CN104325652B - 镍钛记忆合金与碳纳米管复合掺杂聚氨酯复合材料及制备方法 - Google Patents

镍钛记忆合金与碳纳米管复合掺杂聚氨酯复合材料及制备方法 Download PDF

Info

Publication number
CN104325652B
CN104325652B CN201410445458.8A CN201410445458A CN104325652B CN 104325652 B CN104325652 B CN 104325652B CN 201410445458 A CN201410445458 A CN 201410445458A CN 104325652 B CN104325652 B CN 104325652B
Authority
CN
China
Prior art keywords
cnt
spring
niti
preparation
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410445458.8A
Other languages
English (en)
Other versions
CN104325652A (zh
Inventor
田兵
王杨辉
李莉
郑玉峰
陈枫
佟运祥
刘二宝
肖宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ganges RIver Heilongjiang Sand Technology Development Co., Ltd.
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201410445458.8A priority Critical patent/CN104325652B/zh
Publication of CN104325652A publication Critical patent/CN104325652A/zh
Application granted granted Critical
Publication of CN104325652B publication Critical patent/CN104325652B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Springs (AREA)

Abstract

本发明提供的是镍钛记忆合金与碳纳米管复合掺杂聚氨酯复合材料及制备方法。(1)将NiTi合金丝材在弹簧绕制机上缠绕成弹簧;(2)弹簧在400~500℃热处理;(3)将碳纳米管与聚氨酯弹性体颗粒机械搅拌混合;(4)将脱模剂涂抹于模具内表面;(5)将步骤(3)中制备的碳纳米管与聚氨酯弹性体混合体置于模具中,在190~220℃热熔;(6)将NiTi合金弹簧均匀平铺于(5)中制备的铺层上,将碳纳米管与聚氨酯弹性体混合体分散于NiTi弹簧周围并将NiTi弹簧完全覆盖;(7)在鼓风恒温箱中进行复合材料热熔成型。本发明制备的具有形状记忆效应的阻尼智能复合材料,可以应用于能够适应环境温度变化的阻尼减振领域。

Description

镍钛记忆合金与碳纳米管复合掺杂聚氨酯复合材料及制备方法
技术领域
本发明涉及一种聚氨酯基复合材料的制备方法,特别涉及一种镍钛记忆合金与碳纳米管复合掺杂聚氨酯复合材料及制备方法。
背景技术
控制振动和噪声的一种最为直接有效的方法是使用阻尼材料,将振动产生的机械能转化为热能耗散掉,从而达到减振降噪的目的。粘弹性阻尼材料是目前研究最为广泛的高阻尼材料。粘弹性阻尼材料主要是聚合物等高分子材料,具有比重轻、易于加工,并能够产生较大的阻尼。然而,粘弹性阻尼材料由于刚度、强度低和抗蠕变性差,不能作为结构材料使用。碳纳米管等纳米材料由于具有大的比表面积和优异的力学性能,因此经常被用作增强体改善聚合物基体的力学性能。Jonghwan等在国际著名期刊NatureMaterials上发表文章说明,碳纳米管除了表现出较高的拉伸强度、杨氏模量、良好的导电与导热性能外,还具有良好的阻尼性能。碳纳米管的阻尼性能主要得益于其纳米级的尺寸以及较高的长径比,当将碳纳米管添加到树脂基体中后,碳纳米管与基体之间的界面接触面积非常大。在一定振动条件下,碳纳米管在聚合物基体中以界面滑移、摩擦等方式消耗能量,从而使复合材料的阻尼性能得到极大提高。因此,利用碳纳米管掺杂聚合物基体是综合改善复合材料力学性能和阻尼性能的有效方法。
另外,在实际工程应用中需要注意的是,外部振动变化以及环境温度变化等都会影响粘弹性阻尼材料的力学性能和阻尼性能,粘弹性材料不能根据外界条件变化主动调整自身性能,这无疑极大地限制了粘弹性阻尼材料的工程适用范围。因此,开发能够适应外界环境变化并适当调整自身力学性能和动态力学行为的智能型阻尼材料将是未来阻尼材料发展的重点。NiTi基形状记忆合金由于在温度或应力驱动下可以发生热弹性马氏体转变,表现出良好的超弹性、形状记忆效应和阻尼特性。NiTi基形状记忆合金同时具有较高的强度、良好的塑性和冷热加工性能,耐腐蚀性好,可以消除由于长时间使用带来的老化和可靠性变化所引起的问题。另外,NiTi合金随着外界应力和温度变化可以通过马氏体相变实现超弹性和形状记忆效应,产生大的应变回复。因此NiTi合金可以感知外界环境变化,通过形状改变和材料组织转变对外界作出响应,从而实现阻尼性能和力学属性的智能控制。如果将NiTi合金与粘弹性阻尼材料复合,在保证材料具有高阻尼的同时可以赋予阻尼材料适应外界环境变化的智能属性。
综上,将碳纳米管与NiTi合金复合掺入粘弹性阻尼材料是制备具有高强度、高阻尼和智能属性复合材料的有效途径。目前公开报道的文献中主要涉及的是在粘弹性树脂材料中单一填加碳纳米管或NiTi合金丝等,研究的主要是碳纳米管/树脂复合材料的力学性能和阻尼性能以及NiTi合金丝/树脂复合材料的抗冲击力学性能等,都未能充分考虑树脂基复合材料的温度适应特性和深入探究如何使复合材料的智能属性和阻尼特性得到良好结合。而且,在以往的复合材料制备中主要采用的是溶液混合法,即利用有机溶剂溶解树脂基体然后与填加材料复合,最后将溶剂挥发后成型,该种方法具有制备效率低、成本较高、溶剂较难完全挥发去除等缺点。
发明内容
本发明的目的在于提供一种具有良好阻尼特性和形状记忆效应的镍钛记忆合金与碳纳米管复合掺杂聚氨酯复合材料。本发明的目的还在于提供一种工艺简单、重复性好、成本低的镍钛记忆合金与碳纳米管复合掺杂聚氨酯复合材料的制备方法。
本发明的目的是这样实现的:
本发明的镍钛记忆合金与碳纳米管复合掺杂聚氨酯复合材料是:(1)将丝径为0.1~0.3mm的NiTi合金丝材在弹簧绕制机上缠绕成弹簧结构;(2)绕制后的弹簧在400~500℃热处理30min获得室温超弹性;(3)将碳纳米管与聚氨酯弹性体颗粒机械搅拌混合,使碳纳米管均匀包覆在聚氨酯弹性体颗粒表面,碳纳米管的含量为0.1~0.5wt%;(4)将脱模剂涂抹于模具内表面;(5)将步骤(3)中制备的碳纳米管与聚氨酯弹性体混合体置于模具中,在190~220℃热熔成型;(6)将NiTi合金弹簧均匀平铺于(5)中制备的铺层上,然后将碳纳米管与聚氨酯弹性体混合体分散于NiTi弹簧周围并将NiTi弹簧完全覆盖;(7)在鼓风恒温箱中进行复合材料成型,热熔温度为190~220℃,成型时间为20~60min,待模具冷却后所得到的镍钛记忆合金与碳纳米管复合掺杂聚氨酯复合材料。
本发明的镍钛记忆合金与碳纳米管复合掺杂聚氨酯复合材料的制备方法包括:
(1)NiTi记忆合金弹簧制备:
1)将丝径为0.1~0.3mm的NiTi合金丝材在弹簧绕制机上缠绕成弹簧结构;
2)绕制后的弹簧在400~500℃热处理30min获得NiTi合金弹簧;
(2)复合材料制备:
3)将碳纳米管(CNT)与聚氨酯弹性体(TPU)颗粒机械搅拌混合,碳纳米管的含量为0.1~0.5wt%,使碳纳米管均匀包覆在聚氨酯弹性体颗粒表面;
4)将脱模剂涂抹于成型模具内表面,有利于复合材料成型后脱模;
5)将步骤3)中制备的碳纳米管与聚氨酯弹性体混合体置于成型模具中,在190~220℃热熔成型;
6)将NiTi合金弹簧均匀平铺于5)中制备的铺层上,然后将碳纳米管与聚氨酯弹性体混合体分散于NiTi弹簧周围并将NiTi弹簧结构完全覆盖;
7)合模,在鼓风恒温箱中进行复合材料成型,热熔温度为190~220℃,成型时间为20~60min。
本发明的出发点是,选用目前广泛研究和应用的具有耐磨、耐腐蚀等优点的聚氨酯(PU)材料作为复合材料基体,将碳纳米管和NiTi合金弹簧(弹簧结构比以往报道的丝材具有更好的减振作用)作为填料,利用具有高效率、低成本特点的热熔成型法制备碳纳米管和NiTi合金复合掺杂的聚氨酯基复合材料,以期获得兼具良好温度响应特性和阻尼特性的智能型复合材料。
本发明利用热熔成型法将聚氨酯弹性体颗粒、碳纳米管和NiTi记忆合金弹簧结构热压成复合材料。碳纳米管与NiTi合金复合掺杂的聚氨酯复合材料表现出良好的阻尼特性和形状记忆回复特性,兼具减振和温度响应智能属性。该复合材料的制备工艺简单、成本低、重复性好,适合于批量生产。
附图说明
图1为NiTi/CNT/TPU复合材料的结构示意图;
图2为NiTi/CNT/TPU复合材料的制备过程示意图;
图3a-图3b为NiTi记忆合金弹簧的DSC曲线,其中图3a为热处理前、图3b为热处理后;
图4为NiTi记忆合金弹簧的拉伸力学曲线;
图5a-图5b为NiTi/CNT/TPU复合材料的断口扫描照片,其中图5a为CNT与TPU基体的界面、图5b为NiTi弹簧与TPU基体;
图6为NiTi/CNT/TPU复合材料的动态热机械分析测试曲线;
图7为NiTi/CNT/TPU复合材料的形状回复率测试曲线。
具体实施方式
下面举例对本发明做更详细的描述:
结合图2,NiTi记忆合金弹簧与碳纳米管复合掺杂聚氨酯复合材料的制备工艺路线是:
(1)将丝径为0.2mm的Ni50.9Ti49.1合金丝材在弹簧绕制机上缠绕成弹簧结构,弹簧的簧径和簧距均为1mm。
(2)绕制后的弹簧在450℃热处理30min获得室温超弹性。
(3)将含有羧基的多壁碳纳米管与8185(烟台万华聚氨酯公司牌号)热塑性聚醚型聚氨酯弹性体颗粒利用机械搅拌的方法混合,使CNT均匀包覆在TPU颗粒表面,CNT含量为0.3wt%。
(4)将硅油涂抹于热熔成型不锈钢模具内表面,方便脱模。
(5)将步骤(3)中制备的CNT-TPU混合体置于模具中,在195℃热熔成型,保温时间为20min,制备CNT-TPU复合材料铺层。
(6)将步骤(2)中热处理后的NiTi合金弹簧均匀平铺于(5)中制备的铺层上,然后将步骤(3)中的CNT-TPU混合体分散于NiTi弹簧周围并将NiTi弹簧结构完全覆盖。
(7)合模,在鼓风恒温箱中进行复合材料成型,热熔温度为195℃,成型时间为20min。
(8)利用差示扫描量热仪测试NiTi合金弹簧的马氏体转变行为,如图3a所示,合金弹簧表现出两步马氏体相变A→R→M,逆相变为一步相变M→A,室温下合金为奥氏体态。图3b所示为合金弹簧经过195℃/20min(该条件为复合材料成型时的温度和时间)热处理后的DSC曲线,与热处理前相比,相变变化不大,因此复合材料成型过程不会影响NiTi弹簧的马氏体相变行为。
(9)利用万能电子拉伸试验机测试NiTi弹簧的超弹性行为,如图4所示,在不同的应变条件下,NiTi弹簧都表现出明显的超弹性特性,加载-卸载循环包围的面积代表循环过程中消耗的能量,这有利于提高复合材料在外应力循环条件下的能量损耗特性;
(10)利用扫描电子显微镜观察复合材料的显微组织结构,如图5a-图5b所示,CNT与TPU基体的界面结合良好(图5a),NiTi弹簧与TPU基体也具有较好的界面结合(图5b),这说明利用热熔成型可以获得具有良好界面结合的NiTi/CNT/TPU复合材料;
(11)利用动态力学测试仪测试复合材料在不同频率、温度条件下的阻尼损耗特性,如图6所示(DMA曲线),随着测试频率增加,复合材料的阻尼增大,复合材料在20Hz时的最高阻尼损耗因子为0.38;
(12)利用拉伸试验机测试复合材料的形状记忆回复特性,如图7所示,随着拉伸变形量增加,复合材料的形状回复率升高,当复合材料的拉伸应变为200%时,形状回复率可以超过97%,表现出良好的形状回复特性。

Claims (2)

1.一种镍钛记忆合金与碳纳米管复合掺杂聚氨酯复合材料,其特征是是按照如下方法所得到的镍钛记忆合金与碳纳米管复合掺杂聚氨酯复合材料:(1)将丝径为0.1~0.3mm的NiTi合金丝材在弹簧绕制机上缠绕成弹簧结构;(2)绕制后的弹簧在400~500℃热处理30min;(3)将碳纳米管与聚氨酯弹性体颗粒机械搅拌混合,使碳纳米管均匀包覆在聚氨酯弹性体颗粒表面,碳纳米管的含量为0.1~0.5wt%;(4)将脱模剂涂抹于模具内表面;(5)将步骤(3)中制备的碳纳米管与聚氨酯弹性体混合体置于模具中,在190~220℃热熔成型;(6)将NiTi合金弹簧均匀平铺于(5)中制备的铺层上,然后将步骤(3)中制备的碳纳米管与聚氨酯弹性体混合体分散于NiTi弹簧周围并将NiTi弹簧完全覆盖;(7)在鼓风恒温箱中进行复合材料热熔成型,热熔温度为190~220℃,成型时间为20~60min,待模具冷却后卸模。
2.一种镍钛记忆合金与碳纳米管复合掺杂聚氨酯复合材料的制备方法,其特征是:
(1)NiTi记忆合金弹簧制备:
1)将丝径为0.1~0.3mm的NiTi合金丝材在弹簧绕制机上缠绕成弹簧结构;
2)绕制后的弹簧在400~500℃热处理30min获得NiTi合金弹簧;
(2)复合材料制备:
3)将碳纳米管与聚氨酯弹性体颗粒机械搅拌混合,碳纳米管的含量为0.1~0.5wt%,使碳纳米管均匀包覆在聚氨酯弹性体颗粒表面;
4)将脱模剂涂抹于成型模具内表面;
5)将步骤3)中制备的碳纳米管与聚氨酯弹性体混合体置于成型模具中,在190~220℃热熔成型;
6)将NiTi合金弹簧均匀平铺于5)中制备的铺层上,然后将步骤3)中制备的碳纳米管与聚氨酯弹性体混合体分散于NiTi弹簧周围并将NiTi弹簧结构完全覆盖;
7)合模,在鼓风恒温箱中进行复合材料成型,热熔温度为190~220℃,成型时间为20~60min。
CN201410445458.8A 2013-10-11 2014-09-03 镍钛记忆合金与碳纳米管复合掺杂聚氨酯复合材料及制备方法 Active CN104325652B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410445458.8A CN104325652B (zh) 2013-10-11 2014-09-03 镍钛记忆合金与碳纳米管复合掺杂聚氨酯复合材料及制备方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310470300 2013-10-11
CN201310470300.1 2013-10-11
CN2013104703001 2013-10-11
CN201410445458.8A CN104325652B (zh) 2013-10-11 2014-09-03 镍钛记忆合金与碳纳米管复合掺杂聚氨酯复合材料及制备方法

Publications (2)

Publication Number Publication Date
CN104325652A CN104325652A (zh) 2015-02-04
CN104325652B true CN104325652B (zh) 2016-06-29

Family

ID=52400518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410445458.8A Active CN104325652B (zh) 2013-10-11 2014-09-03 镍钛记忆合金与碳纳米管复合掺杂聚氨酯复合材料及制备方法

Country Status (1)

Country Link
CN (1) CN104325652B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10427336B2 (en) 2014-11-20 2019-10-01 Baker Hughes, A Ge Company, Llc Periodic structured composite and articles therefrom
US9999920B2 (en) * 2015-04-02 2018-06-19 Baker Hughes, A Ge Company, Llc Ultrahigh temperature elastic metal composites
US10759092B2 (en) 2015-11-19 2020-09-01 Baker Hughes, A Ge Company, Llc Methods of making high temperature elastic composites
CN106496956B (zh) * 2016-10-20 2019-04-12 哈尔滨工程大学 一种形状记忆合金与树脂界面的改性处理方法
US10450828B2 (en) 2016-10-28 2019-10-22 Baker Hughes, A Ge Company, Llc High temperature high extrusion resistant packer
CN110918840B (zh) * 2019-12-05 2020-11-06 中国石油大学(北京) 一种无定型模具制备NiTi记忆合金弹簧的方法
CN113733593A (zh) * 2021-07-30 2021-12-03 浙江理工大学 一种主动变刚度复合材料弧形弹簧的制备方法及通电方法
CN113652078A (zh) * 2021-08-23 2021-11-16 华南理工大学 一种用于减振的复合材料及其制备方法
CN114686923B (zh) * 2022-03-15 2023-11-10 大连交通大学 一种智能分子开关的制备方法
CN115783117A (zh) * 2022-11-21 2023-03-14 中国船舶集团有限公司第七0三研究所 一种基于多胞手性周期结构的复合材料隔冲装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070079911A1 (en) * 2005-10-12 2007-04-12 Browne Alan L Method for erasing stored data and restoring data
CN101041269A (zh) * 2007-03-16 2007-09-26 哈尔滨工业大学 空间大展开管状形状记忆复合体及其制备方法
US20120234000A1 (en) * 2011-03-16 2012-09-20 GM Global Technology Operations LLC Shape memory alloy actuator with enhanced heat transfer characteristics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070079911A1 (en) * 2005-10-12 2007-04-12 Browne Alan L Method for erasing stored data and restoring data
CN101041269A (zh) * 2007-03-16 2007-09-26 哈尔滨工业大学 空间大展开管状形状记忆复合体及其制备方法
US20120234000A1 (en) * 2011-03-16 2012-09-20 GM Global Technology Operations LLC Shape memory alloy actuator with enhanced heat transfer characteristics

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Study of the martensitic transformation in NiTi–epoxy smart composite and its effect on the overall behavior";Yousef Payandeh;《Materials & Design》;20120228;第39卷;第104-110页 *
"碳纳米管_聚氨酯功能复合材料的制备与应用";赵彩霞;《化工进展》;20060831;第25卷(第8期);第880-884页 *
"碳纳米管_聚氨酯复合膜的力学特性及生物相容性初步研究";董生等;《介入放射学杂志》;20110228;第20卷(第2期);第127-130页 *

Also Published As

Publication number Publication date
CN104325652A (zh) 2015-02-04

Similar Documents

Publication Publication Date Title
CN104325652B (zh) 镍钛记忆合金与碳纳米管复合掺杂聚氨酯复合材料及制备方法
Zhao et al. Shear stiffening gels for intelligent anti-impact applications
Zhu et al. Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires
Wang et al. Fluorine-free superhydrophobic and conductive rubber composite with outstanding deicing performance for highly sensitive and stretchable strain sensors
Li et al. Multifunctional wearable device based on flexible and conductive carbon sponge/polydimethylsiloxane composite
Nie et al. Strengthened, self-healing, and conductive ENR-based composites based on multiple hydrogen bonding interactions
Lei et al. Experimental and numerical investigation on the macroscopic mechanical behavior of shape memory alloy hybrid composite with weak interface
Montazeri et al. The effect of sonication time and dispersing medium on the mechanical properties of multiwalled carbon nanotube (MWCNT)/epoxy composite
Xu et al. Piezoresistive sensors based on rGO 3D microarchitecture: coupled properties tuning in local/integral deformation
Yunus et al. Thermal stability and rheological properties of epoxidized natural rubber-based magnetorheological elastomer
Yang et al. Sensitivity-Tunable strain sensors based on carbon nanotube@ carbon nanocoil hybrid networks
Shokrieh et al. A modified micromechanical model to predict the creep modulus of polymeric nanocomposites
Wu et al. Sensitivity improvement of stretchable strain sensors by the internal and external structural designs for strain redistribution
Jiang et al. Crosslinking of bacterial cellulose toward fabricating ultrastretchable hydrogels for multiple sensing with high sensitivity
Khalili et al. Experimental investigation on the debonding strength in shape memory alloy wire reinforced polymers
Tiwari et al. Hybridization of carbon fiber composites with graphene nanoplatelets to enhance interfacial bonding and thermomechanical properties for shape memory applications
Zhang et al. The friction and wear properties of carbon nanotubes/graphite/carbon fabric reinforced phenolic polymer composites
Chang et al. An experimental study on stretchy and tough PDMS/fabric composites
Fei et al. Highly sensitive large strain cellulose/multiwalled carbon nanotubes (MWCNTs)/thermoplastic polyurethane (TPU) nanocomposite foams: From design to performance evaluation
Montazeri et al. Thermo-mechanical properties of multi-walled carbon nanotube (MWCNT)/epoxy composites
Yoshimura et al. Effectiveness of carbon microcoils as a reinforcing material for a polymer matrix
Mahmood et al. Healable carbon fiber-reinforced epoxy/cyclic olefin copolymer composites
CN103937224B (zh) 一种制备NiTi弹簧与碳纳米管和聚氨酯复合材料的方法
Upadhyaya et al. Influence of nano-clay compounding on thermo-oxidative stability and mechanical properties of a thermoset polymer system
Du et al. Dynamic rheological behavior and mechanical properties of PVC/O-POSS nanocomposites

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160901

Address after: 150000, Heilongjiang province Harbin Harbin hi tech Industrial Development Zone, science and technology innovation city, innovation and entrepreneurship Plaza 14, 236 Lou Mingyue street, torch e-commerce building, room 513

Patentee after: Ganges RIver Heilongjiang Sand Technology Development Co., Ltd.

Address before: 150001 Heilongjiang, Nangang District, Nantong street,, Harbin Engineering University, Department of Intellectual Property Office

Patentee before: Harbin Engineering Univ.