CN104190914A - Method for preparing boron, lead and aluminum composite board preventing X rays, gamma rays and neutron irradiation - Google Patents

Method for preparing boron, lead and aluminum composite board preventing X rays, gamma rays and neutron irradiation Download PDF

Info

Publication number
CN104190914A
CN104190914A CN201410413729.1A CN201410413729A CN104190914A CN 104190914 A CN104190914 A CN 104190914A CN 201410413729 A CN201410413729 A CN 201410413729A CN 104190914 A CN104190914 A CN 104190914A
Authority
CN
China
Prior art keywords
boron
plumbous
aluminum composite
rolling
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410413729.1A
Other languages
Chinese (zh)
Other versions
CN104190914B (en
Inventor
张鹏
王文先
陈洪胜
李宇力
张哲维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201410413729.1A priority Critical patent/CN104190914B/en
Publication of CN104190914A publication Critical patent/CN104190914A/en
Application granted granted Critical
Publication of CN104190914B publication Critical patent/CN104190914B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention relates to a method for preparing a boron, lead and aluminum composite board preventing X rays, gamma rays and neutron irradiation to overcome the defect that a nuclear radiation and ray shielding material is single in shielding property. According to the method, aluminum powder, boron carbide powder and lead powder serve as raw materials, ball grinding, powder processing, material mixing, microwave heating, vacuum hot pressing blank stamping, and heating rolling forming are carried out, and then the boron, lead and aluminum composite board is prepared. The preparing method is advanced in technology, data are accurate and detailed, the prepared boron, lead and aluminum composite board has a good ray and neutron irradiation shielding effect, the X-ray shielding rate is larger than or equal to 95 percent, the gamma-ray shielding rate is larger than or equal to 40 percent, the neutron absorptivity is larger than or equal to 90 percent, boron carbide is evenly distributed, particles and a base body are combined tightly, high mechanical strength is achieved, the surface microhardness reaches 186.3 HV, the bending angle is larger than or equal to 15 degrees, the tensile strength is 305 MPa, the elongation after fracture is larger than or equal to 6 percent, the mechanical property and the shielding property of the boron, lead and aluminum composite board are improved, and the boron, lead and aluminum composite board can be used for single irradiation protection and can also be used for various types of radiation protection.

Description

A kind of preparation method of the plumbous aluminum composite plate of boron that protects X, gamma-rays and neutron irradiation
Technical field
The preparation method who the present invention relates to the plumbous aluminum composite plate of boron of a kind of X of protection, gamma-rays and neutron irradiation, belongs to radiation protection and the preparation of nuclear radiation protection material and the technical field of application.
Background technology
Nuclear energy has become the world today's one of the most potential energy, nuclear fuel in nuclear power station and spentnuclear fuel can produce harmful X, gamma-rays and neutron irradiation in use, storage and transportation, therefore, adopt shielding material to shield and become the key issue that must solve in nuclear energy uses process harm ray.
At present, the shielding material of nuclear fuel and spentnuclear fuel mainly contains lead-boron polythene, lead base boron carbide composite material, boron stainless steel material; Lead element has good shield effectiveness to X, gamma-rays, boron element has higher neutron absorption cross-section, although these materials have unique protective characteristic, be difficult to take into account the protection effect to multiple ray, its use under nuclear fuel and the complicated radiation condition of spentnuclear fuel is restricted.
Summary of the invention
Goal of the invention
The object of the invention is the deficiency for background technology, adopt vacuum hot-pressing, by surface alloying processing, batch mixing base, cold pressing, sintering, hot rolling, make the plumbous aluminum composite plate of boron, make it not only can protect X, gamma-rays, but also maskable neutron irradiation, comprehensively to improve protection effect.
Technical scheme
The chemical substance material that the present invention uses is: aluminium powder, boron carbide powder, lead powder, absolute ethyl alcohol, graphite cake, graphite paper, sand paper, it is as follows that it prepares consumption: taking gram, milliliter, millimeter as measurement unit
Preparation method is as follows:
(1) selected chemical substance material
The chemical substance material that preparation is used will carry out selected, and carries out quality purity control:
(2) mixing and ball milling, powder process
Take aluminium powder 1000g ± 0.01g, lead powder 600g ± 0.01g, boron carbide powder 400g ± 0.01g, be placed in ball mill, carry out mixing and ball milling, ball milling speed 200r/min, then sieves with 600 eye mesh screens, ball milling, sieves and repeatedly carries out, become mixing fine powders, fine particle diameter≤0.023mm;
(3) the plumbous aluminium base of boron is prepared in heating using microwave, vacuum hotpressing
The preparation of the plumbous aluminium base of boron is carried out on vacuum hot pressing formation machine, in heating using microwave, vacuum state, course of exerting pressure, completes;
1. prepare open-close type graphite jig
By graphite cake machine cuts, be assembled into rectangle retractable die, mold cavity is of a size of 80mm × 90mm × 90mm, and mold cavity surface roughness is Ra0.08-0.016 μ m;
2. charging
Open-close type graphite jig is vertically placed in the autoclave of vacuum hot pressing formation machine;
Graphite block pad, to mold cavity bottom, is attached to graphite paper dress on open-close type graphite jig bottom and inwall;
The mixing fine powders of the aluminium powder of ball milling preparation, lead powder, boron carbide powder is evenly packed in mold cavity;
At mixing fine powders top placing graphite paper;
Push down with graphite block on graphite paper top;
Graphite block top connects with upperpush rod, pressure motor; And airtight;
3. open vavuum pump, extract air in autoclave, make vacuum in still reach 0.1Pa;
4. open the microwave applicator in autoclave, heating graphite jig and interior blank thereof, 600 DEG C ± 2 DEG C of heating-up temperatures;
In microwave heating process, open the pressure motor on vacuum hot pressing formation machine, the blank in graphite jig is exerted pressure, the pressure of exerting pressure 100MPa;
Heat the time 90min that exerts pressure;
In heating, course of exerting pressure, the blank moulding in graphite jig;
5. close microwave applicator, stop heating, make blank under vacuum state, exerting pressure under pressure, be cooled to 25 DEG C;
6. close vavuum pump, make pressure in still return to 1 atmospheric pressure; Close the motor of exerting pressure, stop the blank in graphite jig to exert pressure;
7. drive still, take out open-close type graphite jig;
8. die sinking, opens graphite jig movable rack, takes out blank, i.e. the plumbous aluminium base of boron;
(4) the plumbous aluminum composite plate of hot-roll forming boron
The hot-roll forming of the plumbous aluminum composite plate of boron carries out on roller mill, under heating, three passage rolling states, completes;
1. annealing in process, is placed in plumbous boron aluminium base in annealing furnace, carries out homo genizing annelaing processing, 580 DEG C of annealing temperatures, annealing time 12h;
2. open the upper and lower roll heater on roller mill, 450 DEG C of heating-up temperatures, and constant;
3. press the first passage amount of rolling of the plumbous aluminium base of boron and adjust top and bottom rolls spacing;
4. open the rotating mechanism of top and bottom rolls, the rotation direction of topping roll is counterclockwise, and the rotation direction of bottom roll is that top and bottom rolls velocity of rotation is 10r/min clockwise, and the rolling direction of the plumbous aluminium base of boron is rolling from left to right;
5. plumbous the boron of annealing in process aluminium base is placed between top and bottom rolls from left to right, carries out the first passage rolling, rolling thickness deflection is 20%;
6. press plumbous aluminium base the second pass deformation of boron and adjust top and bottom rolls spacing, plumbous the boron of annealing in process aluminium base is placed between top and bottom rolls from left to right, carry out the second passage rolling, rolling thickness deflection is 15%;
7. press plumbous aluminium base the 3rd pass deformation of boron and adjust top and bottom rolls spacing, plumbous the boron of annealing in process aluminium base is placed between top and bottom rolls from left to right, carry out the 3rd passage rolling, rolling thickness deflection is 15%;
After entirety rolling, become the plumbous aluminum composite plate of boron;
(5) lonneal
Plumbous boron after rolling aluminum composite plate is placed in to heat-treatment furnace and carries out lonneal, 180 DEG C of temperatures, tempering time 8h;
(6) cleaning, clean
Plumbous boron after tempering aluminum composite plate is placed on steel flat board, by sand papering periphery and upper and lower surface, makes any surface finish;
(7) clean
The plumbous aluminum composite plate of boron after cleaning is clean cleans periphery and upper and lower surface with absolute ethyl alcohol, makes surface clean;
(8) detect analysis and characterization
Pattern, color and luster, Chemical Physics performance, mechanical property to the plumbous aluminum composite plate of the boron of preparation detect, analyze, characterize;
Carry out the test of density and density contrast with drainage;
Carry out neutron absorption rate with Am-Be neutron source and neutron fluence rate instrument and detect analysis;
The shielding properties of the X ray with EG300F type x-ray system to 100KeV detects;
Gamma-ray shielding properties is detected with radioactive source 60Co (1.33MeV);
Carry out hardness distribution tests with the digital microhardness instrument of HXD-1000TM;
Carry out bending resistance, Analysis On Tensile with INSTRON-5544 electronic universal material testing machine;
Conclusion: the plumbous aluminum composite plate of boron is light grey sheet material, and panel density is 3.397g/cm 3, X ray shielding rate>=95%, gamma ray shielding rate>=40%, neutron absorption rate>=90%, tensile strength is 305MPa, counter-bending angle>=15 °, elongation after fracture>=6%, surface microhardness is 186.3HV.
Beneficial effect
The present invention has obvious advance compared with background technology, for nuclear radiation and the single drawback of ray protection material shielding properties, taking boron carbide powder, aluminium powder, lead powder as raw material, by ball milling powder process batch mixing, heating using microwave, vacuum hotpressing base, hot-roll forming, make the plumbous aluminum composite plate of boron, this preparation technology advanced person, data are accurately full and accurate, the plumbous aluminum composite plate of boron of making is light grey sheet material, and panel density is 3.397g/cm 3, X ray shielding rate>=95%, gamma ray shielding rate>=40%, neutron absorption rate>=90%, tensile strength is 305MPa, counter-bending angle>=15 °, elongation after fracture>=6%, surface microhardness is 186.3HV, both can be used for tailored radiation protection, can be used for again the protection to multiple radiation.
Brief description of the drawings
The plumbous aluminium base of Fig. 1 boron is prepared state diagram
The state diagram of the plumbous aluminum composite plate hot-roll forming of Fig. 2 boron
The plumbous aluminum composite plate cross section metallurgical structure figure of Fig. 3 boron
Shown in figure, list of numerals is as follows:
1. vacuum hot pressing formation machine, 2. forming machine console, 3. footstock, 4. machine chamber, 5. workbench, 6. open-close type graphite jig, 7. the first graphite block, 8. the second graphite block, 9. the first graphite paper, 10. the second graphite paper, the plumbous aluminium base of 11. boron, 12. upper holder blocks, 13. pressure motors, 14. movable racks, 15. vavuum pumps, 16. vacuum valves, 17. vacuum tubes, 18. display screens, 19. indicator lamps, 20. power switches, 21. controller for vacuum pumps, 22. heating using microwave controllers, 23. heat time controllers, 24. microwave generators, 25. outer water circulation cooling tubes, 26. outer water circulation water intaking valves, 27. outer water circulation outlet valves, the plumbous aluminum composite plate of 30. boron, 31. roller mill bases, 32. roller mill footstocks, 33. left columns, 34. right columns, 35. topping roll rotating mechanisms, 36. topping roll resistance heaters, 37. topping rolls, 38. bottom rolls, 39. bottom roll resistance heaters, 40. bottom roll rotating mechanisms, 41. roller mill display screens, 42. roller mill indicator lamps, 43. roller mill power switches, 44. topping roll pivoting controllers, 45. bottom roll pivoting controllers, 46. topping roll heating controllers, 47. bottom roll heating controllers.
