CN104303062A - 微芯片 - Google Patents

微芯片 Download PDF

Info

Publication number
CN104303062A
CN104303062A CN201380025770.5A CN201380025770A CN104303062A CN 104303062 A CN104303062 A CN 104303062A CN 201380025770 A CN201380025770 A CN 201380025770A CN 104303062 A CN104303062 A CN 104303062A
Authority
CN
China
Prior art keywords
microchip
area
stream
introducing
analyzed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380025770.5A
Other languages
English (en)
Inventor
渡边英俊
濑川雄司
梶原淳志
小岛健介
渡边俊夫
松本真宽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN104303062A publication Critical patent/CN104303062A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0642Filling fluids into wells by specific techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0883Serpentine channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

本发明的目的是提供能够从微芯片的外部容易地确认溶液被填充至分析区域中的微芯片。提供了一种微芯片,该微芯片具有:液体引入部;分析区域,用作其中对包含于液体中的物质或物质的反应产物进行分析的位置;显示区域,用于指示分析区域已完全被液体充满;以及通道,用于连接引入部、分析区域和显示区域。该通道被配置为使得从引入部引入的液体到达指示区域占用的时间的量长于从引入部引入的液体填充分析区域占用的时间的量。

Description

微芯片
技术领域
本技术涉及一种微芯片。本技术具体涉及设置有指示已完成将样本溶液填充到分析区域中的指示区域的微芯片。
背景技术
近年来,已经应用用于半导体工业的微细制造技术开发具有为为执行化学或生物的分析而设置的分析区域和流路的微芯片。分析区域和流路形成在硅酮基板或玻璃基板上。这种微芯片能够使用少量样本进行分析,并且还是易处理的。因此微芯片尤其被应用于使用贵重和微量的样本以及大量样品的生物学分析。
使用这种如上的微芯片的分析***被称为微总体分析***(micro-Total-Analysis System)(μ-TAS),实验室级芯片、生物芯片等。分析***已受到关注,被认为是可实现化学或生物分析中的分析装置的高速化、高效率化、集成化以及小型化的技术。预期将μ-TAS特别应用于使用贵重和微量的样本的大量样品的生物学分析,如其能够使用少量的样本进行分析并且使微芯片容易处理。
在使用微芯片的分析中,因为样本是以微量使用的,所以难以将样本溶液引入分析区域或流路中。有时由于微芯片的内部,如分析区域存在空气导致样本溶液的引入会被阻碍或花费时间。
为了便于微芯片中的溶液的引入,例如,专利文献1公开了一种微芯片,其中将用于引入溶液的区域保持在低于大气压力的压力下。在这个微芯片中,使用针将样本溶液注射到区域中,其内部在负压状态下。然后,负压使样本溶液被吸入到该区域中,使样本溶液能够在短时间内容易地引入该区域中。
引用列表
专利文献
专利文献1:JP 2011-163984 A
发明内容
本发明要解决的问题
在上述微芯片情况下,如引入的样本的量非常小,其从微芯片的外部难以检查是否包含样本的溶液已填充到其中分析样本的区域中,诸如分析区域。考虑到上述内容,本技术的主要目标是提供便于从其外部检查是否分析区域已充满溶液的微芯片。
问题的解决方案
为了解决上述问题,本技术提供以下微芯片,该微芯片包括:引入部,用于引入液体;分析区域,其中分析包含于液体中的物质或物质的反应产物;指示区域,指示分析区域已完全被液体充满;以及流路,连接引入部、分析区域、和指示区域。在微芯片中,流路被配置为使得从引入部中引入的液体到达指示区域占用的时间长于从引入部中引入的液体充满分析区域需要花费的时间。
在微芯片中,流路可以包括连接引入部和分析区域的引入流路;以及连接分析区域与指示区域的排出流路。
流路可包括连接引入部和分析区域的引入流路,和从引入流路分支与指示区域连接的分支流路。流路可以被配置为使得从位于分支流路与引入流路之间的连通部到指示区域的流路长度长于从连通部到分析区域的流路长度。
此外,流路可包括连接引入部和分析区域的引入流路以及从引入流路分支与指示区域连接的分支流路。流路可以被配置为使得在分支流路与引入流路之间的连通部处,向所述分支流路引入的液体的引入压力高于被引入至向所述引入流路引入的液体的引入压力。
在根据本技术的微芯片中,色素材料可被放入指示区域中。色素材料可以被固相化。
此外,凹凸结构可以被设置在构成指示区域的至少一个表面上。形成在一个表面上的凹凸结构可包括不平行于或不垂直于一个表面的表面。
微芯片在其分析区域中可以具有位于分析区域与排出流路之间的连通部。连通部可以形成在与分析区域与引入流路之间的连通部相对的位置处。一个引入流路可以与多个分析区域相连接。同样,多个分析区域可以通过排出流路与一个指示区域相连接。一个指示区域可以通过排出流路与所有分析区域相连接。
本发明的效果
根据本技术,提供一种微芯片,该微芯片设置有指示已完成将液体填充到分析区域中的指示区域。
附图说明
[图1]示出了根据本技术的第一实施方式的微芯片1a的结构的示意性视图。
[图2]示出了微芯片1a的指示区域的示意性的局部截面图。
[图3]示出了微芯片1a的变形实施方式的结构的示意性局部视图。
[图4]示出了根据本技术的第二实施方式的微芯片1b的结构的示意性俯视图。
[图5]示出了根据本技术的第三实施方式的微芯片1c的结构的示意性俯视图。
[图6]示出了微芯片1c的变形实施方式的结构的示意性俯视图。
[图7]示出了微芯片1c的变形实施方式的结构的示意性局部视图。
[图8]示出了根据本技术的第四实施方式的微芯片1d的结构的示意性俯视图。
[图9]示出了微芯片1d的变形实施方式的结构的示意性局部视图。
具体实施方式
以下是实施本技术的优选实施方式的说明。给出如下所述的实施方式是为了示出本技术的有代表性的实施方式,从而不能狭义地解释本技术的范围。将按照以下顺序进行说明。
1.根据第一实施方式的微芯片的结构
(1)微芯片1a的结构
(1-1)引入部
(1-2)分析区域
(1-3)流路
(1-4)指示区域
<1>色素材料
<2>凹凸结构
(2)微芯片1a的变形实施方式
2.根据第二实施方式的微芯片的结构
3.根据第三实施方式的微芯片
(1)微芯片1c的结构
(2)微芯片1c的变形实施方式
<1>微芯片1c-1
<2>微芯片1c-2
4.根据第四实施方式的微芯片
(1)微芯片1d的结构
(2)微芯片1d的变形实施方式
<1>微芯片1d-1
<2>微芯片1d-2
<3>微芯片1d-3
5.光透射部分的保护机构
(1)接触防止结构
(2)用于光透射部分的识别标记
(3)把持部的指示
(4)用于光透射部分的保护构件
(5)其他
1.根据第一实施方式的微芯片的结构
(1)微芯片1a的结构
图1是示出了根据本技术的第一实施方式的微芯片1a的结构的示意性视图。图1A是微芯片1a的俯视图,并且图1B是沿着图1A中示出的线P-P截取的微芯片1a的截面图。微芯片1a包括:引入部2,用于引入诸如样本溶液的液体;分析区域41至45,在其中分析包含于样本溶液中的物质或者物质的反应产物;以及指示区域51至55,指示分析区域41至45已完全充满了样本溶液。此外,引入部2经由引入流路311a至315a与分析区域41至45相连接。指示区域51至55经由排出流路331至335与分析区域41至45相连接。
微芯片1a是由三个基板层11、12、13形成的(参见图1B)。在基板层12中,如由图1B中的P-P部分举例说明的,形成有引入部2、引入流路311a至315a、排出流路331至335、分析区域41至45以及指示区域51至55。以下将按顺序描述微芯片1a的每个部件。同时,在根据本技术的微芯片中,引入部2、分析区域41至45或其他部件的数目不限于图1A中示出的微芯片1a的结构。例如,多个引入部可以被设置在一个微芯片中。同样,微芯片可具有与单个引入流路相连接的单个引入部。
(1-1)引入部
用于使用微芯片1a分析的样本溶液被引入到引入部2中。如图1B中所示,在微芯片1a中,引入部2使用基板层11密封。因此,在微芯片1a中,可通过诸如针的穿刺构件执行将样本溶液引入到引入部2中。为了实施引入,穿刺构件附接至装有样本溶液的注射器等。然后穿刺构件的尖端从微芯片1a的外部***穿过形成在基板层13上的引入口21,并且穿透基板层11最终到达引入部2。因此,注射器的内部和引入部2是相连的。为了便于使用穿刺构件将样本溶液引入到引入部2中,优选地选择弹性材料以形成基板层11。
被引入根据本技术的微芯片的样本溶液是分析物或包含与另一物质起反应以产生分析物的物质的溶液。分析物的实例包括如DNA和RNA的核苷酸、缩氨酸以及包括抗体等的蛋白质。可替换地,包含上述分析物的生物样本,如血液在未处理状态或稀释溶液状态下可被用作引入根据本技术的微芯片的样本溶液。
(1-2)分析区域
已被引入到引入部2的样本溶液流动通过引入流路311a至315a并且填充布置在微芯片1a中的分析区域41至45,并且然后对包含于样本溶液的分析物进行分析。使用微芯片1a的分析法的实例包括利用核酸扩增反应的分析法,如进行热循环的常规聚合酶链式反应(PCR),以及在没有热循环的情况下进行的各种等温扩增方法。需要分析的物质的一部分可以预先存储在分析区域41至45中。在以下的微芯片1a的说明中,与引入流路311a相连接的所有五个分析区域将称作分析区域41。同样地从每个引入流路312a、313a、314a和315a得到供给的样本溶液的每一组五个分析区域将分别被称作分析区域42、43、44和45(参见图1A)。
(1-3)流路
微芯片1a设置有两种流路,即,引入流路311a至315a和排出流路331至335。如图1A中所示,引入流路311a至315a将引入部2与分析区域41至45相连接。同样,排出流路331至335将分析区域41至45与指示区域51至55相连接。具体地,在微芯片1a中,一个引入流路311a至315a与多个分析区域41至45相连接。此外,多个分析区域41至45经由排出流路与一个指示区域51至55相连接。
已从引入部2引入微芯片1a的样本溶液流动通过引入流路311a至315a,并且到达分析区域41至45。已到达分析区域41至45的样本溶液的一部分通过与分析区域41至45相连通的排出流路331至335到达指示区域51至55。因此,在微芯片1a中,到样本溶液流动通过排出流路331至335时分析区域41至45已充满样本溶液。换言之,在微芯片1a中,两个种类的流路,即,引入流路311a至315a和排出流路331至335,以以下方式进行配置:即从引入部2引入的样本溶液到达指示区域51需要花费的时间的量长于从引入部2引入的样本溶液充满分析区域41至45需要花费的时间的量。
在微芯片1a中,排出流路331至335与分析区域41至45之间的连通部可形成在与引入流路311a至315a与分析区域41至45之间的连通部相对的位置处。面向彼此的这种连通部使样本溶液能够在流出到排出流路331至335之前填充整个分析区域41至45。
(1-4)指示区域
已穿过分析区域41至45的样本溶液流动通过排出流路331至335,并且到达指示区域51至55。当样本溶液到达指示区域51至55时,用户能够通过设置在指示区域51至55中的指示手段在视觉上识别出到达指示区域51至55的样本溶液。指示手段的实例包括以下将描述的色素材料和凹凸结构。由于指示区域51至55是从排出流路331至335得到样本溶液的供给,所以在与排出流路331至335相连接的分析区域41至45完全充满样本溶液之后,样本溶液到达指示区域51至55。因此,样本溶液以到达指示区域51至55的指示与样本溶液已完全填充到分析区域中的指示相同。以下详细描述指示区域51至55中的指示方法,例如采取色素材料和凹凸结构。顺便说一下,为了使用户能够从微芯片1a的外部在视觉上识别指示样本溶液的完全填充的指示区域,优选地选择用于形成微芯片1a的基板层11、12、和13的光透射材料。
<1>色素材料
图2是沿着图1A中示出的线Q-Q截取的微芯片1a的局部截面图。以下是代表指示区域51至55的并且在图2中示出的指示区域53中的结构和指示方法的说明。
指示区域53与排出流路333相连接。具体地,排出流路333的第一端部分和第二端部分分别与分析区域43和指示区域53相连接(分析区域43未在图2A中示出)。从引入部2引入的样本溶液在填充分析区域43之后经由排出流路333被引入指示区域53(参见图中的箭头F)。
在指示区域53中的空间E1中,放置由参考标号6表示的色素材料(图2A)。色素材料6是包括通过与被引入空间E1接触生产颜色或改变颜色以成为用户容易看见的色素的材料。因此,在图2A中示出的指示区域53中,当色素材料6与样本溶液接触时出现的色素材料6的改变表示样本溶液已到达指示区域53。
例如,色素材料6可以处于固相状态下。已固相并且存储在指示区域53中的色素材料6溶解在样本溶液中。包含溶解的色素材料6的样本溶液在空间E1中扩散。因此,色素材料6与当色素材料6在样本溶液中溶解之前的固相时相比变得从微芯片1a的外部更加明显。同样可以使用封闭在水溶性材料中的色素作为色素材料6。在这个色素材料6中,因为色素是封闭在水溶性材料中的,所以在样本溶液引入之前用户不能在视觉上识别色素。围绕色素的水溶性材料溶解在被引入空间E1中的样本溶液中。然后色素在空间E1中扩散,并且色素材料6变为用户可见的。除上述那些以外,合并了不同的构件或材料的材料的组合可被用作色素材料6。这种组合是例如,通过将合并了色素的材料施加于不同的构件和材料而制备的。已施加的合并了色素的水溶性材料的膜是组合的实例。
<2>凹凸结构
在指示区域53中,可提供凹凸结构7来代替放置色素材料6。图2B示出了指示区域53的变形实施方式(指示区域531)。在指示区域531中,凹凸结构7设置在组成指示区域531的表面上。在指示区域531中,通过利用从凹凸结构7反射光来指示样本溶液已被引入指示区域531中。
凹凸结构7可被设置在组成指示区域531的任何表面上。至少一个凹凸结构7被设置在一个指示区域531中。凹凸结构7可以设置在指示区域531的多个表面上。用户从与设置凹凸结构7的放置面S相对的位置观察指示区域531。在图2B中示出的凹凸结构7中,假定用户从基板层12或基板层13的方向观察指示区域531。此外,凹凸结构7优选地包括不平行于或不垂直于放置面S的表面。如图2B所示,凹凸结构7可以形成为基板层12的一部分。可替换地,凹凸结构7可独立形成,然后被安装在组成指示区域531的表面上。
当光以与除相对于界面的表面成直角以外的入射角行进时在不同折射率的介质之间的界面处被反射或折射。例如,当选取玻璃(碱石灰)形成微芯片1a的基板层12时,589.3nm的波长的光的折射率大约是1.52(玻璃)。另一方面,指示区域531中的空间E2中存在的空气的折射率大约是1.00。
凹凸结构7包括不平行于或不垂直于放置面S的表面。因此,来自空间E2的方向的入射在凹凸结构7上的部分光在空间E2与凹凸结构7之间的界面处被反射(参见图2B中的箭头L)。同时,从凹凸结构7进入到空间E2的部分光还被反射。因此,在凹凸结构7与空间E2之间的界面处反射的光对于从基板层12或基板层13的方向中观察指示区域531的用户来说是可见的。如图2B中所示,当凹凸结构7的面的角度是随机的时,以各个角度入射到空间E2与凹凸结构7之间的界面产生散射光,该散射光可由用户在视觉上识别。这时,例如指示区域531就好像变成了浑浊的白色。
在指示区域531中,如同如图2A所示的其中放置色素材料6的指示区域53一样,样本溶液从排出流路333引入(参见图2B中的箭头F)。当样品溶液被引入时,指示区域531中的空间E2充满取代空气的样品溶液。水的折射率大约是1.33。因此,当样品溶液的折射率接近水的的折射率时,凹凸结构7和空间E2之间的折射率的差值,与上述的空间E2中存在空气的状态相比减少。由于介质之间的折射率的差值变大,所以在两种介质之间的界面处的光折射增加。因此,被引入指示区域531的样品溶液减少了凹凸结构7和空间E2之间的界面处的光反射。这意味着存在用户在视觉上可识别的较少的散射光。因此,用户能够通过观察指示区域531来区分样品溶液引入到指示区域531之前和之后。换言之,指示区域531指示样品溶液已经由凹凸结构7到达空间E2
以上描述的由色素材料6或凹凸结构7所引起的指示区域53、531中出现的改变可以通过使用如光检测器的检测器来检测,而不是通过用户在视觉上的检测。光源和检测器被放入与放置色素材料6或凹凸结构7的放置面S相对的位置中,以便***指示区域53、531。然后,例如,由于样品溶液被引入到指示区域53中,所以可以以从光源发射的光的吸光率的改变的形式通过检测部检测色素材料6的改变。同样可以通过使用包含荧光色素的色素材料6利用指示区域中用于指示的光发射或光波长的改变。当指示区域531具有凹凸结构7时,检测部可以以入射光的量的改变的形式检测检测空间E2与凹凸结构7之间的界面处的光反射率的改变。对于从光源发射到凹凸结构7的光,优选地通过使用偏光器等仅选择正交于放置面S的光。
上述的光源和检测器可以设置在分析装置中。这种分析装置具有例如用于分析包含于样本溶液中的物质的光学***、用于加热为分析所必需的样品溶液的加热部以及用于显示分析结果的显示部。分析装置可以以下方式配置,即当分析装置中的检测器检测到根据本技术的微芯片1a中的指示区域53、531中的改变时,分析装置开始分析。
在根据本技术的第一实施方式的微芯片1a中,指示区域51至55经由分析区域41至45与引入部2相连接。利用这个结构,从引入部2引入的样品溶液在样品溶液填充了分析区域41至45之后到达指示区域51至55。因此,在指示区域51至55中检测样品溶液与检测样品溶液到分析区域41至45中的填充的完成相同。在指示区域51至55中,存在为了向微芯片1a的外部指示样品溶液的引入而放置的例如色素材料6或凹凸结构7。因此,通过用户或检测器的视觉观察,从微芯片1a的外部是容易地看见指示区域51至55中的改变。
设置在微芯片1a中的指示区域51至55便于确定样品溶液已被引入分析区域41至45。这防止了在样品溶液引入到分析区域41至45之前开始分析或者防止了不必要的延迟分析。结果,微芯片1a使得可以在适当时候的开始样本溶液的分析,使得能够进行方便的和高度精确的分析。
此外,在微芯片1a中,一个引入流路311a至315a与多个分析区域41至45相连接,并且分析区域41至45经由排出流程通道331至335与一个指示区域51至55相连接。换言之,指示区域51至55以独立的方式被设置至分析区域41至45。因此,在引入流路311a至315a中任意一个由已进入其中的气泡等阻断时,可以通过检查指示区域51至55确定没有充满样品溶液的分析区域。因此,在微芯片1a中,可以从待分析的分析区域除去所有没有充满样品溶液的分析区域41至45。因此,使用微芯片1a的分析增加了准确度。
当对微芯片1a中的分析区域41至45把持的物质进行光学分析时,优选地选择用于基板层11、12、13的材料,该材料是光透射的并且能够利用低波长色散和低自身荧光减少光学误差。基板层11、12、13可以由各种类型的玻璃和塑料形成。优选地,弹性材料被用于基板层11,并且不透气的材料被用于基板层12、13。由弹性材料形成的基板层11使得样品溶液容易以先前描述的方式被引入到引入部2中。此外,由不透气的材料形成的基板层12、13通过加热等防止样品溶液被引入分析区域41至45,并且防止了样品溶液穿过基板层11而耗尽(液体逃逸(liquid escape))。
用于具有弹性的基板层的材料的实例包括如聚二甲硅氧烷(PDMS)的基于聚硅氧的弹性体以及丙烯酸酯橡胶、基于氨基甲酸乙酯的弹性体、氟橡胶、苯乙烯类弹性体、环氧弹性体以及天然橡胶。
对于具有不透气性的基板层,可以使用如玻璃、塑料、金属和陶瓷的材料。塑料的实例包括聚甲基丙烯酸甲酯(PMMA:丙烯酸树脂)和聚碳酸酯(PC)。金属的实例包括铝、铜、不锈钢(SUS)、硅、钛和钨。陶瓷的实例包括矾土(Al2O3)、氮化铝(AlN)、碳化硅(SiC)、二氧化钛(TiO2)、氧化锆(ZrO2)和石英。
引入部2、引入流路311a至315a及其他部分通过公众已知的方法形成在基板层12上,如针对玻璃基板层的湿法蚀刻或干法蚀刻、或者针对塑料基板层的纳米压印、注射模制或切割。引入部2、引入流路311a至315a以及其他部分还可以形成在基板层11上。还可以将上述部分的一些、通道以及其他部分形成在基板层11上,同时其余部分形成在基板层12上。
基板层11、12和13的粘结是通过已知的方法实现的,如热熔接合、使用粘合剂的接合、正极接合、使用压合胶粘剂薄片的接合、等离子体激活接合以及超声接合。此外,包括引入部2基板层12和基板层11的粘结可以在相对于大气压的负压下进行,使得样本溶液引入其内部的微芯片1a的内部空间可以保持在相对于大气压(例如,1/100atm)的负压下。在通过使用穿刺构件将样本溶液引入到微芯片1a中的上述情况下,如果微芯片1a的内部保持在相对于大气压的负压下,那么由于与微芯片的外部(注射器的内部)的压力差,所以注射器中的样品溶液通过穿刺构件被自动地吸入到引入部2中。
(2)微芯片1a的变形实施方式
图3示意性地示出了微芯片1a(微芯片1a-1)的变形实施方式的结构。分析区域431至435代表以上变形实施方式。由参考标号431至435表示的分析区域被供应具有来自共用引入流路331a、331b的样品溶液。以到引入部2的距离递增的顺序布置分析区域431至435。微芯片1a-1是与微芯片1a相同的结构,除分析区域、引入流路和排出流路之外。其他与微芯片1a具有相同结构的组成部分是由与微芯片1a相同的的参考标号表示的,并且以下将不再对其进行描述。
如图3中所示,分析区域431至435与两个引入流路313a、313b相连接以引入样本溶液。每个引入流路313a、313b在其不与分析区域431至435相连接的端部与引入部2相连接(引入部2没有在图3中示出)。提供到分析区域的两个引入流路313a、313b使得可以让样品溶液流过至少一个引入流路以保证被引入分析区域431至435,即使另一引入流路由意外进入其中的气泡或者由任何其他原因阻断。
微芯片1a-1中的指示区域53仅经由排出流路333与分析区域435相连接。与排出流路333连接的分析区域435在从相同的引入流路313a、313b得到样品溶液的供给的分析区域431至435之中位于距离引入部2的最远处。这意味着,当分析区域435充满样品溶液完成时,其他分析区域431至434已充满样品溶液。因此,利用图3中示出的微芯片1a-1,其中仅一个分析区435是与指示区域53相连接,可以通过检测引入到指示区域53中的样品溶液来确认样品溶液已完全填满了所有与共用引入流路313a、313b相连接的所有分析区域431至435。
2.根据第二实施方式的微芯片的结构
图4是示出了根据本技术的第二实施方式的微芯片1b的结构的示意性顶视图。除了指示区域56之外,微芯片1b与第一实施方式的结构相同。其他与第一实施方式具有相同结构的组成部分是由与第一实施方式相同的参考标号表示的,并且将不再对其进行描述。此外,形成微芯片1b的多个基板层与第一实施方式中描述的基板层11、12、13相同。
在微芯片1b中,一个引入流路311a至315a与多个分析区域41至45相连接。此外,一个指示区域56经由排出流路331至335与布置在微芯片1b中的所有分析区域41至45相连接。简而言之,微芯片1b具有单个指示区域56。从引入部2引入的样本溶液流过引入流路311a至315a,填充分析区域41至45,然后流过排出流路331至335以被引入指示区域56。因此,在微芯片1b中,从引入部2引入样品溶液到达指示区域56需要花费的时间的量长于从引入部2引入的样品溶液充满分析区域41至45需要花费的时间的量。
微芯片1b中的指示区域56在其中具有在第一实施方式中均已描述的色素材料6或凹凸结构7。因此,类似第一实施方式中的指示区域51至55的指示区域56具有指示完成了样品溶液填充到分析区域41至44中的功能。
在一个微芯片中设置根据本技术的至少一个指示区域就足够了。利用单个指示区域56,可以减少被引入微芯片1b中的样品溶液的量。此外,当光源和检测器被用于检测指示区域56中的改变时,光源和检测器的构造能够通过减少指示区域56的数目而被简化。此外,希望以以下方式配置微芯片:就指示区域56与每个引入流路311a至315a相连接的引入部2最远的分析区域41至45之间的距离而言,与单个的指示区域56相连接的单独的排出流路331至335的长度彼此相同。
3.根据第三实施方式的微芯片
(1)微芯片1c的结构
图5是示出了根据本技术的第三实施方式的微芯片1c的结构的示意性顶视图。除分支流路326之外,微芯片1c与第一实施方式的结构相同。其他与第一实施方式具有相同结构的组成部分是由与第一实施方式相同的参考标号表示的,并且以下将不再对其进行描述。此外,形成微芯片1c的多个基板层与第一实施方式中描述的基板层11、12、13相同。
如图5中所示,在微芯片1c中,存在两个种类的流路,即,引入流路311a至315a和分支流路326。引入流路311a至315a将引入部2与分析区域41至45相连接。分支流路326从引入流路311a至315a分支并且与指示区域57相连接。被引入微芯片1c中的引入部2的样本溶液的一部分流动通过引入流路311a至315a到达分析区域41至45。被引入到引入部2的样品溶液的另一部分经由引入流路311a至315a与分支流路321之间的连通部81流动到分支流路326以到达指示区域57。在微芯片1c中,从分支流路326与引入流路311a至315a之间的连通部81到指示区域57的流路长度长于从连通部81到指示区域41至45的流路长度。因此,从引入部2引入的样品溶液到达指示区域57需要花费的时间的量长于从引入部2引入的样品溶液充满分析区域41至45需要花费的时间的量。因此,可以通过检测样品溶液引入到指示区域57中来确认样品溶液已完全填充分析区域41至45。如在第一实施方式的情况下,指示区域57具有在其中的色素材料6或凹凸结构7。这便于从微芯片1c的外部观察到样品溶液引入指示区域57中。
微芯片1c被配置为使得从连通部81到分支流路326的流路长度长于从连通部81到每个引入流路311a至315a的流路长度。利用这个结构,样品溶液在分析区域41至45已充满样品溶液之后在适当的时候被引入指示区域57。这使用户能够在确定指示区域57之后马上开始分析操作。此外,在微芯片1c中,不存在与分析区域41至45相连接的排出流路331至335,这除去了被引入分析区域41至45的样品溶液部分流出到排出流路331至335的顾虑。具体地,例如,当为分析所必需的物质的一部分被预先存储在分析区域41至45时,具有分支流路326的微芯片1c是合适的,因为其这种结构避免了存储的物质的量在分析区域41至45之中成的不均匀的可能性。
此外,在微芯片1c中,引入流路311a至315a和分支流路326可以以下方式配置:在分支流路326和引入流路311a至315a之间的连通部81上,被引入分支流路326的样品溶液的引入压力高于被引入到引入流路311a至315a的样品溶液的引入压力。例如,分支流路326的直径可形成为小于引入流路311a至315a的直径,以便获得分支流路326和引入流路311a至315a之间的不同的样品溶液的引入压力。作为引入流路311a至315a与分支流路326之间的样品溶液的引入压力的差异的结果,从引入部2引入的样品溶液到达指示区域57需要花费的时间的量长于从引入部2引入的样品溶液充满分析区域41至45需要花费的时间的量。
(2)微芯片1c的变形实施方式
图6和图7示意性地示出了微芯片1c的变形实施方式。微芯片1c的变形实施方式与微芯片1c的不同之处仅在于分支流路327、指示区域575和连通部815的构造方面。其他与微芯片1c具有相同结构的组成部分是由与微芯片1c相同的的参考标号表示的,并且下面将不再对其进行描述。
<1>微芯片1c-1
图6是作为微芯片1c的变形实施方式中的一个的微芯片1c-1的示意性俯视图。在微芯片1c-1中,分支流路327在其第一端部与引入流路311a至315a相连接以形成连通部81,同时在其第二部分处与指示区域57相连接。分支流路327的流路长度长于从连通部81到距离引入部2最远的分析区域41至45的每个引入流路311a至315a。利用这个结构,如在微芯片1c的情况下,指示区域57可以指示样本溶液已完全填充到分析区域41至45。如图6中所示,指示区域57可位于微芯片1c-1的拐角部分。在根据本技术的微芯片中,指示区域57不限于其位于的位置上。
<2>微芯片1c-2
图7A示意性地示出了微芯片1c(微芯片1c-1)的变形实施方式的结构。分析区域45代表以上变形实施方式。在微芯片1c-2中,在引入流路311a至315a从对应于分析区域41至45的彼此分开,连通部815形成在引入流路315a与分支流路328之间。即使连通部815形成在分支流路328和仅一个引入流路311a至315a之间,只要分支流路328的流路长度长于从连通部815到分析区域41至45的引入流路315a的流路长度即可,连通部815可形成在引入流程通道311a至315a中的任何位置处。
指示区域575形成为矩形形状。指示区域575被定位为基本上纵向平行于与分析区域45相连接的引入流路315a。例如,色素材料6在指示区域575中可布置为在其纵向上平行于指示区域575的一行。在以上的指示区域575中,颜色在色素材料6中按照距离分支流路328的距离的次序从最近处到最远处出现(色素材料6在图7中没有示出)。通过以以下方式决定指示区域575的容量,即纵向上的色素材料6中的颜色外观的发展速度接近于样本溶液流过引入流路315a的流速,可以使指示区域575指示将样品溶液引入到分析区域45中的进度状态。如果样品溶液以被引入分析区域45的样品溶液的流速相同的流速被引入分析区域41至44,那么还可以使指示区域575指示将样品溶液引入到分析区域41至44的进度状态。在微芯片1c-2中,凹凸结构7可以被设置在指示区域575中来代替色素材料6。
如图7B中所示,例如,基准框9可绘制在形成微芯片1c-2的外表面的基板层表面上。基准框9可被布置为分别与每个色素材料6相对应。在每个色素材料6中,当每个对应的分析区域45已完全充满样品溶液时颜色出现。利用基准框9,用户能够容易地检查样品溶液从微芯片1c-2的外部引入到分析区域45中的进度状态。
4.根据第四实施方式的微芯片
(1)微芯片1d的结构
图8是根据本技术的第四实施方式的微芯片1d的结构的示意性俯视图。微芯片1d除分支流路321至325和连通部821至825之外与第三实施方式的结构相同。其他与第三实施方式具有相同结构的组成部分是由与第三实施方式相同的的参考标号表示的,并且以下将不再对其进行描述。此外,形成微芯片1d的多个基板层与第一实施方式中描述的基板层11、12、13相同。在图8中,由参考标号415至455表示的分析区域是从共同的引入流路311a至315a得到样品溶液的供给的分析区域之中位于距离引入部2最远处的单个分析区域。
在微芯片1d中,设置两个种类的流路,即,引入流路311a至315a和多个分支流路321至325。引入流路311a至315a将引入部2与包括分析区域415至455的分析区域相连接。分支流路321至325从引入流路311a至315a分支以便与指示区域581至585连接。分支流路321至325分别与指示区域581至585相连接。被引入到引入部2的样本溶液流动通过引入流路311a至315a,然后在连通部821至825处,部分流到分支流路321至325以便到达指示区域581至585。在微芯片1d中,从连通部821至825到距离引入部2最远处的分析区域415至455的引入流路311a至315a的流路长度短于分支流路321至325的流路长度。因此,在样品溶液完全填充分析区域415至455之后,样品溶液到达指示区域581至585。在指示区域581至585中,如在第一实施方式的情况下,设置色素材料6或凹凸结构7。这便于从微芯片1d的外部观察样品溶液引入到指示区域581至585中。
在微芯片1d中,引入流路311a至315a经由分支流路321至325与指示区域581至585单独连接。利用这个结构,当引入流路311a至315a中的任意一个被阻断时,指示区域581至585可以确定哪个引入流路已经被阻断。因此,可以进行除了从没有充满样品溶液的分析区域获得的分析结果以外的分析。因此,通过微芯片1d实现了具有高准确度的分析。
(2)微芯片1d的变形实施方式
图9示意性地示出了微芯片1d的变形实施方式。在以下描述中,分析区域43代表微芯片1d的变形实施方式(1d-1、1d-2、1d-3)。除了引入流路311a至315a以外,微芯片1d-1至1d-3与微芯片1d的结构相同。其他与微芯片1d具有相同结构的组成部分是由与微芯片1d相同的参考标号表示的,并且以下将不对其进行描述。
<1>微芯片1d-1
图9A示出了微芯片1d-1的结构。在微芯片1d-1中,两个引入流路313a、313b与包括分析区域435的分析区域相连接。此外,引入流路313a、313b分别与分支流路323a、323b相连接。利用这个结构,即使当引入流路中的一个由气泡等阻断的时候样品溶液依然能够流过其他引入流路以便被引入包括分析区域435的分析区域中。这确保了样品溶液被引入包括分析区域435的分析区域中。
<2>微芯片1d-2
图9B示出了微芯片1d-2的结构。在图9A中示出的微芯片1d-1中,分支流路323a、323b会聚成与分析区域583相连接的一个分支流路。另一方面,微芯片1d-2中分支流路323a、323b分别与指示区域583相连接。在微芯片1d中,多个分支流路321至325可在会聚之后与对应的指示区域581至585相连接。可替换地,多个分支流路321知325可直接地并独立地与对应的指示区域581至583相连接。此外,如图9A和图9B所示,在根据本技术的微芯片中,指示区域在容量和表面积上不受限制。
<3>微芯片1d-3
图9C示出了微芯片1d-3的结构。在微芯片1d-3中,指示区域583a、583b分别与分支流路323a、323b相连接。此外,指示区域583a、583b经由分支流路323a、323b与引入流路313a、313b以单独的方式相连接。因此,当引入流路中的一个被阻断时,指示区域583a、583b可以确定哪个引入流路已阻断。
5.光透射部分的保护机构
关于根据本技术的每个实施方式的上述的微芯片,当对分析区域中保持的物质进行光学分析时,期望用户触摸微芯片时,避开位于形成微芯片的外表面的基板层的并且来自分析区域的光通过的光透射部分。位于微芯片的外表面的光透射部分是来自分析区域的光通过的部分。例如,当光入射到检测器等上时,从分析区域保留的物质中发出的荧光和冷光两者以及来自分析区域的透射光通过光透射部分。因此,如果如用户指纹的尘垢粘附在这个部分,那么会引起来自分析区域的光的测量的误差,降低使用微芯片的分析的准确度。因此,根据本技术的微芯片可设置有保护机构以从如用户指纹的尘垢中保护光透射部分。保护机构在以下(1)至(5)中描述。
(1)接触防止结构
在根据本技术的每个实施方式的微芯片中,接触防止结构可设置在微芯片的外表面上以便当用户把微芯片拿在他/她的手中时使用户手指保持远离光透射部分。例如,通过将光透射部分在基质层中形成为从周围区域下凹的凹槽,即使当用户将微芯片拿在他/她的手中的时候,依然能够使用户的手指远离光透射部分。
(2)用于光透射部件的识别标记
在根据本技术的每个实施方式的微芯片中,微芯片的外表面可以被配置为使用户容易从其他部分区分光透射部分。例如,除光透射部分以外的微芯片的外表面可具有图案或颜色,或者可以利用不同的成分或材料打凸花或覆盖成不透明的。因此,光透射部分变为对于用户容易识别的。将微芯片的外表面部分地被涂上颜色就足够了。例如,仅光透射部分周围的区域可铜字符、符号等包围以便引起用户的注意。
(3)把持部的指示
在根据本技术的每个实施方式的微芯片中,微芯片可以被配置为预先向用户指示其把持部。例如,在基板层中,可以从周围区域下凹或者突出的允许用户把持的部分。同样,代表手指的符号或字符可被印上允许用户把持的部分上使得用户理解允许他/她把持该部分。利用以上的把持部,用户在处理微芯片时会更加清晰的意识到把持该把持部,防止用户使用指尖触摸光透射部分。
(4)用于光透射部件的保护构件
在根据本技术的每个实施方式的微芯片中,微芯片的外表面上的光透射部分可以用另一个构件或材料保护直至分析开始。例如,薄膜类型保护材料被层压在光透射部分上面,以便防止指纹等粘附到光透射部分。在这种情况下,希望在分析开始之前将如指纹的尘垢标志的保护构件从微芯片上移去。
(5)其他
在根据本技术的每个实施方式的微芯片中,为了防止指纹粘附到光透射部分,防指纹的保护材料可以设置在微芯片的外表面上,作为光透射部分的保护机构。这种保护构件的实例包括市场上可获得的防指纹涂片。可替换地,微芯片可在防止指纹等粘附到光透射部分的情况下被把持。优选地,保留微芯片的盒子形成为当从盒子中取出微芯片时防止用户意外触摸到光透射部分。例如,开口可以仅把持部暴露于盒子的外部的方式预先形成在盒子的一部分中。如上所述的盒子使用户容易认出微芯片的把持部,防止用户把持光透射部分。作为另一个选择,盒子可以以下方式形成,即当盒子打开时,其打开的部分是以下形状和尺寸,即该形状和尺寸使用户仅能够把持已放置在盒子中的微芯片的预先确定的部分。此外,光透射部分可设置有当手指接触光透射部分时对用户的手指的压力或热量起反应来指示用户其手指已触摸到光透射部分的构件。通过用户能够认出用户已触摸的光透射部分,可以除去会导致光学分析误差的分析区域。
通过本技术还获得了以下配置。
(1)一种微芯片,包括:引入部,被配置为引入液体;分析区域,被配置为执行对包含在所述液体中的物质或者所述物质的反应产物的分析;指示区域,被配置为指示所述分析区域已完全被所述液体填充;以及流路,被配置为连接所述引入部、所述分析区域和所述指示区域。在微芯片中,所述流路被配置为使得从所述引入部引入的所述液体到达所述指示区域占用的时间比从所述引入部引入的所述液体填充至所述分析区域占用的时间长。
(2)在如(1)中所述的微芯片中,所述流路包括被配置为连接所述引入部与所述分析区域的引入流路;以及被配置为连接所述分析区域与所述指示区域的排出流路。
(3)在如(1)中所述的微芯片中,流路包括连接引入部和分析区域的引入流路,和从引入流路分支与指示区域连接的分支流路。流路是以以下方式配置的,即从位于分支流路和引入流路之间的连通部到指示区域的流路长度长于从连通部到分析区域的流路长度。
(4)在如(1)中所述的微芯片中,其中,所述流路包括被配置为连接所述引入部与所述分析区域的引入流路;以及从所述引入流路分叉以与所述指示区域连接的分支流路。所述流路被配置为使得在所述分支流路与所述引入流路之间的连通部处,向所述分支流路引入的液体的引入压力高于向所述引入流路引入的液体的引入压力。
(5)在如(2)至(4)中任一项所述的微芯片中,色素材料被放置在所述指示区域中。
(6)在如(5)所述的微芯片中,所述色素材料被固相化。
(7)在(2)至(4)中任一项所述的微芯片中,凹凸结构被设置在构成所述指示区域的至少一个表面上。
(8)在如(7)中所述的微芯片中,形成在所述一个表面上的所述凹凸结构包括不平行于或不垂直于所述一个表面的表面。
(9)在如(2)中所述的微芯片中,分析区域在与分析区域和引入流路之间的连通部相对的位置处具有分析区域和排出流路之间的连通部。
(10)在如(9)所述的微芯片中,一个所述引入流路与多个所述分析区域相连接。
(11)在如(10)所述的微芯片中,所述多个分析区域经由所述排出流路与一个所述指示区域相连接。
(12)在如(10)中所述的微芯片中,一个所述指示区域经由所述排出流路与所有的所述分析区域相连接。
工业实用性
在根据本技术的微芯片中,利用指示区域,可以容易地确认样本溶液已完全填充分析区域。因此,通过根据本技术的微芯片,能够在样品溶液完全填充时立即开始分析。这使分析能够具有高准确度。因此,微芯片可用于疾病的诊断和医学、公共卫生、等领域中的传染病毒的判断。
参考标号列表
1a,1b,1c,1c-1,1d:微芯片
11,12,13:基板层
2:引入部、21:引入口
311a,312a,313a,313b,314a,315a:引入流路
321,322,323,323a,323b,324,325,326,327,328:分支流路
331,332,333,334,335:排出流路
41,415,42,425,43,431,432,433,434,435,44,445,45,455:分析区域
51,52,53,531,54,55,56,57,575,581,582,583,583a,583b,584,585:指示区域
6:色素材料
7:凹凸结构
81,815,821,822,823,823a,823b,824,825:连通部
9:基准框
S:放置面

Claims (12)

1.一种微芯片,包括:
引入部,被配置为引入液体;
分析区域,被配置为执行对包含在所述液体中的物质或者所述物质的反应产物的分析;
指示区域,被配置为指示所述分析区域已完全被所述液体填充;以及
流路,被配置为连接所述引入部、所述分析区域和所述指示区域,
其中,所述流路被配置为使得从所述引入部引入的所述液体到达所述指示区域占用的时间比从所述引入部引入的所述液体填充至所述分析区域占用的时间长。
2.根据权利要求1所述的微芯片,其中,所述流路包括被配置为连接所述引入部与所述分析区域的引入流路;以及被配置为连接所述分析区域与所述指示区域的排出流路。
3.根据权利要求1所述的微芯片,
其中,所述流路包括被配置为连接所述引入部与所述分析区域的引入流路;以及被配置为从所述引入流路分叉以与所述指示区域连接的分支流路,并且
所述流路被配置为使得从位于所述分支流路与所述引入流路之间的连通部至所述指示区域的流路长度比从所述连通部至所述分析区域的流路长度长。
4.根据权利要求1所述的微芯片,
其中,所述流路包括被配置为连接所述引入部与所述分析区域的引入流路;以及从所述引入流路分叉以与所述指示区域连接的分支流路,并且
所述流路被配置为使得在所述分支流路与所述引入流路之间的连通部处,向所述分支流路引入的液体的引入压力高于向所述引入流路引入的液体的引入压力。
5.根据权利要求2所述的微芯片,其中,色素材料被放置在所述指示区域中。
6.根据权利要求5所述的微芯片,其中,所述色素材料被固相化。
7.根据权利要求2所述的微芯片,其中,凹凸结构被设置在构成所述指示区域的至少一个表面上。
8.根据权利要求7所述的微芯片,其中,形成在所述一个表面上的所述凹凸结构包括不平行于或不垂直于所述一个表面的表面。
9.根据权利要求5所述的微芯片,其中,所述分析区域在与所述分析区域与所述引入流路之间的连通部相对的位置处具有所述分析区域与所述排出流路之间的连通部。
10.根据权利要求9所述的微芯片,其中,一个所述引入流路与多个所述分析区域相连接。
11.根据权利要求10所述的微芯片,其中,所述多个分析区域经由所述排出流路与一个所述指示区域相连接。
12.根据权利要求10所述的微芯片,其中,一个所述指示区域经由所述排出流路与所有的所述分析区域相连接。
CN201380025770.5A 2012-05-24 2013-03-13 微芯片 Pending CN104303062A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012118407 2012-05-24
JP2012-118407 2012-05-24
PCT/JP2013/056950 WO2013175833A1 (ja) 2012-05-24 2013-03-13 マイクロチップ

Publications (1)

Publication Number Publication Date
CN104303062A true CN104303062A (zh) 2015-01-21

Family

ID=49623537

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380025770.5A Pending CN104303062A (zh) 2012-05-24 2013-03-13 微芯片

Country Status (5)

Country Link
US (1) US20150139866A1 (zh)
EP (1) EP2857846B1 (zh)
JP (1) JPWO2013175833A1 (zh)
CN (1) CN104303062A (zh)
WO (1) WO2013175833A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346584A (zh) * 2019-07-10 2019-10-18 深圳金迈隆电子技术有限公司 一种片上实验室光电检测装置及方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210242A (ja) * 2014-04-30 2015-11-24 キヤノン株式会社 流路デバイス、流路デバイスの製造方法、および検査方法
JP7148366B2 (ja) * 2017-11-22 2022-10-05 積水化学工業株式会社 マイクロ流体デバイス
US11154864B2 (en) * 2018-01-17 2021-10-26 Qiagen Sciences, Llc Microfluidic device with vented microchambers
JP2019203797A (ja) * 2018-05-23 2019-11-28 栄研化学株式会社 試薬識別管理方法および検査デバイス
EP4010698B1 (en) * 2019-08-08 2024-04-17 Testcard Ltd. Bodily fluid testing method
US20240085443A1 (en) * 2021-01-20 2024-03-14 Enplas Corporation Liquid handling device, liquid handling system, and liquid handling method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496284A (en) * 1994-09-27 1996-03-05 Waldenburg; Ottfried Dual-chamber syringe & method
US7033474B1 (en) * 1997-04-25 2006-04-25 Caliper Life Sciences, Inc. Microfluidic devices incorporating improved channel geometries
JP2004340702A (ja) * 2003-05-15 2004-12-02 Aida Eng Ltd マイクロチップ及び液体検出方法
US20040265171A1 (en) * 2003-06-27 2004-12-30 Pugia Michael J. Method for uniform application of fluid into a reactive reagent area
US20070014695A1 (en) * 2005-04-26 2007-01-18 Applera Corporation Systems and Methods for Multiple Analyte Detection
JP2007010558A (ja) * 2005-07-01 2007-01-18 Matsushita Electric Ind Co Ltd センサ
EP1936383A4 (en) * 2005-10-13 2009-04-29 Nissui Pharm Co Ltd TESTING DEVICE
US20070280856A1 (en) * 2006-06-02 2007-12-06 Applera Corporation Devices and Methods for Controlling Bubble Formation in Microfluidic Devices
EP1977830A1 (en) * 2007-03-30 2008-10-08 Roche Diagnostics GmbH Micro-fluidic temperature driven valve
JP2009042103A (ja) * 2007-08-09 2009-02-26 Sony Corp 基板、これを用いた反応処理装置並びに反応制御方法
US7977660B2 (en) * 2007-08-14 2011-07-12 General Electric Company Article, device, and method
JP5252679B2 (ja) * 2007-08-31 2013-07-31 株式会社ユニバーサルエンターテインメント 遊技機
US8697010B2 (en) * 2007-12-19 2014-04-15 Shimadzu Corporation Dispensing device
WO2009125676A1 (ja) * 2008-04-09 2009-10-15 コニカミノルタエムジー株式会社 検査システム
JP5218443B2 (ja) * 2010-02-10 2013-06-26 ソニー株式会社 マイクロチップ及びマイクロチップの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346584A (zh) * 2019-07-10 2019-10-18 深圳金迈隆电子技术有限公司 一种片上实验室光电检测装置及方法
CN110346584B (zh) * 2019-07-10 2024-01-02 深圳金迈隆电子技术有限公司 一种片上实验室光电检测装置及方法

Also Published As

Publication number Publication date
US20150139866A1 (en) 2015-05-21
EP2857846A1 (en) 2015-04-08
EP2857846A4 (en) 2016-02-24
JPWO2013175833A1 (ja) 2016-01-12
EP2857846B1 (en) 2019-02-13
WO2013175833A1 (ja) 2013-11-28

Similar Documents

Publication Publication Date Title
CN104303062A (zh) 微芯片
ES2682281T3 (es) Cartucho de prueba con módulo de transferencia integrado
US9234888B2 (en) Fluidic connectors and microfluidic systems
AU2014270412B2 (en) Compact fluid analysis device and method to fabricate
CN104042253B (zh) 可旋转的盘形流体样品收集装置
JP2016179198A5 (zh)
JP6197263B2 (ja) マイクロチップ
US11739288B2 (en) Plate
WO2020045591A1 (ja) Pcr反応容器
JP7099961B2 (ja) 反応処理装置
JP5182099B2 (ja) マイクロチップ、およびマイクロチップ検査システム
CA2983482C (en) A fluid analysis device
EP3223945B1 (en) Compact glass-based fluid analysis device and method to fabricate
TW201637987A (zh) 微流體感測系統
JP7173759B2 (ja) マイクロ流路チップ
CN107617450B (zh) 一次性定量加液组杯
TWI615606B (zh) 光學式生物感測器與微流體裝置的整合結構
JP2009156741A (ja) 開口封止部材、開口封止方法、マイクロ検査チップおよび開口封止治具

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150121