CN104201545B - 基于双波段光纤激光器的超宽带超连续谱光源 - Google Patents

基于双波段光纤激光器的超宽带超连续谱光源 Download PDF

Info

Publication number
CN104201545B
CN104201545B CN201410385054.4A CN201410385054A CN104201545B CN 104201545 B CN104201545 B CN 104201545B CN 201410385054 A CN201410385054 A CN 201410385054A CN 104201545 B CN104201545 B CN 104201545B
Authority
CN
China
Prior art keywords
laser
optical fiber
band
ultra broadband
waveband
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410385054.4A
Other languages
English (en)
Other versions
CN104201545A (zh
Inventor
郭春雨
阮双琛
林怀钦
文亮
欧阳德钦
余军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mill medical technology (Shenzhen) Co.,Ltd.
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201410385054.4A priority Critical patent/CN104201545B/zh
Publication of CN104201545A publication Critical patent/CN104201545A/zh
Priority to PCT/CN2015/078698 priority patent/WO2016019746A1/zh
Priority to US15/060,626 priority patent/US9647409B2/en
Application granted granted Critical
Publication of CN104201545B publication Critical patent/CN104201545B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06733Fibre having more than one cladding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3528Non-linear optics for producing a supercontinuum
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/32Photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094007Cladding pumping, i.e. pump light propagating in a clad surrounding the active core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1691Solid materials characterised by additives / sensitisers / promoters as further dopants
    • H01S3/1698Solid materials characterised by additives / sensitisers / promoters as further dopants rare earth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • H01S3/2391Parallel arrangements emitting at different wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

本发明适用于光纤激光技术领域,提供了一种基于双波段光纤激光器的超宽带超连续谱光源,包括:第一光纤激光器、第二光纤激光器、波分复用器、级联的两级超连续谱演化组件。本发明采用两个不同波段的光纤激光器作为种子源,形成同时输出双波段激光的双波段光纤激光器,并以此双波段光纤激光器泵浦级联的演化组件。具体双波段激光通过第一级演化组件时,一个波段激光演化为可见光-近红外超连续谱,而另一波段激光演化为超短脉冲,二者共同耦合进入第二级演化组件,超短脉冲又在其中演化为近红外-中红外超连续谱,前级产生的可见光-近红外超连续谱在其中低损耗传输,从级联光纤中最终输出覆盖可见光-近红外-中红外三个波段的超宽带超连续谱。

Description

基于双波段光纤激光器的超宽带超连续谱光源
技术领域
本发明属于光纤激光技术领域,尤其涉及一种基于双波段光纤激光器的超宽带超连续谱光源,可应用在生物医学、遥感探测、环境监测、多通道光纤通信及光谱学等方面。
背景技术
光纤超连续谱光源可产生高亮度、高相干的宽带光,相当于宽带激光器,在生物医学、激光光谱学、环境监测、遥感探测等领域具有重要的应用前景。
超宽带光谱输出是超连续谱研究追求的核心目标,而宽带超连续谱的产生要求泵浦激光波长位于光纤反常色散区并且尽量接近光纤零色散波长(ZeroDispersionWavelength,ZDW),以利于从泵浦演化的超短脉冲扩展到正常色散区。目前产生超连续谱的主流技术是采用1μm、1.5μm/2μm某一波段的高功率光纤激光器泵浦石英或某种非石英材质的光纤。
与1μm波段掺镱(Yb)光纤激光器色散匹配的光纤是石英光子晶体光纤(PhotonicCrystalFibers,PCF),二者相结合可以产生短波覆盖可见光波段的超连续谱,但是石英材料的强红外吸收限制了超连续谱向长波方向的扩展,使得光谱能量主要集中于可见光和近红外波段,而难以突破2.5μm。
与1.5μm和2μm波段光纤激光器色散匹配的光纤是非石英玻璃光纤(氟化物、硫化物等材质光纤),在高功率泵浦下非石英玻璃光纤中可以产生长波覆盖5μm中红外波段的超连续谱,但是由于光纤零色散波长和泵浦波长都位于1.5μm以上的长波波段,非石英玻璃光纤中产生的超连续谱在短波方向通常难以突破0.8μm,光谱能量主要集中于1μm以上的红外波段。
因此,单一波段激光泵浦单一材质光纤的技术导致超连续谱难以在可见光和中红外波段同时扩展,限制了覆盖可见-近红外-中红外三个波段的超宽带超连续谱的实现。
发明内容
本发明所要解决的技术问题在于提供一种基于双波段光纤激光器的超宽带超连续谱光源,旨在实现波长可覆盖可见光-近红外-中红外波段的超宽带超连续谱。
本发明是这样实现的,一种基于双波段光纤激光器的超宽带超连续谱光源,包括:
第一光纤激光器,用于产生第一波段激光,所述第一波段激光用于演化为可见光-近红外波段超连续谱;
第二光纤激光器,用于产生第二波段激光,所述第二波段激光用于演化为近红外-中红外波段超连续谱;
波分复用器,用于将所述第一波段激光和第二波段激光进行合束;
石英PCF,其一端通过光纤与所述波分复用器的输出端连接,用于对合束后的激光进行第一级非线性作用后输出,使其中的第一波段激光演化为可见光-近红外波段超连续谱、第二波段激光演化为调制不稳定性超短脉冲;
非石英玻璃光纤,其一端通过光纤与所述石英PCF的输出端连接,用于对经过第一级非线性作用后的激光进行第二级非线性作用,使其中的调制不稳定性超短脉冲演化为近红外-中红外波段超连续谱,从而输出覆盖可见光-近红外-中红外波段的超宽带连续谱。
进一步地,所述第一波段激光的波段为1μm,所述第二波段激光的波段为1.5μm或2μm。
进一步地,所述波分复用器的两个输入端分别与所述第一光纤激光器、第二光纤激光器连接,输出端通过光纤与所述石英PCF的一端连接。
进一步地,所述超宽带超连续谱光源还包括双波段光纤放大器,用于对所述第一波段激光、第二波段激光同时进行放大;
所述波分复用器通过所述双波段光纤放大器与所述石英PCF连接。
进一步地,所述双波段光纤放大器包括:
泵浦合束器,用于将多个泵浦激光进行合束泵浦;
Er-Yb共掺双包层光纤,连接在所述泵浦合束器的输出端与石英PCF之间;
泵浦源,用于通过所述泵浦合束器泵浦Er-Yb共掺双包层光纤。
进一步地,所述泵浦源为915nm或976nm的半导体激光器。
进一步地,所述第一光纤激光器与波分复用器之间、所述第二光纤激光器与波分复用器之间均通过光纤隔离器连接。
本发明采用两个不同波段的光纤激光器作为种子源,形成同时输出双波段激光的双波段光纤激光器,并以此双波段光纤激光器泵浦级联的演化组件。具体双波段激光通过第一级演化组件时,部分激光演化为可见光-近红外超连续谱,而另一部分激光演化为超短脉冲,二者共同耦合进入第二级演化组件,超短脉冲又在其中演化为近红外-中红外超连续谱,前级产生的可见光-近红外超连续谱在其中低损耗传输,从级联光纤中最终输出覆盖可见光-近红外-中红外三个波段的超宽带超连续谱。
附图说明
图1是本发明第一实施例提供的基于有Er-Yb共掺光纤放大器的超宽带超连续谱光源的结构图;
图2是本发明第二实施例提供的基于无Er-Yb共掺光纤放大器的超宽带超连续谱光源的结构图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明采用1μm和1.5μm/2μm波段两个光纤激光器作为种子源,利用Er-Yb共掺光纤放大器对这两个激光种子进行放大,实现可同时输出1μm和1.5μm/2μm波段激光的双波段光纤激光器,并以此双波段光纤激光器泵浦由石英PCF和非石英光纤组成的级联光纤。双波段激光通过级联光纤中的前段石英PCF时,1μm激光演化为可见光-近红外超连续谱,而1.5μm/2μm激光演化为超短脉冲,二者共同耦合进入后级非石英玻璃光纤,然后1.5μm/2μm超短脉冲在后级非石英玻璃光纤中演化为近红外-中红外超连续谱,而前级产生的可见光-近红外超连续谱在后级非石英玻璃光纤中低损耗传输,最终从级联光纤中最终输出覆盖可见光-近红外-中红外三个波段的超宽带超连续谱。具体结构如附图1所示。
第一光纤激光器1和第二光纤激光器2分别为不同波段的激光器,具体第一光纤激光器1为1μm的光纤激光器,第一光纤激光器2为1.5μm或2μm的光纤激光器。二者作为双波段放大的种子源,可以都是脉冲激光输出,或都是连续波激光输出,或其一为连续波激光输出,另外一个为脉冲激光输出。如果都是脉冲输出方式,两脉冲可以是同步脉冲,也可以是非同步脉冲。
波分复用器(WavelengthDivisionMultiplexing,简称WDM)5用来将第一光纤激光器1和第二光纤激光器2输出激光复用到同一个光纤中。而在第一光纤激光器1与波分复用器5之间通过1μm光纤隔离器3连接,在第二光纤激光器2与波分复用器5之间通过1.5μm或2μm光纤隔离器4连接,用于保证激光的单向传输,避免后级***的激光反馈对前级光纤激光器的损伤,进而保证***稳定运转。
泵浦合束器7、半导体激光器泵浦源6以及Er-Yb共掺双包层光纤8共同构成1μm与1.5μm或1μm与2μm的双波段光纤放大器15,对来自WDM输出端的双波段种子同时进行放大,输出1μm和1.5μm/2μm高功率激光。
石英PCF10对输入的1μm和1.5μm/2μm双波段激光进行第一级非线性作用,1μm波段激光在其中演化为可见光-近红外超连续谱,1.5μm/2μm波段激光在其中演化为调制不稳定性超短脉冲。
非石英玻璃光纤12对来自前级石英PCF10中的可见光-近红外超连续谱和1.5μm/2μm调制不稳定性脉冲进行第二级非线性作用,1.5μm/2μm超短脉冲在其中演化为近红外-中红外超连续谱,前级产生的可见光-近红外超连续谱在其中低损耗传输,最终从级联光纤中的“端帽”14输出覆盖可见光-近红外-中红外三个波段的超宽带超连续谱。图1中,9表示Er-Yb共掺双包层光纤8的尾纤与石英PCF10的熔接点,11表示石英PCF10与非石英玻璃光纤12的耦合点。
当然,作为本发明的第二个实施例,也可以去掉***中由泵浦合束器7、半导体激光器泵浦源6以及Er-Yb共掺双包层光纤8组成的光纤放大器,利用高功率WDM复用1μm和1.5μm两个高功率光纤激光器(或1μm和2μm两个高功率光纤激光器),高功率WDM的输出端直接与石英PCF/ZBLAN(氟化物光纤)级联光纤连接,对其进行双波段泵浦,利用同样的光纤非线性光学原理,也可以实现覆盖可见-近红外-中红外波段的超宽带超连续谱输出。如附图2所示,其中6表示高功率WDM6的输出光纤与石英PCF7熔接点,8表示石英PCF7与非石英玻璃光纤9的耦合点。
利用1μm/1.5μm或1μm/2μm双波段激光泵浦由石英PCF/非石英玻璃光纤组成的级联光纤,由于双波段中的1μm和1.5μm/2μm激光分别对应石英PCF和非石英玻璃光纤的最佳泵浦波长区,1μm激光在石英PCF中产生可见-近红外超连续谱,1.5μm/2μm激光在非石英玻璃光纤中产生近红外-中红外超连续谱,最终通过级联光纤输出覆盖可见-近红外-中红外三个波段的超宽带超连续谱。
具体工作原理和过程如下:
Er-Yb共掺光纤放大器高功率稳定运转需要消除Yb波段的放大的自发辐射(Yb-ASE),以避免引发寄生震荡及自脉动等不良现象,而在其1.5μm/2μm激光种子端同时注入另外1μm激光种子,可以将Yb-ASE转化为Yb激光输出,进而提高Er-Yb共掺光纤器的***稳定性和激光转化效率。本专利利用Er-Yb共掺光纤放大器对1μm和1.5μm/2μm两个激光种子同时进行放大,实现1μm和1.5μm/2μm两波段激光的高功率输出。
1μm激光位于石英PCF零色散波长附近的反常色散区,在其中通过调制不稳定性、孤子自频移、交叉相位调制、四波混频、孤子捕获等非线性效应产生覆盖可见光-近红外波段的超连续谱输出,1.5μm或2μm激光位于石英PCF远离零色散波长的反常色散区,在其中通过调制不稳定性等非线性效应产生调制不稳定性超短脉冲。
非石英玻璃光纤选用对可见-近红外波段具有低损耗的光纤材质,可以让石英PCF中产生的可见光-近红外超连续低损耗传输,而在石英PCF中产生的1.5μm或2μm超短脉冲在非石英玻璃光纤中通过受激拉曼散射效应达到其反常色散区,进而利用调制不稳定性、孤子自频移、交叉相位调制、四波混频、孤子捕获等非线性效应产生覆盖近红外-中红外波段的超连续谱,结合前级光纤中产生的可见光-近红外超连续谱,最终输出覆盖可见光-近红外-中红外波段的超宽带超连续谱。
综上所述,本发明可以实现覆盖可见光-近红外-中红外三个波段的超宽带超连续谱,通过调节1μm和1.5μm/2μm两个激光种子的功率对比,可以控制超连续谱的平坦度及其不同光谱波段的能量分布。此外,本装置具有高功率及全光纤化的优点,适合于各种应用领域的需求。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种基于双波段光纤激光器的超宽带超连续谱光源,其特征在于,所述超宽带超连续谱光源包括:
第一光纤激光器,用于产生第一波段激光,所述第一波段激光用于演化为可见光-近红外波段超连续谱;
第二光纤激光器,用于产生第二波段激光,所述第二波段激光用于演化为近红外-中红外波段超连续谱;
波分复用器,用于将所述第一波段激光和第二波段激光进行合束;
石英PCF,其一端通过光纤与所述波分复用器的输出端连接,用于对合束后的激光进行第一级非线性作用后输出,使其中的第一波段激光演化为可见光-近红外波段超连续谱、第二波段激光演化为调制不稳定性超短脉冲;
非石英玻璃光纤,其一端通过光纤与所述石英PCF的输出端连接,用于对经过第一级非线性作用后的激光进行第二级非线性作用,使其中的调制不稳定性超短脉冲演化为近红外-中红外波段超连续谱,从而输出覆盖可见光-近红外-中红外波段的超宽带连续谱。
2.如权利要求1所述的超宽带超连续谱光源,其特征在于,所述第一波段激光的波段为1μm,所述第二波段激光的波段为1.5μm或2μm。
3.如权利要求1所述的超宽带超连续谱光源,其特征在于,所述波分复用器的两个输入端分别与所述第一光纤激光器、第二光纤激光器连接,输出端通过光纤与所述石英PCF的一端连接。
4.如权利要求1或3所述的超宽带超连续谱光源,其特征在于,所述超宽带超连续谱光源还包括双波段光纤放大器,用于对所述第一波段激光、第二波段激光同时进行放大;
所述波分复用器通过所述双波段光纤放大器与所述石英PCF连接。
5.如权利要求4所述的超宽带超连续谱光源,其特征在于,所述双波段光纤放大器包括:
泵浦合束器,用于将多个泵浦激光进行合束泵浦;
Er-Yb共掺双包层光纤,连接在所述泵浦合束器的输出端与石英PCF之间;
泵浦源,用于通过所述泵浦合束器泵浦Er-Yb共掺双包层光纤。
6.如权利要求5所述的超宽带超连续谱光源,其特征在于,所述泵浦源为915nm或976nm的半导体激光器。
7.如权利要求1所述的超宽带超连续谱光源,其特征在于,所述第一光纤激光器与波分复用器之间、所述第二光纤激光器与波分复用器之间均通过光纤隔离器连接。
CN201410385054.4A 2014-08-06 2014-08-06 基于双波段光纤激光器的超宽带超连续谱光源 Active CN104201545B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410385054.4A CN104201545B (zh) 2014-08-06 2014-08-06 基于双波段光纤激光器的超宽带超连续谱光源
PCT/CN2015/078698 WO2016019746A1 (zh) 2014-08-06 2015-05-11 基于双波段光纤激光器的超宽带超连续谱光源
US15/060,626 US9647409B2 (en) 2014-08-06 2016-03-04 Ultra-wideband supercontinuum light source based on dual-band fiber laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410385054.4A CN104201545B (zh) 2014-08-06 2014-08-06 基于双波段光纤激光器的超宽带超连续谱光源

Publications (2)

Publication Number Publication Date
CN104201545A CN104201545A (zh) 2014-12-10
CN104201545B true CN104201545B (zh) 2016-06-15

Family

ID=52086800

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410385054.4A Active CN104201545B (zh) 2014-08-06 2014-08-06 基于双波段光纤激光器的超宽带超连续谱光源

Country Status (3)

Country Link
US (1) US9647409B2 (zh)
CN (1) CN104201545B (zh)
WO (1) WO2016019746A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108512020A (zh) * 2017-09-22 2018-09-07 中国人民解放军国防科技大学 一种光谱可控、输出功率可调谐的非相干超连续谱光源

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201545B (zh) * 2014-08-06 2016-06-15 深圳大学 基于双波段光纤激光器的超宽带超连续谱光源
CN104577677B (zh) * 2015-01-22 2018-08-14 中国科学院上海光学精密机械研究所 级联光子晶体光纤激光器
CN104934844A (zh) * 2015-07-02 2015-09-23 武汉安扬激光技术有限责任公司 拥有同相位高功率单波长半导体激光的新型超连续谱光源***
CN105048259A (zh) * 2015-07-28 2015-11-11 湖南大学 可选择性激发超连续谱的方法
JP6062018B1 (ja) * 2015-10-30 2017-01-18 株式会社フジクラ ファイバレーザシステム
CN105633775A (zh) * 2016-03-24 2016-06-01 中国人民解放军国防科学技术大学 一种高斜率效率、高功率的中红外超连续谱光源
CN105826800B (zh) * 2016-04-21 2020-06-16 宁波大学 一种全光纤化宽带平坦中红外超连续谱光源
CN105790073B (zh) * 2016-05-11 2019-07-23 中国科学院上海技术物理研究所 一种平坦光谱输出的超连续谱激光器
CN106785835B (zh) * 2016-12-14 2019-02-19 电子科技大学 一种全光纤中红外超宽带超连续激光发射器
CN106785865A (zh) * 2016-12-22 2017-05-31 北京大学深圳研究生院 一种超连续光谱产生装置
CN106840395B (zh) * 2017-01-16 2021-01-15 中国人民解放军国防科学技术大学 用于主动高光谱成像的近红外超连续谱照明***
CN107702797B (zh) * 2017-08-31 2023-06-23 中国工程物理研究院激光聚变研究中心 可调谐脉冲序列发生装置
WO2020107030A1 (en) * 2018-11-23 2020-05-28 Nuburu, Inc Multi-wavelength visible laser source
CN109361148B (zh) * 2018-12-05 2020-11-24 深圳市创鑫激光股份有限公司 一种固体激光器
CN111697424A (zh) * 2019-03-12 2020-09-22 ***通信有限公司研究院 一种光源产生装置、方法、设备及计算机可读存储介质
EP4231090A1 (en) * 2022-02-17 2023-08-23 ASML Netherlands B.V. A supercontinuum radiation source and associated metrology devices
CN115347441B (zh) * 2022-05-17 2024-04-26 北京工业大学 基于频移拉曼孤子的级联泵浦3.5微米全光纤飞秒放大器
CN115313130B (zh) * 2022-07-22 2024-04-23 北京工业大学 基于掺钬氟化铟光纤的2-5μm宽光谱光纤光源

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212310B1 (en) * 1996-10-22 2001-04-03 Sdl, Inc. High power fiber gain media system achieved through power scaling via multiplexing
US7130512B2 (en) * 2005-03-04 2006-10-31 Corning Incorporated Supercontinuum emitting device
JPWO2010079773A1 (ja) * 2009-01-07 2012-06-21 株式会社フジクラ 光ファイバ増幅器
JP2014512019A (ja) * 2011-03-14 2014-05-19 イムラ アメリカ インコーポレイテッド 光ファイバを用いた中赤外コヒーレント・コンティニュームの広帯域発生
US20120281720A1 (en) * 2011-05-06 2012-11-08 Imra America, Inc. Broadband generation of coherent continua with optical fibers
CN102820606A (zh) * 2012-08-03 2012-12-12 北京工业大学 超连续谱光源激励的中红外超连续谱光纤激光器
CN103022867A (zh) * 2012-12-18 2013-04-03 中国人民解放军国防科学技术大学 一种高功率高效率的超连续谱光源
CN103825164A (zh) * 2013-12-03 2014-05-28 上海交通大学 一种高平均功率全光纤中红外超连续谱光源
CN204067843U (zh) * 2014-08-06 2014-12-31 深圳大学 一种基于双波段光纤激光器的超宽带超连续谱光源
CN104201545B (zh) * 2014-08-06 2016-06-15 深圳大学 基于双波段光纤激光器的超宽带超连续谱光源

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108512020A (zh) * 2017-09-22 2018-09-07 中国人民解放军国防科技大学 一种光谱可控、输出功率可调谐的非相干超连续谱光源
CN108512020B (zh) * 2017-09-22 2019-06-25 中国人民解放军国防科技大学 一种光谱可控、输出功率可调谐的非相干超连续谱光源

Also Published As

Publication number Publication date
US20160190764A1 (en) 2016-06-30
US9647409B2 (en) 2017-05-09
CN104201545A (zh) 2014-12-10
WO2016019746A1 (zh) 2016-02-11

Similar Documents

Publication Publication Date Title
CN104201545B (zh) 基于双波段光纤激光器的超宽带超连续谱光源
CN204067843U (zh) 一种基于双波段光纤激光器的超宽带超连续谱光源
CN104300344A (zh) 一种高功率可调谐脉冲光纤激光器
CN105048267A (zh) 一种中红外超连续谱激光光源
CN101076748A (zh) 全光纤啁啾脉冲放大***
CN107046220A (zh) 一种全光纤化高功率中远红外超连续谱光源
CN105826800B (zh) 一种全光纤化宽带平坦中红外超连续谱光源
CN104283097A (zh) 一种780nm的高功率光纤飞秒激光器
CN107045248A (zh) 一种非线性光纤放大宽带四波混频产生装置
CN104009378B (zh) 一种基于绿光光纤激光器泵浦的可见光超连续谱光源
CN103296569A (zh) 基于双波段种子源铒-镱共掺光纤放大器的超连续谱光源
CN106654829A (zh) 一种可调谐超短脉冲光纤参量振荡器
EP2668531A1 (en) Methods and systems for fiber delivery of high peak power optical pulses
CN108512020A (zh) 一种光谱可控、输出功率可调谐的非相干超连续谱光源
Simakov et al. Holmium-doped fiber amplifier for optical communications at 2.05–2.13 µm
CN103296566A (zh) 一种提高氟化物光纤中超连续谱长波功率比例的方法
CN106451056A (zh) 一种有源放大的光参量振荡反馈***
Wang et al. 926 nm Yb-doped fiber femtosecond laser system for two-photon microscopy
CN106159664A (zh) 全光纤高能量超短脉冲激光***
CN105896249A (zh) 一种高功率宽带可调谐孤子-自相似脉冲锁模光纤激光器
CN105071205A (zh) 基于脉宽可调的锁模光纤激光器的超连续谱光源
CN107069397B (zh) 一种谐振腔超连续谱光源输出装置
Chen et al. High efficiency, high repetition rate, all-fiber picoseconds pulse MOPA source with 125 W output in 15 μm fiber core
CN209200364U (zh) 三色同步锁模光纤激光器
CN204012175U (zh) 基于绿光光纤激光器泵浦的可见光超连续谱光源

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201221

Address after: 518000 A302, the first branch of Zhongcheng Life Science Park, Pingshan District, Shenzhen City, Guangdong Province

Patentee after: Mill medical technology (Shenzhen) Co.,Ltd.

Address before: 518060 No. 3688 Nanhai Road, Shenzhen, Guangdong, Nanshan District

Patentee before: SHENZHEN University

TR01 Transfer of patent right