Detailed description of the invention
Below in conjunction with accompanying drawing, the present invention will be further described:
Shown in Fig. 1, prepare state diagram for the plumbous aluminium base of boron, each portion position, annexation want correct, proportioning according to quantity, according to the order of sequence operation.
The value of the chemical substance that preparation is used is to determine by the scope setting in advance, taking gram, milliliter, millimeter as measurement unit.
The preparation of the plumbous aluminium base of boron is carried out on vacuum hot pressing formation machine, in heating using microwave, vacuum state, course of exerting pressure, completes;
Vacuum hot pressing formation machine is vertical, is that forming machine console 2, top are that footstock 3, inside are machine chamber 4 in the bottom of vacuum hot pressing formation machine 1; Be workbench 5 at machine chamber 4 inner bottom parts, vertical storing open-close type graphite jig 6 on workbench 5, and fixed by movable rack 14; Be the first graphite block 7 at open-close type graphite jig 6 inner bottom parts, be the first graphite paper 9 on the top of the first graphite block 7, evenly put the plumbous aluminium base 11 of boron on the first graphite paper 9 tops, be the second graphite paper 10 on the plumbous aluminium base of boron 11 tops, pushed down by the second graphite block 8 on the second graphite paper 10 tops, fastened by upper holder block 12 on the second graphite block 8 tops, upper holder block 12 tops connect the pressure motor 13 on footstock 3 tops; On the inwall of vacuum hot pressing formation machine 1, be provided with microwave generator 24; In the outside of vacuum hot pressing formation machine 1 by outer water circulation cooling tube 25 around, the right part of outer water circulation cooling tube 25 is provided with outer water circulation water intaking valve 26, left part is provided with outer water circulation outlet valve 27; Be provided with vavuum pump 15 at the right lower quadrant of vacuum hot pressing formation machine 1, vavuum pump 15 is communicated with machine chamber 4 by vacuum valve 16, vacuum tube 17; On forming machine console 2, be provided with display screen 18, indicator lamp 19, power switch 20, controller for vacuum pump 21, heating using microwave controller 22, heat time controller 23.
Shown in Fig. 2, be the state diagram of the plumbous aluminum composite plate hot-roll forming of boron, each portion position, connecting relation want correct, arrange according to quantity, operate according to the order of sequence.
The hot rolling of the plumbous aluminum composite plate of boron carries out on roller mill, under heating, rolling state, completes;
Roller mill is vertical, and the bottom of roller mill is roller mill base 31, and on roller mill base 31, part left and right is provided with left column 33, right column 34, is roller mill footstock 32 on left column 33, right column 34 tops, composition overall structure; Connect rolling rotating mechanism 35 in roller mill footstock 32 bottoms, topping roll rotating mechanism 35 bottoms connect upper rolling resistance heater 36, and topping roll resistance heater 36 bottoms connect topping roll 37; Be provided with bottom roll rotating mechanism 40 on roller mill base 31 tops, connect bottom roll resistance heater 39 on bottom roll rotating mechanism 40 tops, bottom roll resistance heater 39 tops connect bottom roll 38; It between topping roll 37 and bottom roll 38, is the plumbous aluminum composite plate 30 of boron; The rotation direction of topping roll 37 is for rotating counterclockwise, and the rotation direction of bottom roll 38 is for clockwise rotating, and the rolling direction of the plumbous aluminum composite plate 30 of boron is rolling from left to right; On roller mill base 31, be provided with roller mill display screen 41, roller mill indicator lamp 42, roller mill power switch 43, topping roll pivoting controller 44, bottom roll pivoting controller 45, topping roll heating controller 46, bottom roll heating controller 47.
Shown in Fig. 3, be the plumbous aluminum composite plate of boron cross section shape appearance figure, as shown in the figure, white base is 6061 alloy matrix aluminums, and the Metal Phase of grey uniform disperse in matrix is plumbous, and the particle being evenly distributed in matrix is B 4c particle, particle in matrix without agglomeration.

Claims (3)

1. one kind is protected the preparation method of the plumbous aluminum composite plate of boron of X, gamma-rays and neutron irradiation, it is characterized in that: the chemical substance material of use is: aluminium powder, boron carbide powder, lead powder, absolute ethyl alcohol, graphite cake, graphite paper, sand paper, it is as follows that it prepares consumption: taking gram, milliliter, millimeter as measurement unit
Preparation method is as follows:
(1) selected chemical substance material
The chemical substance material that preparation is used will carry out selected, and carries out quality purity control:
(2) mixing and ball milling, powder process
Take aluminium powder 1000g ± 0.01g, lead powder 600g ± 0.01g, boron carbide powder 400g ± 0.01g, be placed in ball mill, carry out mixing and ball milling, ball milling speed 200r/min, then sieves with 600 eye mesh screens, ball milling, sieves and repeatedly carries out, become mixing fine powders, fine particle diameter≤0.023mm;
(3) the plumbous aluminium base of boron is prepared in heating using microwave, vacuum hotpressing
The preparation of the plumbous aluminium base of boron is carried out on vacuum hot pressing formation machine, in heating using microwave, vacuum state, course of exerting pressure, completes;
1. prepare open-close type graphite jig
By graphite cake machine cuts, be assembled into rectangle retractable die, mold cavity is of a size of 80mm × 90mm × 90mm, and mold cavity surface roughness is Ra0.08-0.016 μ m;
2. charging
Open-close type graphite jig is vertically placed in the autoclave of vacuum hot pressing formation machine;
Graphite block pad, to mold cavity bottom, is attached to graphite paper dress on open-close type graphite jig bottom and inwall;
The mixing fine powders of the aluminium powder of ball milling preparation, lead powder, boron carbide powder is evenly packed in mold cavity;
At mixing fine powders top placing graphite paper;
Push down with graphite block on graphite paper top;
Graphite block top connects with upperpush rod, pressure motor; And airtight;
3. open vavuum pump, extract air in autoclave, make vacuum in still reach 0.1Pa;
4. open the microwave applicator in autoclave, heating graphite jig and interior blank thereof, 600 DEG C ± 2 DEG C of heating-up temperatures;
In microwave heating process, open the pressure motor on vacuum hot pressing formation machine, the blank in graphite jig is exerted pressure, the pressure of exerting pressure 100MPa;
Heat the time 90min that exerts pressure;
In heating, course of exerting pressure, the blank moulding in graphite jig;
5. close microwave applicator, stop heating, make blank under vacuum state, exerting pressure under pressure, be cooled to 25 DEG C;
6. close vavuum pump, make pressure in still return to 1 atmospheric pressure; Close the motor of exerting pressure, stop the blank in graphite jig to exert pressure;
7. drive still, take out open-close type graphite jig;
8. die sinking, opens graphite jig movable rack, takes out blank, i.e. the plumbous aluminium base of boron;
(4) the plumbous aluminum composite plate of hot-roll forming boron
The hot-roll forming of the plumbous aluminum composite plate of boron carries out on roller mill, under heating, three passage rolling states, completes;
1. annealing in process, is placed in plumbous boron aluminium base in annealing furnace, carries out homo genizing annelaing processing, 580 DEG C of annealing temperatures, annealing time 12h;
2. open the upper and lower roll heater on roller mill, 450 DEG C of heating-up temperatures, and constant;
3. press the first passage amount of rolling of the plumbous aluminium base of boron and adjust top and bottom rolls spacing;
4. open the rotating mechanism of top and bottom rolls, the rotation direction of topping roll is counterclockwise, and the rotation direction of bottom roll is that top and bottom rolls velocity of rotation is 10r/min clockwise, and the rolling direction of the plumbous aluminium base of boron is rolling from left to right;
5. plumbous the boron of annealing in process aluminium base is placed between top and bottom rolls from left to right, carries out the first passage rolling, rolling thickness deflection is 20%;
6. press plumbous aluminium base the second pass deformation of boron and adjust top and bottom rolls spacing, plumbous the boron of annealing in process aluminium base is placed between top and bottom rolls from left to right, carry out the second passage rolling, rolling thickness deflection is 15%;
7. press plumbous aluminium base the 3rd pass deformation of boron and adjust top and bottom rolls spacing, plumbous the boron of annealing in process aluminium base is placed between top and bottom rolls from left to right, carry out the 3rd passage rolling, rolling thickness deflection is 15%;
After entirety rolling, become the plumbous aluminum composite plate of boron;
(5) lonneal
Plumbous boron after rolling aluminum composite plate is placed in to heat-treatment furnace and carries out lonneal, 180 DEG C of temperatures, tempering time 8h;
(6) cleaning, clean
Plumbous boron after tempering aluminum composite plate is placed on steel flat board, by sand papering periphery and upper and lower surface, makes any surface finish;
(7) clean
The plumbous aluminum composite plate of boron after cleaning is clean cleans periphery and upper and lower surface with absolute ethyl alcohol, makes surface clean;
(8) detect analysis and characterization
Pattern, color and luster, Chemical Physics performance, mechanical property to the plumbous aluminum composite plate of the boron of preparation detect, analyze, characterize;
Carry out the test of density and density contrast with drainage;
Carry out neutron absorption rate with Am-Be neutron source and neutron fluence rate instrument and detect analysis;
The shielding properties of the X ray with EG300F type x-ray system to 100KeV detects;
Gamma-ray shielding properties is detected with radioactive source 60Co (1.33MeV);
Carry out hardness distribution tests with the digital microhardness instrument of HXD-1000TM;
Carry out bending resistance, Analysis On Tensile with INSTRON-5544 electronic universal material testing machine;
Conclusion: the plumbous aluminum composite plate of boron is light grey sheet material, and panel density is 3.397g/cm 3, X ray shielding rate>=95%, gamma ray shielding rate>=40%, neutron absorption rate>=90%, tensile strength is 305MPa, counter-bending angle>=15 °, elongation after fracture>=6%, surface microhardness is 186.3HV.
2. the preparation method of a kind of plumbous aluminum composite plate of boron that protects X, gamma-rays and neutron irradiation according to claim 1, it is characterized in that: the preparation of the plumbous aluminium base of boron is carried out on vacuum hot pressing formation machine, in heating using microwave, vacuum state, course of exerting pressure, completes;
Vacuum hot pressing formation machine is vertical, is that forming machine console (2), top are that footstock (3), inside are machine chamber (4) in the bottom of vacuum hot pressing formation machine (1); Be workbench (5) at machine chamber (4) inner bottom part, at the upper vertical open-close type graphite jig (6) of putting of workbench (5), and fixing by movable rack (14); Be the first graphite block (7) at open-close type graphite jig (6) inner bottom part, be the first graphite paper (9) on the top of the first graphite block (7), evenly put the plumbous aluminium base of boron (11) on the first graphite paper (9) top, be the second graphite paper (10) on the plumbous aluminium base (11) of boron top, pushed down by the second graphite block (8) on the second graphite paper (10) top, fastened by upper holder block (12) on the second graphite block (8) top, upper holder block (12) top connects the pressure motor (13) on footstock (3) top; On the inwall of vacuum hot pressing formation machine (1), be provided with microwave generator (24); In the outside of vacuum hot pressing formation machine (1) by outer water circulation cooling tube (25) around, the right part of outer water circulation cooling tube (25) is provided with outer water circulation water intaking valve (26), left part is provided with outer water circulation outlet valve (27); Be provided with vavuum pump (15) at the right lower quadrant of vacuum hot pressing formation machine (1), vavuum pump (15) is communicated with machine chamber (4) by vacuum valve (16), vacuum tube (17); On forming machine console (2), be provided with display screen (18), indicator lamp (19), power switch (20), controller for vacuum pump (21), heating using microwave controller (22), heat time controller (23).
3. the preparation method of a kind of plumbous aluminum composite plate of boron that protects X, gamma-rays and neutron irradiation according to claim 1, is characterized in that: the hot rolling of the plumbous aluminum composite plate of boron carries out on roller mill, under heating, rolling state, completes;
Roller mill is vertical, the bottom of roller mill is roller mill base (31), be provided with left column (33), right column (34) in the upper part of roller mill base (31) left and right, be roller mill footstock (32) on left column (33), right column (34) top, composition overall structure; Connect upper rolling rotating mechanism (35) in roller mill footstock (32) bottom, topping roll rotating mechanism (35) bottom connects upper rolling resistance heater (36), and topping roll resistance heater (36) bottom connects topping roll (37); Be provided with bottom roll rotating mechanism (40) on roller mill base (31) top, connect bottom roll resistance heater (39) on bottom roll rotating mechanism (40) top, bottom roll resistance heater (39) top connects bottom roll (38); It between topping roll (37) and bottom roll (38), is the plumbous aluminum composite plate of boron (30); The rotation direction of topping roll (37) is for rotating counterclockwise, and the rotation direction of bottom roll (38) is for clockwise rotating, and the rolling direction of the plumbous aluminum composite plate of boron (30) is rolling from left to right; On roller mill base (31), be provided with roller mill display screen (41), roller mill indicator lamp (42), roller mill power switch (43), topping roll pivoting controller (44), bottom roll pivoting controller (45), topping roll heating controller (46), bottom roll heating controller (47).
CN201410413729.1A 2014-08-21 2014-08-21 Method for preparing boron, lead and aluminum composite board preventing X rays, gamma rays and neutron irradiation Expired - Fee Related CN104190914B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410413729.1A CN104190914B (en) 2014-08-21 2014-08-21 Method for preparing boron, lead and aluminum composite board preventing X rays, gamma rays and neutron irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410413729.1A CN104190914B (en) 2014-08-21 2014-08-21 Method for preparing boron, lead and aluminum composite board preventing X rays, gamma rays and neutron irradiation

Publications (2)

Publication Number Publication Date
CN104190914A true CN104190914A (en) 2014-12-10
CN104190914B CN104190914B (en) 2015-05-20

Family

ID=52076361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410413729.1A Expired - Fee Related CN104190914B (en) 2014-08-21 2014-08-21 Method for preparing boron, lead and aluminum composite board preventing X rays, gamma rays and neutron irradiation

Country Status (1)

Country Link
CN (1) CN104190914B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105014075A (en) * 2015-07-27 2015-11-04 昆明理工大学 Lead, aluminum and boron composite nuclear shielding material and preparation method thereof
CN105609149A (en) * 2016-01-31 2016-05-25 安徽泷汇安全科技有限公司 Protection system for human pass-type security checking
CN105609150A (en) * 2016-01-31 2016-05-25 安徽泷汇安全科技有限公司 Protective material for security inspection device
CN106244947A (en) * 2016-08-30 2016-12-21 太原理工大学 A kind of preparation method of the Ni-based boron carbide composite material of doping neodymium yttrium samarium gadolinium
CN108391410A (en) * 2018-03-15 2018-08-10 陈翠芳 A kind of barricade and preparation method thereof
CN112045184A (en) * 2020-09-07 2020-12-08 成都赐进金属材料有限公司 Radiation-resistant stainless steel plate and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402843A (en) * 1990-07-26 1995-04-04 Alcan Aluminum Corporation Stepped alloying in the production of cast composite materials
US5965829A (en) * 1998-04-14 1999-10-12 Reynolds Metals Company Radiation absorbing refractory composition
EP1172449A1 (en) * 2000-07-12 2002-01-16 Mitsubishi Heavy Industries, Ltd. Aluminum composite material, aluminum composite powder and its manufacturing method, spent fuel storage member and its manufacturing method
CN102280156A (en) * 2011-06-21 2011-12-14 大连宝原核设备有限公司 Method for preparing aluminum-based boron carbide neutron absorption board
CN102392148A (en) * 2011-08-05 2012-03-28 太原理工大学 Preparation method of aluminum-based boron carbide neutron absorption composite material
CN102658703A (en) * 2012-04-13 2012-09-12 太原理工大学 Preparation method of carbon fiber reinforced magnesium-based composite board
CN103911610A (en) * 2014-04-01 2014-07-09 太原理工大学 Preparation method of shielding aluminum-based aluminum plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402843A (en) * 1990-07-26 1995-04-04 Alcan Aluminum Corporation Stepped alloying in the production of cast composite materials
US5965829A (en) * 1998-04-14 1999-10-12 Reynolds Metals Company Radiation absorbing refractory composition
EP1172449A1 (en) * 2000-07-12 2002-01-16 Mitsubishi Heavy Industries, Ltd. Aluminum composite material, aluminum composite powder and its manufacturing method, spent fuel storage member and its manufacturing method
CN102280156A (en) * 2011-06-21 2011-12-14 大连宝原核设备有限公司 Method for preparing aluminum-based boron carbide neutron absorption board
CN102392148A (en) * 2011-08-05 2012-03-28 太原理工大学 Preparation method of aluminum-based boron carbide neutron absorption composite material
CN102658703A (en) * 2012-04-13 2012-09-12 太原理工大学 Preparation method of carbon fiber reinforced magnesium-based composite board
CN103911610A (en) * 2014-04-01 2014-07-09 太原理工大学 Preparation method of shielding aluminum-based aluminum plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105014075A (en) * 2015-07-27 2015-11-04 昆明理工大学 Lead, aluminum and boron composite nuclear shielding material and preparation method thereof
CN105609149A (en) * 2016-01-31 2016-05-25 安徽泷汇安全科技有限公司 Protection system for human pass-type security checking
CN105609150A (en) * 2016-01-31 2016-05-25 安徽泷汇安全科技有限公司 Protective material for security inspection device
CN106244947A (en) * 2016-08-30 2016-12-21 太原理工大学 A kind of preparation method of the Ni-based boron carbide composite material of doping neodymium yttrium samarium gadolinium
CN108391410A (en) * 2018-03-15 2018-08-10 陈翠芳 A kind of barricade and preparation method thereof
CN112045184A (en) * 2020-09-07 2020-12-08 成都赐进金属材料有限公司 Radiation-resistant stainless steel plate and preparation method and application thereof
CN112045184B (en) * 2020-09-07 2022-06-21 成都赐进金属材料有限公司 Anti-radiation stainless steel plate and preparation method and application thereof

