CN104328430B - 一种耐蚀的CuAlFeNi激光熔覆涂层材料及其制备方法 - Google Patents

一种耐蚀的CuAlFeNi激光熔覆涂层材料及其制备方法 Download PDF

Info

Publication number
CN104328430B
CN104328430B CN201410533040.2A CN201410533040A CN104328430B CN 104328430 B CN104328430 B CN 104328430B CN 201410533040 A CN201410533040 A CN 201410533040A CN 104328430 B CN104328430 B CN 104328430B
Authority
CN
China
Prior art keywords
laser
coating layer
cladding
cualfeni
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410533040.2A
Other languages
English (en)
Other versions
CN104328430A (zh
Inventor
杨胶溪
文强
李子阳
肖志勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201410533040.2A priority Critical patent/CN104328430B/zh
Publication of CN104328430A publication Critical patent/CN104328430A/zh
Application granted granted Critical
Publication of CN104328430B publication Critical patent/CN104328430B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

一种耐蚀的CuAlFeNi激光熔覆涂层材料及其制备方法属于表面涂层领域。制备能提高表面耐蚀性能的铜合金球形粉末,其质量百分比如下:75‑88wt%Cu、8‑11wt%Al、0.1‑3wt%Fe、0.1‑0.5wt%Cr、0.1‑0.5wt%Ti和1.5‑9wt%Ni。采用波长为800nm‑10.6μm连续激光热源制备CuAlFeNi熔覆涂层,激光功率为1500‑2500W,扫描速度为180‑600mm/min,离焦20‑30mm,搭接率30‑60%,熔覆过程氩气保护气流量为10‑15L/min,送粉速率15‑40g/min。采用此种工艺,获得一定厚度的熔覆涂层,冶金质量良好,组织分布均匀且耐蚀性能优异。

Description

一种耐蚀的CuAlFeNi激光熔覆涂层材料及其制备方法
技术领域:
本发明涉及制备铜合金材料领域,尤其涉及铜合金的耐海水腐蚀材料体系和金属表面激光熔覆涂层的方法。
背景技术:
铜合金具有良好的导热导电性能和耐腐蚀性能,摩擦系数较小,且具有较高的强度,广泛应用于机械、化工及汽车等工业中。铝铜合金具有良好的耐海水腐蚀和抗海洋生物附着能力,可用来制造耐腐蚀零件,如螺旋桨、阀门、管道,在海洋工程中得到了广泛应用。但是铝青铜合金作为一些耐磨零件和耐蚀零件时,因磨损与腐蚀失效带来的经济损失是相当严重的。对于工业中使用的铜合金器件,为保证其具备良好的减摩、耐腐蚀等性能,常规工艺均采用整体成形方法加工铜合金零件,铜合金消耗大,成本高,而零件的失效经常发生在表面。因此,我们可在机械零件表面激光熔覆一定厚度的铜合金涂层,以代替整体铜合金零件。激光熔覆是一个非平衡态的快速冷却过程,在凝固组织中能形成大量过饱和固溶体、介稳相及析出新相并细化组织,并与基体实现冶金结合,可得到综合性能良好的涂层。
以铝为主要添加元素的铜合金粉末,一般形成以α相为基体相,具有良好的力学性能和塑形变形能力。少量的铁、钛、铬可以阻止相变重结晶作用而细化晶粒,从而提高合金的力学性能。Fe的添加同时可以抑制γ1相的形成和结网,提高耐蚀性能。铜和镍可无限互溶形成连续固溶体,镍的存在使铜镍合金表面Cu2O膜具有更大的稳定性,铜离子有毒,使得铜镍合金具有优良的耐腐蚀性能和抗生物污染的能力,且随着镍的加入,加强了Fe元素的扩散作用,使涂层中大量Fe元素固溶进α-Cu中,不再以α-Fe单质形式析出;另一方面,电极表面生成的氧化镍的能阻挡Cu离子进入溶液,氧化镍的存在使铜镍合金电极表面Cu2O膜具有更大的稳定性。采取此种铜合金粉末体系并结合激光熔覆技术,获得的熔覆涂层具有一定厚度、冶金质量良好、组织分布均匀、较优异耐蚀性能等特点,在机械、化工及石油等工业有良好的应用前景。
发明内容:
发明涉及一种耐蚀的CuAlFeNi激光熔覆涂层材料及其制备方法。
一种耐蚀的CuAlFeNi激光熔覆涂层材料及其制备方法,其特征在于质量百分比如下:75-88wt%Cu、8-11wt%Al、0.1-3wt%Fe、0.1-0.5wt%Cr、0.1-0.5wt%Ti和1.5-9wt%Ni。
其制备过程包括以下步骤:
(1)设计好铜合金粉末配比,称量、配置原料,将合金材料熔炼后采用雾化的方式得到铜合金粉体,合金过筛后得到10-100μm的球形粉末;或者采用粒度为10-120μm的单元素粉末按照上述合金配比在球磨机中进行粉末混合2-5小时,以得到混合均匀的粉末;
(2)将粉末放置在干燥箱内4小时,干燥温度设置为100-150℃;
(3)选取机械零件作为载体,利用同步送粉激光熔覆技术在零件表面上制备一定厚度的铜合金涂层,激光熔覆工艺参数为:所输送的粉末束流与激光束呈40-60度角,粉末束流与激光束相交于零件表面,激光功率为1500-2500W,激光扫描速度为180-600mm/min,搭接率为30-60%,熔覆过程氩气保护气流量为10-15L/min,送粉速率15-40g/min。
按照此发明得到的铜合金熔覆涂层特征为:组织致密、无裂纹气孔等缺陷、涂层同基体完全冶金结合。选择不同的送粉速率、搭接率等参数,能获得厚度为0.6-3.2mm的涂层,铜合金涂层组织枝晶均匀分布,主要由α-Cu、α-(Fe,Ni)、AlCu3、Cu9Al4等物相组成,铜合金涂层整体硬度差异不大,在3.5%NaCl中性电解液条件下进行电化学测试,熔覆涂层的腐蚀电流2.31×10-7-6.53×10-7A·mm-2,耐蚀性能优异。
附图说明
图1是实例1、2激光熔覆铜镍合金耐蚀材料涂层界面SEM照片
图2是实例1激光熔覆铜镍合金耐蚀材料微观组织SEM照片
图3是实例1激光熔覆铜镍合金耐蚀材料XRD照片
图4是实例2激光熔覆铜镍合金耐蚀材料涂层硬度照片
图5是实例1-3激光熔覆铜镍合金耐蚀材料动电位极化曲线照片
具体实施方式:
实施例1:
包括如下步骤:
(1)铜合金粉末的各组分按质量百分比分别为:88wt%Cu、8wt%Al、1.5t%Fe、1.5wt%Ni、0.5wt%Cr和0.5wt%Ti。按上述组分的质量百分比称量、配置原料,将合金材料熔炼后采用雾化的方式得到铜合金粉体,过筛后得到10-100μm的粉末。
(2)基体材料使用尺寸为150×120×3mm板状的304不锈钢材料,采用波长为10.6μmCO2激光器,安装和调试好激光熔覆装置,送粉工作头跟激光光束角度为60°,保护气喷嘴离加工件10mm,氩气气体流量为15L/min,调入控制程序,开启循环冷却水和激光设备。激光功率为2500W,正离焦20mm,扫描速度为600mm/min,搭接率为60%,粉末速度为40g/min。
实施例1所得的熔覆涂层界面微观形貌如图1所示,涂层与基体间呈良好的冶金结合,基体与涂层的熔合线清晰可见,界面处有很多柱状晶粒和花朵状枝晶从基体向涂层方向生长。由图2的微观组织可以看出涂层晶粒均匀分布,Ni元素加强了Fe元素的扩散作用,使涂层中大量Fe元素固溶进基体α-Cu中,未发现呈树枝状、圆球状的α-Fe晶粒。黑色区域为基体相,富含Cu;白色区域为晶粒晶界,富含Ni、Fe、Al等合金元素。涂层主要由α-Cu、α-(Fe,Ni)、AlCu3、Cu9Al4等物相组成(见图3),耐蚀性能良好,在3.5%NaCl中性电解液条件下进行电化学测试,铜镍熔覆涂层的腐蚀电流5.89×10-7A·mm-2,自腐蚀电位为-0.271V(SCE)。
实施例2:
其与实施例1除以下步骤外均相同。
(1)铜合金粉末的各组分按质量百分比计分别为:84wt%Cu、9wt%Al、1.9wt%Fe、4.5wt%Ni,0.3wt%Cr和0.3wt%Ti,采用粒度为10-100μm的单元素粉末按照上述合金配比在球磨机中进行粉末混合3小时,混合后得到均匀粉体;将粉末在干燥箱内烘干4小时,干燥温度为120℃。
(2)基体材料使用直径为20mm的圆柱状45#钢,安装在机床转台上,利用波长为800nm-1100nm的半导体激光器在表面进行熔覆。激光功率为2000W,光斑正离焦30mm,送粉工作头跟激光光束角度为40°,工件线速度为3000mm/min,转台角速度为1719°/min,搭接率为30%,激光器X轴扫描方向的速度为8.75mm/min,送粉速度为20g/min。
实施例2所得的铜合金熔覆涂层厚度为1.4mm,涂层与基体之间冶金结合,熔覆层无裂纹、气孔等缺陷。涂层整体硬度差异不大(见图4),添加Ni元素生成的熔覆层组织分布较均匀,Ni元素加强了Fe元素的扩散作用。在3.5%NaCl中性电解液条件下进行电化学测试,熔覆涂层的腐蚀电流2.31×10-7A·mm-2,自腐蚀电位为-0.243V(SCE),耐蚀性能良好。
实施例3:
其与例1除以下步骤外均相同。
(1)铜合金粉末的各组分按质量百分比计分别为:77wt%Cu、11wt%Al、2.8wt%Fe、9.0wt%Ni、0.1wt%Cr和0.1wt%Ti。。
(2)基体材料使用尺寸700×250×20mm的316L不锈钢,采用波长为1070nm光纤激光器,激光功率为1500W,光斑正离焦25mm,送粉工作头跟激光光束角度为50°,扫描速度为200mm/min,搭接率为50%,氩气保护气气体流量为12L/min,送粉速度为17g/min。
实施例3所得的铜合金熔覆涂层性能良,在3.5%NaCl中性电解液条件下进行电化学测试,熔覆涂层的腐蚀电流5.72×10-7A·mm-2,自腐蚀电位为-0.296V(SCE),其耐蚀性能良好。

Claims (1)

1.一种耐蚀的CuAlFeNi激光熔覆涂层材料,其特征在于合金粉末质量百分比如下:75-88wt%Cu、8-11wt%Al、0.1-3wt%Fe、0.1-0.5wt%Cr、0.1-0.5wt%Ti和1.5-9wt%Ni;采用波长为800nm-10.6μm连续激光热源制备CuAlFeNi熔覆涂层,激光功率为1500-2500W,激光扫描速度为180-600mm/min,离焦20-30mm,搭接率30-60%,熔覆过程氩气保护气流量为10-15L/min,送粉速率15-40g/min。
CN201410533040.2A 2014-10-10 2014-10-10 一种耐蚀的CuAlFeNi激光熔覆涂层材料及其制备方法 Active CN104328430B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410533040.2A CN104328430B (zh) 2014-10-10 2014-10-10 一种耐蚀的CuAlFeNi激光熔覆涂层材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410533040.2A CN104328430B (zh) 2014-10-10 2014-10-10 一种耐蚀的CuAlFeNi激光熔覆涂层材料及其制备方法

Publications (2)

Publication Number Publication Date
CN104328430A CN104328430A (zh) 2015-02-04
CN104328430B true CN104328430B (zh) 2017-01-11

Family

ID=52403234

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410533040.2A Active CN104328430B (zh) 2014-10-10 2014-10-10 一种耐蚀的CuAlFeNi激光熔覆涂层材料及其制备方法

Country Status (1)

Country Link
CN (1) CN104328430B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088005B (zh) * 2015-08-13 2017-11-28 山西玉华再制造科技有限公司 激光熔覆用无火花铝青铜粉末、制备方法和熔覆方法
CN108118335B (zh) * 2017-12-28 2020-02-21 沈阳大陆激光技术有限公司 一种高压水除鳞集管的激光修复方法
CN110373665A (zh) * 2019-07-02 2019-10-25 常州大学 一种轴瓦的激光热喷涂再制造方法
CN111705237B (zh) * 2020-06-03 2021-12-14 河海大学 一种船舶螺旋桨用耐腐蚀防污损抗空蚀铜基中熵合金涂层及其制备方法
CN113333696B (zh) * 2021-06-01 2023-02-17 西峡龙成特种材料有限公司 一种CuAlFeNi结晶器铜板背板及其母材与加工方法
CN113463091A (zh) * 2021-07-01 2021-10-01 安徽煜宸激光技术有限公司 一种铜合金熔覆方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102041503B (zh) * 2009-12-29 2012-11-14 华中科技大学 铜及铜合金表面激光熔覆复合耐磨层及制备方法
CN102912342B (zh) * 2012-11-12 2014-05-14 南昌航空大学 一种激光-感应复合熔覆制备高强高导铜基合金涂层的方法
PL227405B1 (pl) * 2012-12-19 2017-11-30 SYSTEM Spółka Akcyjna Sposób laserowego napawania warstwy metalicznej na element metalowy
CN103540790B (zh) * 2013-10-28 2015-09-09 北京工业大学 一种耐蚀的CuAlCr激光熔覆层材料的制备方法
CN103898503A (zh) * 2014-04-11 2014-07-02 江苏新亚特钢锻造有限公司 一种激光-感应复合熔覆修复轴类零部件的方法

Also Published As

Publication number Publication date
CN104328430A (zh) 2015-02-04

Similar Documents

Publication Publication Date Title
CN104328430B (zh) 一种耐蚀的CuAlFeNi激光熔覆涂层材料及其制备方法
CN103540790B (zh) 一种耐蚀的CuAlCr激光熔覆层材料的制备方法
US11401588B2 (en) Additive manufacturing method of lead-free environmentally-friendly high-strength brass alloy
Zhong et al. Experimental study of effects of main process parameters on porosity, track geometry, deposition rate, and powder efficiency for high deposition rate laser metal deposition
Dada et al. The comparative study of the microstructural and corrosion behaviour of laser-deposited high entropy alloys
Yao et al. Characteristics and performance of hard Ni60 alloy coating produced with supersonic laser deposition technique
Luo et al. Effect of spray conditions on deposition behavior and microstructure of cold sprayed Ni coatings sprayed with a porous electrolytic Ni powder
Kim et al. Oxidation-resistant coating of FeCrAl on Zr-alloy tubes using 3D printing direct energy deposition
Wan et al. A comparative study of the microstructure, mechanical properties and corrosion resistance of Ni-or Fe-based composite coatings by laser cladding
CN105177570A (zh) 一种表面涂敷工艺方法
Chaudhary et al. Friction stir powder additive manufacturing of Al 6061/FeCoNi and Al 6061/Ni metal matrix composites: Reinforcement distribution, microstructure, residual stresses, and mechanical properties
Liu et al. An investigation of the surface quality and corrosion resistance of laser remelted and extreme high-speed laser cladded Ni-based alloy coating
Vimalraj et al. High-strength steel S960QC welded with rare earth nanoparticle coated filler wire
Alam et al. Effect of process parameters on the microstructural evolutions of laser cladded 420 martensitic stainless steel
Shu et al. A novel coating method to fabricate ZrC reinforced metal matrix composite cladding
CN110484916A (zh) 一种高速及超高速激光熔覆用镍基合金粉末
CN105349735A (zh) 一种激光熔凝工艺
Dai et al. The mechanism of process parameters influencing the AlSi10Mg side surface quality fabricated via laser powder bed fusion
Zhou et al. Microstructure, mechanical properties, and tribological properties of laser assisted cold sprayed CuCrZr coatings: Influences of laser power and laser position
Yang et al. Investigation on reducing residual stress and optimizing performance of 2219 aluminum alloy friction stir welded joint by cold spraying
Novichenko et al. Carbide-reinforced metal matrix composite by direct metal deposition
Loginova et al. Effect of direct laser deposition on microstructure and mechanical properties of 316L stainless steel
Karşi et al. Optimization of Laser Cladding Process Parameters of a Martensitic Stainless Steel Coating on GGG70L Ductile Cast Iron.
CN109161721A (zh) 焊接用铜基合金材料及其制造方法
Tlotleng et al. Evaluation of the microstructure and microhardness of laser-fabricated titanium aluminate coatings

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant