CN104157732B - 一种太阳能电池扩散工艺 - Google Patents

一种太阳能电池扩散工艺 Download PDF

Info

Publication number
CN104157732B
CN104157732B CN201410372147.3A CN201410372147A CN104157732B CN 104157732 B CN104157732 B CN 104157732B CN 201410372147 A CN201410372147 A CN 201410372147A CN 104157732 B CN104157732 B CN 104157732B
Authority
CN
China
Prior art keywords
temperature
stove
oxygen
nitrogen
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410372147.3A
Other languages
English (en)
Other versions
CN104157732A (zh
Inventor
孙飞龙
翟俊杰
何晨旭
朱姚培
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Rongma New Energy Co Ltd
Original Assignee
Jiangsu Rongma New Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Rongma New Energy Co Ltd filed Critical Jiangsu Rongma New Energy Co Ltd
Priority to CN201410372147.3A priority Critical patent/CN104157732B/zh
Publication of CN104157732A publication Critical patent/CN104157732A/zh
Application granted granted Critical
Publication of CN104157732B publication Critical patent/CN104157732B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种太阳能电池扩散工艺,依次包括以下步骤:将硅片放置在扩散炉中,在800℃以下以300-600sccm的速率通入氧气8-20min;用5-20min将炉内温度升至830-840℃,整个升温过程中持续通入流量比为1:5~1:7的氧气和氮气;保持炉内温度为830-840℃,继续通入流量比为1:5~1:7的氧气和氮气5-20min;保持炉内温度为830-840℃时间为5-10min后将炉内温度降至常温并取出硅片测其方块电阻。本发明步骤2和3中的氧气和氮气的比例为1:5-1:7,能解决扩散方阻中间点偏高的问题,有效改善方阻的均匀性。

