题。
发明内容
针对上述现有技术的缺陷,本发明提供一种能够取得节能减碳的功效,又不必安装昂贵的电控喷气喷嘴及喷气控制单元的柴油/液化石油气混烧***。
为了实现上述目的,本发明采用如下技术方案:
一种柴油/液化石油气混烧***,包括:
一柴油引擎,柴油引擎与一进气歧管相连;
一柴油输送管路,用于将一柴油油箱的柴油输送到柴油引擎;
一液化石油气输送管路,液化石油气输送管路与一液化石油气储气桶相连,将储气桶内液化石油气经过空压式的第一流量控制阀和第二流量控制阀输送到进气歧管相应的部位;
其中,第一流量控制阀是开回路,根据一油门踏板的开度为主动致动参数,通过一凸轮改变一油门踏板空压控制阀的压力,将调压后的空气导入第一流量控制阀,使燃气喷入进气歧管的A端;
第二流量控制阀是闭回路,以引擎增压的压力为回馈致动参数,调控燃气输送到进气歧管B端的喷入量;
通过上述两个空压式流量控制阀取得最佳的燃气喷入量,获得优异的柴油/液化石油气混烧效果,达到节能减碳的功效。
前述一种柴油/液化石油气混烧***,第一流量控制阀和第二流量控制阀分别具有一上模片与一下模片,该上模片和下模片将流量控制阀中空的内部间隔为:
一间上气室,该上气室为流量控制阀内壁与上模片围成的用于隔离外界的空间,其通过一进气口连接油门踏板空压控制阀;
一间下气室,该下气室为上模片和下模片配合流量控制阀内壁围成的空间;
一间油气室,该油气室以下模片与流量控制阀部分内壁为界,将油气室与下气室隔开,该油气室具有一输送液化石油气的入口与一通往进气歧管的出口,在出、入口之间安装有一供气阀,该供气阀支持一安全阀堵塞油气室与下气室的相通处,以使下气室保持封闭状态;
其中,当进气口导入增压的压力或油门踏板空压控制阀所输出的气体时,上、下模片形变,提升下气室的室压,推开安全阀,并带动供气阀处于开启状态。
进一步地,该设置在第一流量控制阀和第二流量控制阀中的安全阀为一根顶针,该顶针一端连接供气阀,另一端塞住下气室与油气室的相通处。
前述一种柴油/液化石油气混烧***,该油门踏板空压控制阀包括:
一柱塞,该柱塞具有一量测气囊,该量测气囊局部突出柱塞***,剩余部位深入柱塞内部;
一间控制室,其用以容纳局部柱塞与量测气囊;
一气体流通区域,其包括一未经调压供应区和一流体区,流体区由一初始压力模片与一控制模片隔成:
一间初始压力室,该初始压力室位于初始压力模片与控制室之间,用一压力阀堵塞初始压力室与控制室的相通处;
一间二次压力室,该二次压力室隔着初始压力模片与初始压力室毗邻,初始压力室与二次压力室彼此不相连;
一块稳压调控压力区,该稳压调控压力区与二次压力室的分界线为控制模片,一供气阀堵住该稳压调控压力区与未经调压供应区的相通处,在稳压调控压力区与二次压力室的相通处安装有一随供气阀同步运动的安全阀;
当一油门踏板带动凸轮旋转时,柱塞被凸轮压入控制室来开启压力阀,初始压力模片及控制模片发生形变,提升二次压力室的室压,推开安全阀,并带动供气阀离开原来的堵塞位置,引导空气进入稳压调控压力区以调整气压值,再输送到第一流量控制阀的进气口。
进一步地,该设置在油门踏板空压控制阀中的压力阀由一钢珠与一弹簧组成,钢珠与柱塞之间连着一根顶针,弹簧提供钢珠堵塞该控制室与初始压力室的相通处所需的作用力。
进一步地,该设置在油门踏板空压控制阀中的供气阀由一弹簧与一颗钢珠组成,弹簧提供钢珠堵塞未经调压供应区与稳压调控压力区的相通处所需的作用力。
优选地,该设置在油门踏板空压控制阀中的安全阀是一钢珠,通过一根连动杆与组成供气阀的钢珠取得连动关系。
前述一种柴油/液化石油气混烧***,油门踏板驱动凸轮的行程使初始压力模片产生的变形量δp1由下列公式求得:
Sp×Kpa=Kp1×δp1
其中,Sp为柱塞受到凸轮的位移负载;Kpa是量测气囊经实验测出的弹力模数;Kp1是专用于油门踏板空压控制阀的压力阀的弹簧常数值;
而二次压力室的压力值Pp:
δp1=Εp×Pp(Rp22/Etp3
其中,Ep为常数值,随模片外半径Rp/模片中心半径rp而变;Pp为二次压力室因应初始压力模片变形所产生的压力值;E为模片材料之的扬式系数;tp为模片之的厚度。
进一步地,将二次压力室的压力值Pp代入下列公式中,求得运用在油门踏板空压控制阀的供气阀的弹簧的弹力模数Kp2
Pp×π×R2p2=Kp2×δp2
其中,π=3.1416;δp2为控制模片加压于供气阀弹簧位移量。
进一步地,流量控制阀的供气阀打开的位移δl2由下列公式求得:
δl2=El×Pl1×(Rl2 22/Etl3×Rl1 2/Rl2 2
=El×(Pl1×Rl2 2×Rl1 2)/Etl3
其中,E为模片材料的扬式系数;El为常数值随流量控制阀的模片半径Rl2/流量控制阀的模片中心半径rl2而变;Pl1代表来自增压的压力值或经由油门踏板控制阀调控的压力值;tl为模片的厚度。
为了了解电子控制式柴油/液化石油气混烧***节能减碳的实际效果,本发明人按照下列步骤进行长期的调校测试:
按照前述电子控制式柴油/液化石油气混烧***的方法,先求得最佳喷气量图、相对省油率及各式污染排放量与黑烟浓度改善率,确定可以节省能源20%且具有污染排放改善的能力;
然后,在测量取得最佳喷气量图的同时,分别测量取得纯柴油引擎与混烧***引擎在各个不同的负载与引擎转速点所产生的增压压力,深入探究喷气量与增压压力及油门踏板开度的关系;
最后,测量取得柴油/液化石油气混烧引擎***中的空气流动***与燃气喷入***各关键处的流量与压力,充分了解整个***的实时全局流场,作为机械式空压闭回路控制的发展策略与构造设计的基础。
终于,根据增压压力与引擎转速关系,以指数形式推导下列公式:
Mlpg=K[Bdsl]×θ×(Bddf+1)   (1),
公式(1)中,Mlpg代表燃气喷射量,Bdsl指柴油引擎增压压力,K[Bdsl]为一随柴油增压压力而改变的常数,θ表示油门踏板开度,Bddf为混烧引擎增压压力。
由公式(1)了解,液化石油气的喷射量与油门踏板开度成正比;也即,扭矩负载越大,则油门踏板开度越大,以致于喷入柴油引擎的液化石油气量也就越多。
同时还发现,液化石油气的喷入量与增压压力加上大气压力值成正比。这是因为喷入引擎的液化石油气需要更多的空气,要得到适当的空燃比,才能获得高效率的燃烧。柴油引擎要得到充足的空气,只有提高增压压力,再经中间冷却器降低压缩空气的温度,则空气密度提高可以增加引擎空气进入量。
然而,公式(1)的可变常数K[Bdsl]必需由引擎测试中依照不同的转速并相对于不同的增压压力而测得。以排气量7.5公升的柴油引擎为例,在扭矩负载为50%的液化石油气喷入量下:在低转速(即1200rpm以下)且增压压力较小时,K[Bdsl]=1;在最高负载扭矩(转速为1700rpm)下,混烧引擎热效率最高增压压力达0.37kg/cm2时,K[Bdsl]=1.245。倘若,再加大踏板开度,增压压力提升至0.71kg/cm2时,K[Bdsl]反降为1.163。
公式(2)中,表示混烧引擎省油率,与混烧引擎增压压力(Bddf)息息相关,υ为液化石油气热值/柴油热值的系数,其数值大致为1.237。
从公式(2)可知:混烧引擎相较于柴油引擎的省油率与液化石油气的喷入量成正比,但必须兼顾各种不同扭矩负载于不同转速下的增压压力,以便得到较高的燃烧反应,达到最佳热效率。
因此,公式(1)关于常数K[Bdsl]的部份,本发明人分成两部分来考虑:以扭矩负载50%的燃气喷入量(取K[Bdsl]=1)为主,加上油门踏板开度控制的燃气喷入量(取K[Bdsl]=0至0.245)为辅,采用两个空压式燃气流量控制阀,在柴油/液化石油气混烧***中实施。
这些空压式燃气流量控制阀之一是由引擎的增压压力为回馈致动参数,以闭回路式调控燃气喷入量。另一个空压式燃气流量控制阀是由油门踏板开度为开回路式的主动致动参数,通过空压控制凸轮改变油门踏板空压控制阀的压力,将调压后的空气导入燃气流量控制阀,使燃气喷入引擎进气歧管。所以,本发明只要通过两个空压流量控制阀产生最佳燃气喷入量,就能获得优异的柴油/液化石油气混烧效果,达到节能减碳的效果。
其次,本发明控制燃气喷入量的空压闭回路属于机械结构,无需安装电控喷气喷嘴及喷气控制单元,不仅构造比较简单,而且制作成本还比一般电子式控制***低约七、八成。
再者,本发明的闭回路控制方法采用增压压力为回馈致动参数,故喷入的液化石油气更能得到精准的控制,获得较佳的空燃比,提高混烧引擎的热效率,达到比一般电子式开回路控制混烧***更为优良的节能减碳效果。因此,本发明的混烧***,诚属节省柴油引擎燃料费用比较经济实惠的新利器。
附图说明
图1是本发明空压控制燃气流量式柴油/液化石油气混烧节能减碳***的一较佳实施例的架构平面图;
图2是图1的油门踏板空压控制阀的剖面放大平面图;
图3是图1的液化石油气流量控制阀的剖面放大平面图。
图号部分:
柴油输送管路10  柴油喷射泵11
柴油油箱12    柴油引擎13
进气歧管14    排气歧管15
涡轮增压器16   中冷器17
水箱18      油门踏板19
液化石油气输送管路20
液化石油气储气桶21
关闭阀22     汽化器23
过滤器24     电磁阀25
减压26
油气转换开关30  感知器31
第一流量控制阀40 入口41
进气口42     上模片43
下模片44     上气室45
下气室46     供气阀47
顶针48      油气室49
第二流量控制阀50 入口51
出口52      进气口53
出口54
油门踏板空压控制阀60
凸轮61      柱塞62
控制室63     量测气囊64
气体流通区域65  未经调压供应区66
供气阀67     初始压力模片68
控制模片69
初始压力室70   二次压力室71
稳压调控压力区72 压力阀73
顶针74      安全阀75
连动杆76     进气口77
出气口78
具体实施方式
为使阅览者深入了解本发明的精髓,配合必要的附图,就本发明技术内容做详实而具体的陈述如下:
在图1中,阐明了空压控制燃气流量式柴油/液化石油气混烧节能减碳***的较佳实施例的具体架构。
这种双燃料混烧***包括一柴油输送管路10与一液化石油气输送管路20,通过一油气转换开关30切换不同的燃料进行燃烧操作。
该柴油输送管路10中央是一柴油喷射泵11,柴油输送管路10一端连接一柴油油箱12,另一端与一柴油引擎13相通。当柴油引擎13激活后,一使用者踩下一油门踏板19,从而使柴油喷射泵11汲取柴油油箱12中的适量的柴油,进入柴油引擎13内部多道汽缸。
柴油引擎13外部连接一进气歧管14与一排气歧管15。进气歧管14一端界定为A端,另一端视为B端且连接一涡轮增压器16。该涡轮增压器16抽取气体,途经一中冷器17转入柴油引擎13的汽缸,混合柴油一起燃烧产生车辆行驶所需的动能,并将废气从排气歧管15输送到一排气管(图中未示)。另外,一水箱18贮存适量的液体(通常是指水),采用水冷方式对柴油引擎13进行散热作用。
该液化石油气输送管路20一端连接一液化石油气储气桶21,另一端形成两段分岔的管路用以衔接进气歧管14相应的部位:一段管路通往进气歧管14的A端,管路上安排一空压式第一流量控制阀40;另一段管路经过一空压式第二流量控制阀50而与进气歧管14的B端相连。在液化石油气输送管路20上且介于液化石油气储气桶21与两个流量控制阀40、50之间,依序安装一决定液化石油气输出的关闭阀22,一将液化石油气汽化为细小分子的汽化器23,以及一用以滤除石油气中杂质的过滤器24。
其中,关闭阀22平时为开启状态,其两端分别组装一位于液化石油气输送管路20的电磁阀25,每个电磁阀25以关闭为常态。汽化器23也采用水箱18的液体来获得水冷式散热效果。
所述的油气转换开关30有一组感知器31,感知器31可安装于柴油引擎13,用以侦测扭矩负载或是转速。打开油气转换开关30,使电磁阀25进入开启状态,允许液化石油气储气桶21将内部压力达10kg/cm2的燃气导入汽化器23里,减压26后成为2kg/cm2的流体,经由过滤器24分流至流量控制阀40、50相应的入口41、51。
在各种不同的扭矩负载与转速下,通过油门踏板19带动一凸轮61偏心转动,根据非圆形轮廓曲线到轮轴的距离不一致的构造,压迫一柱塞62深入一油门踏板空压控制阀60中。
如图2所示,该油门踏板空压控制阀60内部中空,被控制阀60内壁区分为两个部分:一间控制室63与一块气体流通区域65。其中,该控制室63属于控制阀60内部偏向柱塞62的空间,用以容纳一量测气囊64。量测气囊64局部突出柱塞62陷于控制室63部位的***,剩余部位深入柱塞62内部。
该气体流通区域65属于控制阀60内部远离柱塞62的空间,同样被控制阀60内壁区分为两个部分:一块未经调压供应区66与一块连接控制室63的流体区。此流体区被一对模片68、69隔成一间初始压力室70、一间二次压力室71与一块稳压调控压力区72。
其中,该稳压调控压力区72与未经调压供应区66相通,通过一供气阀67堵住供应区66与稳压调控压力区72的相通处。图中的供气阀67由一弹簧与一颗钢珠组成,钢珠靠着弹簧的弹性作用力堵塞未经调压供应区66与稳压调控压力区72的相通处。
该初始压力室70位于初始压力模片68与控制室63之间,通过一压力阀73自动堵塞控制室63与初始压力室70的彼此相通处。图中的压力阀73同样是由钢珠与弹簧组成,钢珠通过一根顶针74连着柱塞62端部,两者能够同步动作,弹簧提供弹性作用力,推动钢珠堵塞控制室63与初始压力室70的相通处。
该二次压力室71隔着初始压力模片68与初始压力室70毗邻,初始压力室70与二次压力室71彼此不相连。该二次压力室71与稳压调控压力区72的分界线是控制模片69。
该稳压调控压力区72与二次压力室71相通处被一安全阀75塞住。图中的安全阀75是颗钢珠,其与供气阀67的钢珠之间衔接一根连动杆76,以使安全阀75随着供气阀67同步运动。
从上述说明不难发现,柱塞62受力朝向控制室63深处位移,连带量测气囊64及顶针74同向运动,让控制室63与初始压力室70相通,迫使初始压力模片68因为压力强度改变而弯曲。同时,提高二次压力室71内部的压力强度,压迫控制模片69发生形变而弯曲,足以推开安全阀75,经由连动杆76带动供气阀67离开原来的堵塞位置。
此时,未经调压供应区66与稳压调控压力区72相通,以进气口77引导压力值约2kg/cm2的空气进入稳压调控压力区72,执行气压值范围在0~1.5kg/cm2的调整,再由出气口78将调整后的空气输送到第一流量控制阀40的进气口42。
接着看到图3,该第一流量控制阀40的构造大致上相同于油门踏板空压控制阀,都是靠着安排于第一流量控制阀40内的上、下模片43、44将其中空的内部隔成多个空间。自第一流量控制阀40内壁到上模片43之间形成一间上气室45,上气室45与外界隔离,只能通过进气口42来连接油门踏板空压控制阀,用以导入气压值调整后的气体,提升上气室45室压,迫使上模片43变形弯曲。
上、下模片43、44配合第一流量控制阀40内壁围成一间下气室46,下气室46与一间油气室49被第一流量控制阀40的部份内壁与下模片44隔开,用安全阀堵塞下气室46与油气室49的相通处,以致下气室46保持封闭状态。如此,变形的上模片43就会提升下气室46的室压,迫使下模片44弯曲变形。
图中的安全阀就像是一根顶针48,在另一组安装在入口41与出口52之间的供气阀47支撑下,以顶针48前端塞住下气室46与油气室49的相通处为常态。一旦下气室46的室压大于供气阀47施予顶针48的作用力,就能反推顶针48泄压,连带供气阀47同步退开。此时,液化石油气由入口41涌入第一流量控制阀40内部,经过供气阀47转向油气室49,通过出口52流向进气歧管14(详阅图1)A端。
回头看到图1,关于第二流量控制阀50的构造与第一流量控制阀40完全一致,差异处在于:第二流量控制阀50的进气口53导入涡轮增压气体。因为柴油引擎13启动后,涡轮增压器16在任何扭矩负载下都会产生增压的压力,此压力值范围约为0~0.8kg/cm2,通过进气口53注入第二流量控制阀50中。
后续流程与第一流量控制阀40相似:也即增压气体提升上气室的室压,以使上模片变形弯曲,迫使下气室增压来推挤下模片,从而推开顶针连带供气阀处于开启状态,引导液化石油气经由第二流量控制阀50的出口54流入进气歧管14的B端。
因此,柴油引擎13以低转速约1200rpm运行时,低油门开度下,增压压力很小,所以A端/B端的液化石油气喷入量很小,几乎为零。
当油门开度渐大,引擎转速约为1700rpm时,增压压力增至0.37kg/cm2,此时A端/B端的液化石油气喷入量约为24.5%。
当油门大开,引擎转速高达2400rpm时,增压压力增至0.71kg/cm2,A端/B端的液化石油气喷入量降为1.163。
当油门再加大引擎转速接近2700rpm时,液化石油气的总喷入量即为B端的喷入量,约为扭矩负载50%时的喷入量。因此,A端/B端的液化石油气喷入量均随凸轮61的轮廓曲线(依油门开度)而自动控制,构成一个以增压压力为致动器的闭回路气控主***,加上以油门踏板开度为致动器的开回路辅***,主辅两个***充分协调便可建立一个最佳燃气喷气***。
最后,经由油门踏板空压控制阀与空压式流量控制阀的设计分析,求得最佳燃气喷射机制以确保最高热效率而实现接近20%省油率的节能减碳目标。
假设,油门踏板空压控制阀以油门踏板驱动凸轮行程Sp(约2~3mm)往下压,使得初压力模片中央产生δp1的变形,导致二次压力室产生压力Pp,再对控制模片加压于供气阀的弹簧(常数Kp2)产生δp2的位移,即为供气阀打开的空隙程度。当Sp为最大(约3mm)时,δp2值也为最大,即供气阀门全开,未调压力空气以最大量进入稳压调控压力区。参酌高等材料力学应力分析得知:
δp1=Εp×Pp(Rp22/Etp3   (3)
公式(3)中,E为模片材料的扬式系数(Youngs Modulus),tp为模片的厚度,而常数Ep的数值随Rp/rp的值而变,详如下表:
Rp/rp 1.25 1.50 2 3 4 5
Ep 0.0034 0.031 0.125 0.291 0.417 0.492
当柱塞受到由凸轮的指定位移负载Sp时,对量测气囊(弹力模数Kpa可由实验测出)产生作用力Fp,导致初压力模片产生位移量δp1,由力的平衡得知Sp×Kpa=Kp1×δp1。只要设定专用于油门踏板空压控制阀的压力阀的弹簧常数值Kp1,δp1便可求出。再选择适当的模片材质E,外半径Rp,厚度tp及中心硬片半径rp后,将δp1代入公式(3)即可求得Pp,再经由控制模片与供气阀弹簧的力平衡,也即Pp×π×R2p2=Kp2×δp2,其中的π=3.1416,可求得运用在油门踏板空压控制阀的供气阀的弹簧的弹力模数Kp2
如此,从油门踏板开始,经过特别设计的凸轮产生Sp行程,经过各个气囊、初始压力室与二次压力室所有模片尺寸,以及各个弹簧的弹力模数均可精确设计制造,最后可调控空压至稳压压力Pc2而得到预定的流量及压力以进入空压式流量控制阀,达成由进气歧管A端进入引擎的液化石油气喷气量。
在空压式流量控制阀中,来自涡轮增压压力Pb1或经由油门踏板控制阀调控压力Pc2,通订为Pl1。同样用前述高等材料力学应力分析,则供气阀打开的位移δl2可由下列公式求得:
δl2=El×Pl1×(Rl2 22/Etl3×Rl1 2/Rl2 2
=El×(Pl1×Rl2 2×Rl1 2)/Etl3   (4)
上式中,E为模片材料的扬式系数(Youngs Modulus),tl为模片的厚度,而常数值El随流量控制阀的上、下模片半径Rl2/流量控制阀的上、下模片中心半径rl2的值而变,详如下表:
Rl/rl2 1.25 1.50 2 3 4 5
El 0.0034 0.031 0.125 0.291 0.417 0.492
当δl2求得后,流量控制阀出口的液化石油气喷出量即可得到精确的控制,由进气歧管A端及B端喷进柴油引擎的液化石油气喷射量,便可得到精确的控制。
综上所述,本发明在各种不同扭矩负载及不同转速下,经自动控制而得到液化石油气使用量与柴油使用量的最佳比例,同时得到最佳空燃比使混烧引擎达到最佳燃烧状况,即达成最高热效率,获得20%的省油率。

Claims (10)

1.一种柴油/液化石油气混烧***,其特征在于,包括:
一柴油引擎,该柴油引擎与一进气歧管相连;
一柴油输送管路,其用于将一柴油油箱的柴油输送到柴油引擎;
一液化石油气输送管路,该液化石油气输送管路与一液化石油气储气桶相连,以将该储气桶内的液化石油气经过空压式的第一流量控制阀和第二流量控制阀输送到进气歧管相应的部位;
其中,第一流量控制阀是开回路,其根据一油门踏板的开度作为主动致动参数,通过一凸轮改变一油门踏板空压控制阀的压力,并将调压后的空气导入该第一流量控制阀,以使燃气喷入进气歧管的A端;
第二流量控制阀是闭回路,其以引擎增压的压力作为回馈致动参数,调控燃气输送到进气歧管B端的喷入量。
2.根据权利要求1所述的柴油/液化石油气混烧***,其特征在于,第一流量控制阀和第二流量控制阀分别具有一上模片与一下模片,该上模片和下模片将流量控制阀中空的内部间隔为:
一间上气室,该上气室为流量控制阀内壁与上模片围成的用于隔离外界的空间,其通过一进气口连接油门踏板空压控制阀;
一间下气室,该下气室为上模片和下模片配合流量控制阀内壁围成的空间;
一间油气室,该油气室以下模片与流量控制阀部分内壁为界,将油气室与下气室隔开,该油气室具有一输送液化石油气的入口与一通往进气歧管的出口,在出、入口之间安装有一供气阀,该供气阀支持一安全阀堵塞油气室与下气室的相通处,以使下气室保持封闭状态;
其中,当进气口导入增压的压力或油门踏板空压控制阀所输出的气体时,上、下模片形变,提升下气室的室压,推开安全阀,并带动供气阀处于开启状态。
3.根据权利要求2所述的柴油/液化石油气混烧***,其特征在于,该设置在第一流量控制阀和第二流量控制阀中的安全阀为一根顶针,该顶针一端连接供气阀,另一端塞住下气室与油气室的相通处。
4.根据权利要求1、2或3所述的柴油/液化石油气混烧***,其特征在于,该油门踏板空压控制阀包括:
一柱塞,该柱塞具有一量测气囊,该量测气囊局部突出柱塞***,剩余部位深入柱塞内部;
一间控制室,其用以容纳局部柱塞与量测气囊;
一气体流通区域,其包括一未经调压供应区和一流体区,流体区由一初始压力模片与一控制模片隔成:
一间初始压力室,该初始压力室位于初始压力模片与控制室之间,通过一压力阀堵塞初始压力室与控制室的相通处;
一间二次压力室,该二次压力室隔着初始压力模片与初始压力室毗邻,初始压力室与二次压力室彼此不相连;
一块稳压调控压力区,该稳压调控压力区与二次压力室的分界线为控制模片,一供气阀堵住该稳压调控压力区与未经调压供应区的相通处,在稳压调控压力区与二次压力室的相通处安装有一随供气阀同步运动的安全阀;
当一油门踏板带动凸轮旋转时,柱塞被凸轮压入控制室来开启压力阀,初始压力模片及控制模片发生形变,提升二次压力室的室压,推开安全阀,并带动供气阀离开原来的堵塞位置,引导空气进入稳压调控压力区以调整气压值,再输送到第一流量控制阀的进气口。
5.根据权利要求4所述的柴油/液化石油气混烧***,其特征在于,该设置在油门踏板空压控制阀中的压力阀由一钢珠与一弹簧组成,钢珠与柱塞之间连着一根顶针,弹簧提供钢珠堵塞该控制室与初始压力室的相通处所需的作用力。
6.根据权利要求4所述的柴油/液化石油气混烧***,其特征在于,该设置在油门踏板空压控制阀中的供气阀由一弹簧与一颗钢珠组成,弹簧提供钢珠堵塞未经调压供应区与稳压调控压力区的相通处所需的作用力。
7.根据权利要求6所述的柴油/液化石油气混烧***,其特征在于,该设置在油门踏板空压控制阀中的安全阀是一钢珠,通过一根连动杆与组成供气阀的钢珠取得连动关系。
8.根据权利要求7所述的柴油/液化石油气混烧***,其特征在于,油门踏板驱动凸轮的行程使初始压力模片产生的变形量δp1由下列公式求得:
Sp×Kpa=Kp1×δp1
其中,Sp为柱塞受到凸轮的位移负载;Kpa是量测气囊经实验测出的弹力模数;Kp1是专用于油门踏板空压控制阀的压力阀的弹簧常数值;
而二次压力室的压力值Pp通过下列公式求得:
δp1=Εp×Pp(Rp22/Etp3
其中,Ep为常数值,随模片外半径Rp/模片中心半径rp而变;Pp为二次压力室因应初始压力模片变形所产生的压力值;E为模片材料之的扬式系数;tp为模片之的厚度。
9.根据权利要求8所述的柴油/液化石油气混烧***,其特征在于,油门踏板空压控制阀中的供气阀的弹簧的弹力模数Kp2通过下列公式求得:
Pp×π×R2p2=Kp2×δp2
其中,π=3.1416;δp2为控制模片加压于供气阀弹簧位移量,Pp为所述二次压力室的压力值。
10.根据权利要求7所述的柴油/液化石油气混烧***,其特征在于,流量控制阀的供气阀打开的位移δl2由下列公式求得:
δl2=El×Pl1×(Rl2 22/Etl3×Rl1 2/Rl2 2
=El×(Pl1×Rl2 2×Rl1 2)/Etl3
其中,E为模片材料的扬式系数;El为常数值随流量控制阀的模片半径Rl2/流量控制阀的模片中心半径rl2而变;Pl1代表来自增压的压力值或经由油门踏板控制阀调控的压力值;tl为模片的厚度。
CN201310349608.0A 2013-08-12 2013-08-12 一种柴油/液化石油气混烧*** Pending CN104373227A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310349608.0A CN104373227A (zh) 2013-08-12 2013-08-12 一种柴油/液化石油气混烧***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310349608.0A CN104373227A (zh) 2013-08-12 2013-08-12 一种柴油/液化石油气混烧***

Publications (1)

Publication Number Publication Date
CN104373227A true CN104373227A (zh) 2015-02-25

Family

ID=52552363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310349608.0A Pending CN104373227A (zh) 2013-08-12 2013-08-12 一种柴油/液化石油气混烧***

Country Status (1)

Country Link
CN (1) CN104373227A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106812610A (zh) * 2017-02-17 2017-06-09 林阳泰 空压控制柴油/二甲醚掺和液化石油气混烧***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2397267Y (zh) * 1999-06-26 2000-09-20 四川石油管理局南充机械厂 天然气与柴油双燃料汽车油气门控制装置
GB2388403A (en) * 2002-04-08 2003-11-12 Autogas Diesel Ltd Electronically controlled dual fuel diesel/LPG fuel system for an i.c. engine
KR20070073697A (ko) * 2007-06-20 2007-07-10 신경식 디젤 엘엔지 혼소 시스템
CN101598069A (zh) * 2009-07-06 2009-12-09 赵志贤 柴油机加燃汽油装置
CN101806253A (zh) * 2010-04-19 2010-08-18 浙江大学 双燃料发动机燃料供给控制装置
CN103244289A (zh) * 2013-05-17 2013-08-14 林阳泰 空压控制燃气流量式柴油/液化石油气混烧***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2397267Y (zh) * 1999-06-26 2000-09-20 四川石油管理局南充机械厂 天然气与柴油双燃料汽车油气门控制装置
GB2388403A (en) * 2002-04-08 2003-11-12 Autogas Diesel Ltd Electronically controlled dual fuel diesel/LPG fuel system for an i.c. engine
KR20070073697A (ko) * 2007-06-20 2007-07-10 신경식 디젤 엘엔지 혼소 시스템
CN101598069A (zh) * 2009-07-06 2009-12-09 赵志贤 柴油机加燃汽油装置
CN101806253A (zh) * 2010-04-19 2010-08-18 浙江大学 双燃料发动机燃料供给控制装置
CN103244289A (zh) * 2013-05-17 2013-08-14 林阳泰 空压控制燃气流量式柴油/液化石油气混烧***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106812610A (zh) * 2017-02-17 2017-06-09 林阳泰 空压控制柴油/二甲醚掺和液化石油气混烧***

Similar Documents

Publication Publication Date Title
CN101451444B (zh) 一种数控气动发动机
CN101151450B (zh) 运行压缩-点火引擎的***和方法
CN101680355A (zh) 抗爆震分开循环发动机和方法
CN102374058A (zh) 控制具有强制进气***的柴油发动机的方法和装置
CN102575589A (zh) 米勒循环发动机
CN105888832B (zh) 米勒循环柴油-天然气双燃料发动机及其控制方法
CN102725494B (zh) 一种专用的均质压燃式发动机
CN204299643U (zh) 用于二甲醚发动机燃烧室通道的阀门液压开闭装置
CN104500163A (zh) 一种二甲醚发动机主副燃烧室通道阀门的开闭装置
CN103244289B (zh) 空压控制燃气流量式柴油/液化石油气混烧***
CN103266950A (zh) 一种油水燃料复合式废气动力型二行程发动机
CN102226425A (zh) 气动内燃混合动力发动机
CN201306193Y (zh) 一种数控气动发动机
CN104373227A (zh) 一种柴油/液化石油气混烧***
CN100470012C (zh) 混合动力发动机
CN101649786B (zh) 混合动力柔性发动机
CN106894889A (zh) 内燃机的运行方法和内燃机
CN201013446Y (zh) 混合动力发动机
CN205243680U (zh) 发动机高压助功热冷却***
TWI580860B (zh) Air pressure control gas flow diesel / liquefied petroleum gas mixed with energy saving and carbon reduction system
CN204126718U (zh) 内燃发动机
CN201144740Y (zh) 燃气发动机之混气阀
CN106812610A (zh) 空压控制柴油/二甲醚掺和液化石油气混烧***
CN103306859A (zh) 一种汽车发动机废气再循环***
CN201925010U (zh) 一种专用hcci发动机

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150225