Also Published As

Publication number Publication date
CN104190914B (en) 2015-05-20

Similar Documents

Publication Publication Date Title
CN104190914B (en) Method for preparing boron, lead and aluminum composite board preventing X rays, gamma rays and neutron irradiation
CN103911610B (en) Preparation method of shielding aluminum-based aluminum plate
CN102392148B (en) Preparation method of aluminum-based boron carbide neutron absorption composite material
CN108660352A (en) A kind of enhanced AlCoCrFeNi2The preparation method and application of high-entropy alloy-base neutron absorber material
CN102280156B (en) Method for preparing aluminum-based boron carbide neutron absorption board
CN104498754A (en) Preparation method of magnesium alloy-based neutron shielding composite material
CN106435409A (en) Preparation method of neutron absorbing composite material
CN104726731A (en) Preparation method of enhanced magnesium alloy-based neutron absorption plate
CN107737934A (en) A kind of shielding neutron, the preparation method of gamma-ray laminated composite plate
CN108060313B (en) A kind of preparation method of aluminium base gadolinium oxide neutron absorber plate
CN111250697A (en) Preparation method of gadolinium oxide/tungsten/aluminum neutron and gamma ray core-shell co-shielding material
CN104308161B (en) Preparation method of boron carbide/aluminum composite board
CN108642457B (en) Production method of high-generation molybdenum target
CN102658703B (en) Preparation method of carbon fiber reinforced magnesium-based composite board
CN101928850A (en) Method for preparing W-Ti alloy target material
CN105568098B (en) The preparation method of heat-resistance high-strength magnesium alloy materials
CN108468002A (en) A kind of preparation method of stratiform aluminium base neutron absorber plate
CN208622446U (en) Neutron-gamma mixing field flexible compound safeguard structure
CN102728838B (en) Preparing method of molybdenum-based rare earth oxide powder metallurgical alloy wafer
CN106992030B (en) A kind of preparation method of the aluminum-based layered neutron shield plate of boron carbide Graded amounts
CN104347133B (en) A kind of preparation method of the neutron absorber plate for nuclear fuel storage transport
CN106310540A (en) Beam shaping body for neutron capture therapy
Lu et al. Rapid synthesis of single phase Gd2Zr2O7 pyrochlore waste forms by microwave sintering
CN112827580A (en) High-temperature planetary ball milling equipment
CN106244947B (en) A kind of preparation method of the Ni-based boron carbide composite material of doping neodymium yttrium samarium gadolinium

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150520

Termination date: 20180821