Description

一种太阳能电池扩散工艺
技术领域
本发明涉及太阳能电池制造领域,具体涉及一种太阳能电池扩散工艺。
背景技术
随着高科技产业带动光伏产业的快速发展,太阳能电池的制造技术越来越成熟,新技术与新的工艺方法不断应运而出,制作高方阻已是技术革新的方向,但是随着扩散方阻的提高,方阻均匀性会相应变差,不均匀度越来越大,影响了工艺的稳定控制同时也影响后续烧结的效果。现有的制造高方阻电池的工艺较阐述不合理,扩散后的硅片均匀性较差。
发明内容
本发明的目的在于提供一种太阳能电池扩散工艺,制作90Ω/sq高方阻,操作简洁方便,能有效改善扩散方阻的均匀性。
本发明通过以下技术方案实现:
一种太阳能电池扩散工艺,依次包括以下步骤:
1)扩散前氧化:将硅片放置在扩散炉中,在800℃以下以300-600sccm的速率通入氧气8-20min;
2)升温扩散:用5-20min将炉内温度升至830-840℃,整个升温过程中持续通入流量比为1:5~1:7的氧气和氮气;
3)恒温扩散:保持炉内温度为830-840℃,继续通入流量比为1:5~1:7的氧气和氮气5-20min;
4)降温出炉:保持炉内温度为830-840℃时间为5-10min后将炉内温度降至常温并取出硅片测其方块电阻。
本发明进一步的改进方案是,步骤2以及步骤3中通入的氧气为100-160sccm、氮气为700-840sccm,时间均为8-12min。
本发明与现有技术相比具有以下优点:
本发明步骤2和3中的氧气和氮气的比例为1:5-1:7,能解决扩散方阻中间点偏高的问题,有效改善方阻的均匀性。
具体实施方式:
下面选取制绒后的硅片各500片,用现有工艺和本发明的工艺分别扩散:
现有工艺对比例1
将硅片放置在扩散炉中,在800℃以下以600sccm的速率通入氧气20min;用5min将炉内温度升至830℃,整个升温过程中持续通入流量比为1:2的氧气和氮气;保持炉内温度为830℃,继续通入流量比为1:2的氧气和氮气20min;保持炉内温度为820-830℃时间为5-10min后将炉内温度降至常温并取出硅片测其方块电阻。
实施例1
一种太阳能电池扩散工艺,包括以下步骤:
1)扩散前氧化:将硅片放置在扩散炉中,在800℃以下以600sccm的速率通入氧气20min;
2)升温扩散:用12min将炉内温度升至840℃,整个升温过程中持续通入流量比为1:7的氧气和氮气,具体的是氧气100sccm,氮气为700sccm,
3)恒温扩散:保持炉内温度为840℃,继续通入流量比为1:7的氧气和氮气12min,具体的是氧气100sccm,氮气为700sccm;
4)降温出炉:保持炉内温度为840℃时间为10min后将炉内温度降至常温并取出硅片测其方块电阻。
测得现有工艺对比例1与实施例1的对比数据如下:
从以上数据可看出,对比例1中5个温区不均匀度分别为16.5%、13.1%、6.0%、5.0%,4.9%,平均方阻为91.0Ω/sq,平均均匀度为9.10%。
实施例1中5个温区不均匀度分别为5.2%、3.7%、4.0%、5.6%、6.4%,平均方阻为89.3Ω/sq,平均均匀度4.98%,改善效果显著。
实施例2
一种太阳能电池扩散工艺,包括以下步骤:
将硅片放置在扩散炉中,在800℃以下以300sccm的速率通入氧气8min;用8min将炉内温度升至830℃,整个升温过程中持续通入流量比为1:5的氧气和氮气,具体的是氧气150sccm,氮气为750sccm;保持炉内温度为830℃,继续通入流量比为1:5的氧气和氮气8min,具体的是是氧气150sccm,氮气为750sccm;保持炉内温度为830℃时间为5min后将炉内温度降至常温并取出硅片测其方块电阻。
实施例2中5个温区不均匀度分别为8.2%、4.3%、7.6%、3.1%、5.2%,平均方阻为89.3Ω/sq,平均均匀度5.68%,与对比例1相比改善效果显著。
实施例3
一种太阳能电池扩散工艺,包括以下步骤:
将硅片放置在扩散炉中,在800℃以下以450sccm的速率通入氧气12min;
用10min将炉内温度升至830-840℃,整个升温过程中持续通入流量比为1:6的氧气和氮气,具体的是氧气120sccm,氮气为720sccm;保持炉内温度为830-840℃,继续通入流量比为1:6的氧气和氮气10min,具体的是氧气120sccm,氮气为720sccm;保持炉内温度为830-840℃时间为8min后将炉内温度降至常温并取出硅片测其方块电阻。
实施例3中5个温区不均匀度分别为7.8%、3.2%、4.6%、6.2%、2.9%,平均方阻为89.3Ω/sq,平均均匀度4.94%,与对比例1相比改善效果显著。

Claims (2)

1.一种太阳能电池扩散工艺,其特征依次包括以下步骤:
1)扩散前氧化:将硅片放置在扩散炉中,在800℃以下以300-600sccm的速率通入氧气8-20min;
2)升温扩散:用5-20min将炉内温度升至830-840℃,整个升温过程中持续通入流量比为1:5~1:7的氧气和氮气;
3)恒温扩散:保持炉内温度为830-840℃,继续通入流量比为1:5~1:7的氧气和氮气5-20min;
4)降温出炉:保持炉内温度为830-840℃时间为5-10min后将炉内温度降至常温并取出硅片测其方块电阻。
2.如权利要求1所述的一种太阳能电池扩散工艺,其特征在于:步骤2以及步骤3中通入的氧气为100-160sccm、氮气为700-840sccm,时间均为8-12min。
CN201410372147.3A 2014-07-31 2014-07-31 一种太阳能电池扩散工艺 Active CN104157732B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410372147.3A CN104157732B (zh) 2014-07-31 2014-07-31 一种太阳能电池扩散工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410372147.3A CN104157732B (zh) 2014-07-31 2014-07-31 一种太阳能电池扩散工艺

Publications (2)

Publication Number Publication Date
CN104157732A CN104157732A (zh) 2014-11-19
CN104157732B true CN104157732B (zh) 2016-05-04

Family

ID=51883187

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410372147.3A Active CN104157732B (zh) 2014-07-31 2014-07-31 一种太阳能电池扩散工艺

Country Status (1)

Country Link
CN (1) CN104157732B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755113B (zh) * 2017-11-01 2021-08-10 天津环鑫科技发展有限公司 一种调节扩散气氛的一次扩散工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102779897A (zh) * 2012-05-22 2012-11-14 浙江正泰太阳能科技有限公司 一种一次性扩散制备选择性发射极的方法
CN103367551A (zh) * 2013-08-06 2013-10-23 中利腾晖光伏科技有限公司 一种晶体硅太阳能电池的扩散工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930004126B1 (ko) * 1990-08-31 1993-05-20 주식회사 금성사 단결정 실리콘 태양전지의 제조방법
TWI390755B (zh) * 2009-03-19 2013-03-21 Ind Tech Res Inst 太陽能電池的製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102779897A (zh) * 2012-05-22 2012-11-14 浙江正泰太阳能科技有限公司 一种一次性扩散制备选择性发射极的方法
CN103367551A (zh) * 2013-08-06 2013-10-23 中利腾晖光伏科技有限公司 一种晶体硅太阳能电池的扩散工艺

Also Published As

Publication number Publication date
CN104157732A (zh) 2014-11-19

Similar Documents

Publication Publication Date Title
CN104393107B (zh) 一种高方阻晶体硅电池低压扩散工艺
CN106449868B (zh) 太阳能电池硅片的扩散方法
CN106449874B (zh) 一种密舟多晶硅太阳能电池的扩散工艺
JP2012084860A5 (zh)
WO2010107282A3 (ko) 불소계 공중합체를 포함하는 태양전지 백시트 및 그 제조방법
WO2010087684A3 (ko) 태양전지 백시트 및 이의 제조방법
CN105304753A (zh) N型电池硼扩散工艺
CN103421938B (zh) 一种叶轮用fv520b-s材料的热处理工艺
CN104157732B (zh) 一种太阳能电池扩散工艺
WO2014101791A1 (zh) 一种烧结控制方法及***
MY188961A (en) High-throughput thermal processing methods for producing high-efficiency crystalline silicon solar cells
CN204243004U (zh) 热退火设备
CN103633192A (zh) 一种提升晶体硅太阳电池光电转换效率的扩散工艺
CN103824899B (zh) 一种晶体硅低表面浓度发射极的实现方法
CN104152648B (zh) 连续退火炉低露点气氛的配气方法
CN103715300B (zh) 一种扩散后低方阻硅片返工的方法
CN104752564A (zh) 一种提高多晶硅开路电压的新型扩散工艺
MX2014010452A (es) Sistemas y metodos para formar celdas solares con peliculas de cuinse2 y cu(in,ga)se2.
WO2011160814A3 (en) Method for creating a passivated boron-doped region, especially during production of a solar cell, and solar cell with passivated boron-diffused region
MY162194A (en) Oxygen getter layer for photovoltaic devices and methods of their manufacture
WO2012155900A3 (de) Verfahren zur herstellung eines halbleiterkeramikmaterials, halbleiterkeramikmaterial und ein halbleiter-bauelement
WO2013102731A3 (fr) Procédé de production à basse température de nanostructures semi-conductrices à jonction radiale, dispositif a jonction radiale et cellule solaire comprenant des nanostructures à jonction radiale
CN202083220U (zh) 太阳能硅片烧结炉
CN109308995A (zh) 一种太阳能电池片扩散工艺
Son et al. KF post deposition treatment process of Cu (In, Ga) Se 2 thin film effect of the Na element present in the solar cell performance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant