CN104254947B - 一种具有选择性吸收结构的装置及方法 - Google Patents

一种具有选择性吸收结构的装置及方法 Download PDF

Info

Publication number
CN104254947B
CN104254947B CN201380020013.9A CN201380020013A CN104254947B CN 104254947 B CN104254947 B CN 104254947B CN 201380020013 A CN201380020013 A CN 201380020013A CN 104254947 B CN104254947 B CN 104254947B
Authority
CN
China
Prior art keywords
dielectric layer
conductive
particles
nano
distributed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380020013.9A
Other languages
English (en)
Other versions
CN104254947A (zh
CN104254947B8 (zh
Inventor
大卫·R·史密斯
安东尼·摩罗
克里斯蒂安·西拉西
杰克·J·莫克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duke University
Original Assignee
Duke University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duke University filed Critical Duke University
Publication of CN104254947A publication Critical patent/CN104254947A/zh
Application granted granted Critical
Publication of CN104254947B publication Critical patent/CN104254947B/zh
Publication of CN104254947B8 publication Critical patent/CN104254947B8/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/17Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-absorption elements not provided for in groups G02F1/015 - G02F1/169
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0102Constructional details, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0128Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/002Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems using short elongated elements as dissipative material, e.g. metallic threads or flake-like particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/007Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with means for controlling the absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • G02F1/3505Coatings; Housings; Supports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/832Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
    • Y10S977/834Optical properties of nanomaterial, e.g. specified transparency, opacity, or index of refraction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本文描述一种可选择性吸收电磁辐射的装置。所述装置包括一导电表面、一介电层形成在所述导电表面上,且所述介电层上分布有许多导电颗粒。所述介电层可由一种材料和一产生特定吸收光谱的可选厚度所形成。另外,所述材料的厚度或介电值可在响应外部刺激时而发生变化,从而改变所述吸收光谱。

Description

一种具有选择性吸收结构的装置及方法
若申请数据表(ADS)于本申请的申请日递交,则其通过引用结合于此。通过申请数据表请求依据美国专利法第35编第119、120、121、365条的优先权以及任何所有父母专利、祖父母专利和曾祖父母专利等的任何此类申请也通过引用结合于此,其中包括这些申请中的任何优先权权利要求和任何参考引用资料,以使本文技术主题在此与之保持一致。
政府支持申明
关于本文公开技术主题的研究已得到政府支持,部分资金由科学研究空军办公室(AFOSR)下的美国政府提供,授权号为FA9550-09-1-0562的用于航空航天应用的高级变晶介质。美国政府拥有本文所公开技术主题的某些权利。
相关申请的交叉引用
本申请请求下述所列申请(“优先权申请”)的最早可用有效申请日为优先权日,若有,罗列如下(例如请求除了临时专利申请外的最早可用优先权日,或者请求依据美国专利法第35编第119(e)条权益的临时专利申请,如任何所有父母专利、祖父母专利和曾祖父母专利等优先权申请)。此外,本申请涉及的“相关申请”,若有,罗列如下。
优先权申请:
本申请请求2012年4月16日申请的题为“带有胶状等离子纳米天线(colloidalplasmonic nanoantennas)的控制反射表面及使用方法”,发明人为大卫·R·史密斯、安东尼·摩罗、克里斯蒂安·西拉西以及杰克·J·默克的美国临时申请号为61/624,71的优先权。其公开内容全部通过引用结合于此,并且已在本申请的提交日期前的十二个月内提出,或是被赋予申请日优势的目前待审优先权申请中的一件申请。
相关申请:
无。
若上述申请所提供的列表与申请数据表(ADS)所提供列表不一致,申请人可对出现在ADS优先权申请章节中每个申请以及出现在本申请优先权申请章节中的每个申请请求优先权。
该优先权申请和相关申请的所有技术主题,以及任何所有父母专利、祖父母专利和曾祖父母专利等的技术主题,包括优先权权利要求的优先权申请和相关申请,通过引用结合于此,以使本文技术主题在此保持一致。
技术领域
本发明涉及电磁辐射的吸收,具体涉及一种选择性吸收结构。
背景技术
电磁辐射的有效可调吸收有利于多种应用,诸如为热光电设备设计可控发射率表面,为可控热耗散定制红外光谱,以及为成像产生探测器元件。
发明内容
本发明提供一种装置用于选择性吸收电磁辐射。一方面,该装置包括一导电表面,在所述导电表面上形成介电层,且介电层上分布有许多导电粒子。所述导电粒子可为立方体型且可通过胶状吸收而随机分布在介电层上。所述介电层可包括其厚度或介电常数响应外界刺激而变化的材料,外界刺激如外加电场、外加电磁辐射、出现化学物质或出现分子分析物。所述介电层可包括非线性介质或增益介质。另一方面,形成这个装置的方法可包括选择一设计电磁波长用以选择性吸收。之后形成一导电表面和一介电层。所述介电层具有一与同所述设计波长相关的间隔参数相对应的厚度。多个导电颗粒,如金属立方体或棒,分布在所述介电层上。
前述内容只具说明性,并不止在于任何方式限制。除了说明性内容、实施例和上述描述特征外,具体内容、实施例和特征依据附图和以下详细说明将变得明确。
附图说明
当结合所附附图阅读时,前述内容以及下述多种实施例的详细描述可更好的理解。为了说明起见,图中示出了示范性实施例;然而,目前公开的技术主题并不仅限于特定的方法和公开的手段。图中:
图1为一种选择性吸收结构的原理示意图;
图2为一种选择性吸收结构的显示示例尺寸的示意图;
图3为一种选择性吸收结构的光谱响应的图表;以及
图4为一种包括选择性吸收结构的光电***的原理示意图。
详细说明
以下详细说明,请参照所在此构成一部分的附图。图中,类似符号通常确定类似组件,除非上下文另有规定。在详细说明、附图和权利要求中描述的示范性实施例不受限制。可利用其它实施例,并进行其他更改,不得脱离本文公开技术主题的主旨和范围。
图1示出了一种选择性吸收结构100,该结构选择性吸收电磁辐射101某些波长,诸如光。所述结构100由一基底102、一导电表面104和一介电间隔层106和许多导电颗粒108形成。在某一实施例中,所述导电表面104为一金属膜,如金,沉积在所述基底102上。所述介电层106可由任何种类合适材料,如介电解质材料制备,并且具有大于1.5的折射率,尽管折射率小于1.5也可接受。在某些实施例中,所述介电层106可由光学非线性介质形成。这些介质的例子包括二次谐波产生材料,如硼酸钡、 碘酸锂、 铌酸钾、 镓硒化物,以及其它已知光学非线性材料,包括有机光学非线性材料。在其他实施例中,介电层106可为增益介质或主动激光介质。此类介质的实例包括砷化镓、氮化镓、晶体(如蓝宝石或钇的钒酸)或掺杂稀土离子或过渡金属离子的玻璃(例如,硅酸盐或磷酸盐玻璃),以及其他已知增益介质,包括液体和气体激光介质。
所述导电颗粒108可为立方体形状(如图1)、棒状或其他优化形状,以提供与所述导电表面104并行排列的平坦表面,以支持在所述粒子和所述导电表面之间的间隙等离子体引导模式。本领域技术人员领会所述结构100的选择性吸收特性是因为等离子共振。等离子共振与在红外、可见光和紫外线波长下的某些金属相关。据悉,其他非金属材料支持在其他波长下的类似等离子响应。因此,术语“导体”和“导电的”在此处按照通常意思使用,以包括可支持与特定波长相关的等离子共振的任何特定材料。
图2示出了所述选择性洗手结构100的组成部分的示例尺寸。在某一实施例中,所述导电表面104可为厚度约50nm的金膜。所述导电颗粒108可为长度约74nm的银纳米立方体且具有3nm厚平稳覆盖层110。所述结构100的反射特性由所述银纳米立方体108和金膜104之间的分隔距离、用于形成介电间隔层106和平稳覆盖层110的介电特性、纳米立方体形状的均匀性和覆盖有所述银纳米立方体的金属膜的百分比决定。
所述结构100的反射尤其对立体膜间隔敏感,从而提供一通过变化所述介电间隔层106厚度的可调选择性吸收结构。试验性测量被采用,使用图2中带有通常几何尺寸的所述结构100,且所述结构100具有折射率1.54聚电解质的不同厚度。一6nm介电间隔层106产生少于7%的最小反射,用于带有表面覆盖率为17.1%(如图3)的样本的637nm垂直入射光线。薄间隔层实验产生了用于波长在700nm和800nm之间和大于800nm的入射电磁辐射的反射极小值。薄间隔层提供用于波长小于600nm光的反射最小值。
本领域技术人员将明白一个设计者为间隔层104选择不同厚度,并因此为结构100的选择性吸收选择不同的相应设计波长。相反地,间隔层104(如介电常数变化或厚度变化)构造的任何变化将导致由所述结构100产生的不同光谱吸收。相应地,所述结构100可被应用为一传感器。例如,所述介电层104可由无机或有机材料组成,其响应外部刺激而改变构造。所述相应变化在选择性吸收波长中,检测外部刺激的存在,如外加电场、电磁辐射或化学物质或分子分析物出现。
图4示出了包括在一光电***200内的选择性吸收结构100。本领域技术人员将会明白由一吸收表面结构提供的光谱控制和响应可形成大量应用前景的基础,包括光电***,如热光电设备、红外吸收光谱设备、热能探测器、成像设备、光源和传感器。
在一实施例中,与本发明技术主题一致的纳米立方体可被配置用于生物传感器并作为一整体的胶状吸收剂。另外应用包括但不限于用于生物传感的等离子片纳米天线(plasmonic patch nanoantennas)。在一实例中,所述由立方体下的间隙支持的模式是在所述立方体边缘来回反射,以使得所述间隙被作为一干涉仪。所述模式速度的任何变化(通过轻微的无论何种方式的改变所述立方体和所述膜之间的间距),或者由周边介质变化引起的所述模式反射系数的任何变化,可产生共振腔偏移,该偏移可通过表面反射或通过单个立方体的共振散射被容易检测到。一间隙波导模式可被设置在所述立方体和所述膜之间,其随所述立方体边缘的分子键合运动改变。另外,所述立方体可设于分子(如DNA,蛋白质等)床或无机层上,其构造敏感因外部刺激引发间隙尺寸变化和波导模式修正。
除了使用膜建立可控反射表面,还可以使用非导电、透明宿主的纳米粒子。在这种情况下,类似磁散射的纳米粒子,可为两个金属磁盘或被绝缘层分割片,与常规金属纳米粒子相结合以提供电子散射。通过调整所述纳米粒子特性和他们相对密度,电磁响应可按照类似膜耦合片的方式控制。该结果由不使用金属膜建立的反射表面控制,且有利于某些应用。
当阻性电流被激发时,光子***中的金属应用可被相对较大吸收阻碍。但是,应用类型中存在的吸收可能是有利的,或甚至是一必要的特性而不是一种阻碍。此类应用包括用于提高光热电效率的可控辐射表面设计;用于可控热耗散的红外光谱定制;用于信号控制的红外光谱定制,以及用于成像检测元件。
许多基于“完美吸收体”的等离子超材料包括带有微米或纳米级结构图案的类似磁共振的金属表面。通过调整和优化所述磁共振,可平衡金属板电流和有效磁电流,并且所述复合结构不在目标波长反射。注意术语“完美吸收体”主要是描述性的,且指被设计为减少超过特定频率波段的反射的表面。这些表面也可被认为“理想吸收体”,因其利用匹配电磁响应。最小反射可以相当不错,在特定设计波长和特定入射角时,被吸收的光高达99.5%。
许多理想吸收结构涉及平板印刷图案的使用,该使用在不被需要用于某些应用时,不能更好的扩展到大区域。依据本文公开实施例中胶状制备的纳米立方体类似形成完美吸收表面的方法,可与金属膜紧密间隔设置。胶状制备不贵且提供多种途径建立带有可控反射或辐射特性的表面。所述纳米立方体的内在机制可是一贴片天线机制,以使得任意扁平的纳米粒子,如薄煎饼、磁盘或类似物,被用于控制反射。因内在效应不依赖于周期,纳米颗粒的随机覆盖面,采用根据本文所公开且容易计算得出的足够密度,可产生完美吸收表面。
依据本文所公开的实施例,几何结构可以是一覆盖有可控厚度的绝缘介电层的金属薄膜(如,由金制成)的结构,该绝缘介电层上沉积的金属纳米粒子具有所需的几何结构和密度。金或银均是可被用于纳米粒子的金属的例子。因为,所述吸收体效应的内在机制涉及到在金属纳米粒子和膜之间的间隙中被激发的模式,许多类型材料可被使用(如,白金、钛、铝、铜等),并具有被调整接近可视、红外、太赫兹范围内的任何波长区域的可控反射特性。
尽管本文公开了许多内容及实施例,但其他内容及实施例对本领域技术人员是显而易见的。本文公开的许多内容和实施例是为了说明但不限于此,下述权利要求示出了本发明的真正范围和主旨。

Claims (12)

1.一种方法包括:
选择一设计波长;
确定相对所述设计波长的间隔参数;
形成一导电表面;
形成在所述导电表面上相对所述间隔参数的介电层;
以及
分布数个导电纳米颗粒在所述介电层上;
其中,分布所述导电纳米颗粒包括分布数个导电纳米颗粒且每个纳米颗粒至少有一大体上平坦表面,所述平坦表面与所述导电表面大体上平行设置,支持在所述纳米颗粒和所述导电表面之间的共振间隙等离子体引导模式,导电纳米颗粒具有平稳覆盖层,分布所述导电纳米颗粒包括随机分布数个导电纳米颗粒在所述介电层上;随机分布所述导电纳米颗粒包括胶状地吸收在所述介电层上的数个导电纳米颗粒。
2.根据权利要求1所述方法,其特征在于,形成所述介电层包括形成大体上均匀厚度的介电层,所述厚度与所述间隔参数一致。
3.根据权利要求1-2之一所述方法,其特征在于,分布所述导电纳米颗粒包括分布数个立方体形状纳米颗粒在所述介电层上。
4.根据权利要求1-2之一所述方法,其特征在于,分布所述导电纳米颗粒包括分布数个棒状纳米颗粒在所述介电层上。
5.根据权利要求1-2之一所述方法,其特征在于,所述介电层包括响应外界刺激而改变厚度或介电常数的材料。
6.根据权利要求5所述方法,其特征在于,所述外界刺激可选择外接电场、电磁辐射、化学物质和分子分析物中的一种。
7.一种用于电磁辐射选择性吸收的装置,所述装置包括:
一导电表面;
一形成在所述导电表面的介电层;以及
分布在所述介电层上的数个导电纳米颗粒;
其中,每个纳米颗粒至少有一大体上平坦表面,所述平坦表面与所述导电表面大体上平行设置,支持在所述纳米颗粒和所述导电表面之间的共振间隙等离子体引导模式,导电纳米颗粒具有平稳覆盖层,分布所述导电纳米颗粒包括随机分布数个导电纳米颗粒在所述介电层上;随机分布所述导电纳米颗粒包括胶状地吸收在所述介电层上的数个导电纳米颗粒。
8.根据权利要求7所述装置,其特征在于,所述介电层为一大体上均匀厚度膜,所述介电层厚度相当于用于选择性吸收的电磁辐射设计波长。
9.根据权利要求7或8所述装置,其特征在于,所述导电纳米颗粒为立方体形状的导电纳米颗粒。
10.根据权利要求7或8所述装置,其特征在于,所述导电纳米颗粒为棒状导电纳米颗粒。
11.根据权利要求7所述装置,其特征在于,所述介电层包括响应外界刺激而改变厚度或介电常数的材料。
12.根据权利要求11所述装置,其特征在于,所述外界刺激可选择外接电场、电磁辐射、化学物质和分子分析物中的一种。
CN201380020013.9A 2012-04-16 2013-04-16 一种具有选择性吸收结构的装置及方法 Active CN104254947B8 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261624571P 2012-04-16 2012-04-16
US61/624,571 2012-04-16
PCT/US2013/036847 WO2013158688A1 (en) 2012-04-16 2013-04-16 Apparatus and method for providing a selectively absorbing structure

Publications (3)

Publication Number Publication Date
CN104254947A CN104254947A (zh) 2014-12-31
CN104254947B true CN104254947B (zh) 2018-05-29
CN104254947B8 CN104254947B8 (zh) 2019-05-03

Family

ID=49384015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380020013.9A Active CN104254947B8 (zh) 2012-04-16 2013-04-16 一种具有选择性吸收结构的装置及方法

Country Status (4)

Country Link
US (2) US9606414B2 (zh)
EP (1) EP2839540A4 (zh)
CN (1) CN104254947B8 (zh)
WO (1) WO2013158688A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10663631B2 (en) * 2014-10-10 2020-05-26 Duke University Nanopatch antennas and related methods for tailoring the properties of optical materials and metasurfaces
WO2018043298A1 (ja) * 2016-08-31 2018-03-08 国立研究開発法人理化学研究所 光吸収体、ボロメーター、赤外線吸収体、太陽熱発電装置、放射冷却フィルム、及び光吸収体の製造方法
US11208568B2 (en) 2017-05-17 2021-12-28 Elwha Llc Thermal signature control structures
CN108333653B (zh) * 2018-03-05 2020-12-25 江西师范大学 基于耐火材料的电磁波吸收器
CN108490509B (zh) * 2018-04-08 2019-10-11 武汉大学 低深宽比的电介质几何相位超表面材料及其结构优化方法
CN108767492B (zh) * 2018-04-25 2020-12-04 北京邮电大学 可调太赫兹宽带吸波器
CN113759449B (zh) * 2020-06-03 2023-11-24 深圳大学 一种基于完美吸收体的可调红外吸收基体及红外吸收器
CN116323474A (zh) * 2020-10-09 2023-06-23 Oti照明公司 包括低折射率涂层和辐射改性层的器件
JP2023553379A (ja) 2020-12-07 2023-12-21 オーティーアイ ルミオニクス インコーポレーテッド 核形成抑制被膜及び下地金属被膜を用いた導電性堆積層のパターニング

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957245A (zh) * 2004-05-19 2007-05-02 Vp控股有限公司 通过sers增强化学基团检测的具有层化等离子体结构的光学传感器
CN101740722A (zh) * 2009-12-25 2010-06-16 中国科学院光电技术研究所 一种宽波段的近完美吸收结构
EP2372348A1 (en) * 2010-03-22 2011-10-05 Imec Methods and systems for surface enhanced optical detection
WO2011131586A2 (fr) * 2010-04-23 2011-10-27 Centre National De La Recherche Scientifique - Cnrs Structure nanometrique absorbante de type mim asymetrique et methode de realisation d'une telle structure

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980566A (en) 1989-08-02 1990-12-25 The United States Of America As Represented By The Secretary Of Commerce Ultrashort pulse multichannel infrared spectrometer apparatus and method for obtaining ultrafast time resolution spectral data
US20040118044A1 (en) 1995-06-07 2004-06-24 Weder Donald E Floral packaging material having great masters prints thereon
US6815696B2 (en) 2002-05-29 2004-11-09 Ibis Technology Corporation Beam stop for use in an ion implantation system
US20040001665A1 (en) * 2002-07-01 2004-01-01 Majd Zoorob Optical device
EP1653260A1 (en) * 2003-07-18 2006-05-03 Nippon Sheet Glass Co.,Ltd. Photonic crystal waveguide, homogeneous medium waveguide, and optical device
US7679563B2 (en) 2004-01-14 2010-03-16 The Penn State Research Foundation Reconfigurable frequency selective surfaces for remote sensing of chemical and biological agents
DE102004023977A1 (de) 2004-05-14 2006-01-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Transparenter Kontakt und Verfahren zu dessen Herstellung
US20060072114A1 (en) * 2004-10-06 2006-04-06 Sigalas Mihail M Apparatus and mehod for sensing with metal optical filters
US20060153261A1 (en) 2005-01-13 2006-07-13 Krupke William F Optically-pumped -620 nm europium doped solid state laser
WO2006122222A2 (en) 2005-05-11 2006-11-16 Georgia Tech Research Corporation Shape tunable plasmonic nanoparticles
EP1969391B1 (en) * 2005-12-12 2014-07-16 Irina Puscasu Thin film emitter-absorber apparatus and methods
EP1961077B1 (en) 2005-12-12 2016-10-12 Flir Surveillance, Inc. Selective reflective and absorptive surfaces and method for resonantly coupling incident radiation
US8111440B2 (en) * 2007-04-26 2012-02-07 Hewlett-Packard Development Company, L.P. Structure and method for modulating light
US20090034055A1 (en) 2007-07-31 2009-02-05 Gibson Gary A Plasmon-based color tunable devices
US20100126567A1 (en) * 2008-11-21 2010-05-27 Lightwave Power, Inc. Surface plasmon energy conversion device
US8237324B2 (en) * 2008-12-10 2012-08-07 The Regents Of The University Of California Bistable electroactive polymers
WO2010098758A1 (en) 2009-02-26 2010-09-02 Hewlett-Packard Development Company, L.P. Optical data recording medium
KR101669219B1 (ko) 2010-12-30 2016-10-26 삼성전자주식회사 광변조기 및 이를 채용한 광학장치
US8780439B2 (en) * 2011-03-03 2014-07-15 Lawrence Livermore National Security, Llc Plasmon resonant cavities in vertical nanowire arrays

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957245A (zh) * 2004-05-19 2007-05-02 Vp控股有限公司 通过sers增强化学基团检测的具有层化等离子体结构的光学传感器
CN101740722A (zh) * 2009-12-25 2010-06-16 中国科学院光电技术研究所 一种宽波段的近完美吸收结构
EP2372348A1 (en) * 2010-03-22 2011-10-05 Imec Methods and systems for surface enhanced optical detection
WO2011131586A2 (fr) * 2010-04-23 2011-10-27 Centre National De La Recherche Scientifique - Cnrs Structure nanometrique absorbante de type mim asymetrique et methode de realisation d'une telle structure

Also Published As

Publication number Publication date
CN104254947A (zh) 2014-12-31
EP2839540A4 (en) 2015-12-16
WO2013158688A1 (en) 2013-10-24
CN104254947B8 (zh) 2019-05-03
US20150062686A1 (en) 2015-03-05
US20170357139A1 (en) 2017-12-14
EP2839540A1 (en) 2015-02-25
US9606414B2 (en) 2017-03-28
US10976636B2 (en) 2021-04-13

Similar Documents

Publication Publication Date Title
CN104254947B (zh) 一种具有选择性吸收结构的装置及方法
Zheng et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides
Barsukova et al. Magneto-optical response enhanced by Mie resonances in nanoantennas
Rhee et al. Metamaterial-based perfect absorbers
Moreau et al. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas
Christ et al. Symmetry breaking in a plasmonic metamaterial at optical wavelength
Newman et al. Ferrell–Berreman modes in plasmonic epsilon-near-zero media
Poddubny et al. Hyperbolic metamaterials
Campione et al. Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers
Dregely et al. 3D optical Yagi–Uda nanoantenna array
Guo et al. Wide-angle infrared metamaterial absorber with near-unity absorbance
Carles et al. Three dimensional design of silver nanoparticle assemblies embedded in dielectrics for Raman spectroscopy enhancement and dark-field imaging
Huang et al. Superscattering of light from core–shell nonlocal plasmonic nanoparticles
Leong et al. Effect of Surface morphology on the optical properties in metal− dielectric− metal thin film systems
Le et al. Four-mode programmable metamaterial using ternary foldable origami
Boehm et al. Field‐switchable broadband polarizer based on reconfigurable nanowire assemblies
Fu et al. Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition
Almpanis et al. Designing photonic structures of nanosphere arrays on reflectors for total absorption
Kabiri et al. Buried nanoantenna arrays: versatile antireflection coating
Dolatabady et al. Manipulation of the Faraday rotation by graphene metasurfaces
Li et al. Nanoparticle-on-mirror metamaterials for full-spectrum selective solar energy harvesting
Sakurai et al. Prediction of the resonance condition of metamaterial emitters and absorbers using LC circuit model
Beiranvand et al. A proposal for a multi-functional tunable dual-band plasmonic absorber consisting of a periodic array of elliptical grooves
Gu et al. Tunable THz perfect absorber with two absorption peaks based on graphene microribbons
Zhou et al. High-efficient light absorption of monolayer graphene via cylindrical dielectric arrays and the sensing application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CI03 Correction of invention patent

Correction item: Patentee

Correct: Duke Univ.

False: Duke Univ.|SMITH DAVID R|MOREAU ANTOINE|CIRACI CRISTIAN|Mock Jack J.

Number: 22-01

Volume: 34

Correction item: Patentee

Correct: Duke Univ.

False: Duke Univ.|SMITH DAVID R|MOREAU ANTOINE|CIRACI CRISTIAN|Mock Jack J.

Number: 22-01

Page: The title page

Volume: 34

CI03 Correction of invention patent